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Abstract: Brain metastases are a much-feared complication of cancer. The development  

of brain metastases requires a malignant cell to acquire characteristics that facilitate 

dissemination away from the primary site, entrance into the nervous system, and 

establishment in the brain. This review summarizes recent work focused on the molecular 

derangements leading to brain metastases and outlines areas in need of greater understanding. 
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1. Introduction 

The dissemination and growth of tumor cells distant from their site of origin is a much-feared 

complication of cancer. Brain metastases are particularly devastating due to their neurocognitive 

impact and resistance to conventional therapy, and are often perceived as a marker of end-stage cancer 

and imminent death. Over 150,000 patients are diagnosed with brain metastases each year in the 

United States, which is an increase compared to a previously reported incidence of 17,380 three 

decades ago [1,2]. This may be due to various reasons, including improvements in diagnostic 

techniques such as imaging. The most common solid tumors which spread to the brain primarily 

include those of lung, breast, and melanoma origin, though a recent increase in the incidence of brain 

metastases from other cancer types such as renal, prostate, and colorectal has been observed [3–5]. The 

median survival of untreated patients is only 1–2 months, which is only marginally extended to  

6 months after surgery and radiation [6–10]. A small subset of patents may benefit from 
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chemotherapy, though overall response remains poor [11–15]. Understanding the metastatic process is 

a key step to the development of new therapeutics and improvement of patient outcomes. 

More than 100 years ago, Paget’s “seed and soil” hypothesis—which proposes that the basis of 

metastasis involves a favorable interaction between a cancer cell (the “seed”) and an organ 

microenvironment (the “soil”)—established the fundamental relationship between the tumor cell and a 

secondary organ to support the establishment and growth of a metastasis. The process resulting in the 

distant colonization of tumor cells into a secondary organ is a consequence of multiple interrelated 

events that is classically referred to as the “metastatic cascade.” Traits that increase a tumor cell’s 

potential to access and establish itself in the brain and other distant organs can be acquired during this 

process. Earlier models depict this process as a unidirectional sequence of events—oncogenic 

transformation, local invasion, intravasation, survival in the circulation, extravasation, and 

colonization. Though the order in which the steps occur may vary among tumor types, each step is 

pertinent to determining a tumor cell’s fate and can be interrupted at any time by homeostatic 

mechanisms [16–18]. 

Before reaching the central nervous system (CNS), cells of the primary tumor first acquire 

mutations that lead to genetic instability, sustained proliferative signaling, evasion of growth 

suppressors, increased invasive potential, replicative immortality, resistance to hypoxia and cell death, 

and some develop stem-like capabilities. Recent work suggests tumor cells that have already spread to 

secondary sites can reinfiltrate and colonize the primary tumor, interact with the microenvironment, 

acquire new genetic signatures that breed more aggressive phenotypes, and proceed to seed and 

colonize distant organs again [18–21]. This process is known as “self-seeding” and has been 

demonstrated in animal models to occur with pulmonary metastases but has not yet been shown to 

occur with brain metastases. However, this process results in cells with enhanced propensity to grow 

and spread distantly and this may well affect the brain. Early research efforts focused on the properties 

of the cancer cell, but recent work suggests that the microenvironment is critically important in the 

metastatic process [22,23]. In this review, we discuss the known molecular interactions leading to 

brain metastasis and describe areas in need of further investigation. 

2. Development of Brain Metastases 

2.1. The BBB: Normal Structure and Function 

The blood brain barrier (BBB) can be defined anatomically by the neurovascular unit, which 

consists of endothelial cells, pericytes, and astrocytes. These cells function as a highly regulated unit to 

control blood flow in response to neural demand at the micro-anatomic level. Since the brain does not 

contain lymphatics, circulating tumor cells reach the brain parenchyma only via a hematogenous route. 

Unlike capillary structures in the majority of the body, the cerebral vasculature is unique in that 

continuous tight junctions and low pinocytic activity at the capillary level restrict the entrance of most 

macromolecules from the blood into the CNS. 

The tight junctions between capillary endothelial cells are composed of intricate links between 

various transmembrane and cytoplasmic proteins; three integral proteins—claudin, occludin, and 

junctional adhesion molecule—have been identified and together they form a seal, which permits free 
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transport of only small solutes [24]. Pericytes found upon the basal surface of the capillary endothelial 

cell have been demonstrated in vivo to regulate the water permeability across the BBB and are 

implicated in mediation of astrocyte end-feet attachment to the abluminal vessel surface [25]. 

Astrocytes are important in that they may regulate expression of proteins such as P-glycoprotein  

(P-gp), aquaporin-4 (AQP-4), and glucose-transporter 1 (GLUT-1) which are involved in the transport 

of various substances across the BBB. Furthermore, astrocytes have the capacity to secrete a range of 

chemical factors in response to stress such as stroke, trauma, or inflammation, and may play a critical 

role in the invasion of tumor cells into the brain [26–28]. 

2.2. Invasion and Manipulation of the BBB 

There is evidence that invading metastatic cancer cells interact with all of these cell  

types—endothelium, pericytes, and astrocytes—to breach the BBB and gain access to the brain 

parenchyma [29]. How some circulating tumor cells are able to invade the BBB is not fully 

understood, but several key interactions have been identified through the use of multiphoton laser 

scanning microscopy [30]. Single cancer cells or heterotypic clusters of viable tumor mixed with dead 

cells or blood components arrest at vascular branch points, where blood flow is reduced. Following 

adhesion, the cancer cell may begin to interact with the cerebral vasculature. Some of the key 

mediators involved in this process have been identified and are summarized in Table 1. 

Table 1. Known mediators involved in tumor cell-blood brain barrier (BBB) interaction. 

Mediator Action Primary tumor Reference 

Stromal cell-derived 

factor 1α 

Adhesion; tumor  

cell migration 

MDA-MB231,  

DU4475 (breast) 

Lee, 2004 [30] 

β1 integrins Tumor cell adhesion to 

endothelial cell  

basement membrane 

MDA-MB231 (breast) Carbonell, 2009 [31] 

ST6GALNAC5 Tumor cell adhesion to 

endothelial cell  

basement membrane 

MDA-MB231 (breast) Bos, 2009 [32] 

Heparanase Proteolysis 70W (melanoma) Marchetti, 2000 [26] 

Matrix metalloproteinases Invasion; mechanism 

unknown  

ENU1564 (breast) Mendes, 2005 [33] 

TGF-β2 Growth factor K-1735 (melanoma) Zhang, 2009 [34] 

IL-6, IGF-1 Growth factor MDA-MB435 (breast) Sierra, 1997 [35] 

In the breast cell line MDA-MB-435, cells adapt to the narrow cerebral capillaries by reshaping 

themselves into an elongated form until just before or during extravasation. This process involved 

expansion of the surrounding vessel wall by amassing and extending tumor cytoplasmic projections to 

penetrate the blood vessel wall. Although disruption of the vessel wall occurred, no significant 

destruction of the vascular endothelium was identified [31]. This mechanism is known as vascular  

co-option, and in vitro experiments on human breast carcinoma cell line MDA-MB-231 have identified 

tumor cell β1 integrins as essential to the adhesion of tumor cells to the vascular basement  

membrane [32]. Cell-to-cell interactions enhanced by catalysis of cell-surface proteins by sialyltransferases 
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such as ST6GALNAC5 (observed in vivo with brain-tropic breast cancer cell line MDA231) may also 

facilitate tumor-endothelium adhesion [30,34]. 

The secretion of proteolytic enzymes (e.g., matrix metallopeptidase 9 and heparanase), cytokines 

(e.g., transforming growth factor β2), and chemokines (e.g., stromal cell-derived factor 1α) have been 

associated with the extravasation process in other cancer cell lines, and implies variation in the manner 

in which tumor cells exit capillary channels [36]. In brain-metastatic human melanoma cell lines, 

neurotrophins enhance production of heparanase, an enzyme which degrades the extracellular matrix 

and basement membrane that characterize the BBB [37].  

Once tumor cells enter the brain parenchyma, a number of factors are released by the tumor cells 

and underlying brain. In response to tumor-associated migration inhibitory factor (MIF), interleukin-8 

(IL-8), and plasminogen activator inhibitor-1 (PAI-1), astrocytes release various inflammatory 

cytokines including IL-1β, TNF-α, and IL-6, all of which have been shown to promote tumor cell 

proliferation in vitro [38–42].  

2.3. Chemoprotection by the Brain Microenvironment 

Some patients develop new brain metastases while their systemic disease is responding to 

chemotherapy, which implies that the CNS may serve as a sanctuary site for some tumor cells. This is 

exemplified in patients who receive trastuzumab for HER-2 positive breast cancer and those receiving 

gefitinib for EGFR-mutant lung adenocarcinoma [43,44]. One explanation is that the selective 

pressures in the CNS vary from those in other organs to permit the survival of cells that have acquired 

favorable mutations. Another hypothesis is that the targeting drug penetrates poorly into the CNS [45]. 

These mechanisms are not mutually exclusive but inadequate drug penetration is at least a contributing 

factor because once the serum level of chemotherapy is sufficiently high to achieve therapeutic levels 

in the CNS, then brain metastases may respond [46,47].  

The penetration of large molecule therapeutics through the BBB is one obstacle to the effective 

treatment of CNS tumors with systemic agents, though the process may be more active than previously 

thought. A recent in vitro study suggests that chemoprotection against paclitaxel is an active process 

exploiting the actions of activated astrocytes. In response to direct contact with human breast or lung 

tumor cells, murine astrocytes induce upregulation of survival genes in the cancer cell such as GSTA5, 

BCL2L1, and TWIST1 [47,48]. These genes are associated with drug resistance, evasion of apoptosis, 

and survival, and upregulation was shown to be a downstream effect of AKT and mitogen-activated 

protein kinase (MAPK) activation. These animal models afford the opportunity to clarify this  

pathway further. 

A potential method of circumventing the physical barrier of the BBB is to combine a cytotoxic 

agent with an efflux pump inhibitor. In one experiment, paclitaxel-sensitive human melanoma cells 

(K1735) were implanted subcutaneously and intracerebrally into immunodeficient mice. While the 

subcutaneous tumors regressed after administration of paclitaxel, the intracerebral tumors did not. This 

resistance was overcome by combining paclitaxel with HM30181A, a P-gp inhibitor, thus facilitating 

drug entry into the brain [49]. This finding provides critical information about the role of efflux pumps 

as potential therapeutic targets and demonstrates the potential clinical importance of developing more 

effective efflux pump inhibitors. 
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2.4. Dormancy 

The long latency between the successful treatment of systemic disease and the development of brain 

macrometastases suggests that tumor cells might exist within the CNS inactive for some time. This 

phenomenon has been demonstrated in experimental animals by injecting tagged 231-BR human breast 

cancer cells expressing green fluorescent protein with micron-sized iron oxide particles, making the 

cells detectable on MRI. The animals were then monitored with serial brain MRIs for evidence of CNS 

dissemination. Cells that actively divided lost ferric signal but retained fluorescence; 94% of the 

original cells could not be detected on MRI, 1.6% developed into macrometastases, and 4.5% retained 

ferric signal but did not proliferate [50]. The static nature of this third group suggests a state of 

dormancy, which may be a survival strategy for cells that are unable to proliferate yet manage to avoid 

apoptosis [51–56]. 

The mechanisms that drive tumor cell dormancy are still unknown, but current research may shed 

more light on this and provide a pathway for prevention or treatment of brain metastases [57]. Three 

underlying hypotheses, which are not mutually exclusive, have been proposed [58]. The first proposes 

that once a disseminated tumor cell reaches a distant organ, a host response is triggered. The stress 

signals released by the host organ activate the p38 pathway, which inhibits cell proliferation but does 

not induce death [59,60]. The second is based upon the concept of self-seeding, in which a 

disseminated tumor cell returns to the primary organ, interacts with the microenvironment, and 

acquires new gene signatures that induce quiescence in response to host signaling [57,61]. The  

third proposes that tumor cells are able to invade into and arrest within a target organ, but require 

further epigenetic or genetic changes that must be acquired within the secondary site in order to  

proliferate [62].  

Genetic signatures responsible for inducing quiescence are referred to as metastasis suppressor 

genes (MSG). The earliest MSG was identified in 1988 through differential gene expression of cell 

lines derived from K-1375 melanoma [63,64]. The expression of cDNA non-metastatic 23 (nm23) was 

downregulated in highly metastatic cell lines as compared to two related, less metastatic lineages. 

Since then, a multitude of MSGs have been identified including KAI1, KISS1, and MKK4/7. By 

acting on signal transduction pathways such as the MAPK/extracellular signal regulated kinase (ERK),  

stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) or p38, these genes can induce 

growth arrest at metastatic sites without initiating apoptosis. These genes could be critical to 

maintaining dormancy for prolonged periods of time, even if tumor cells have gained access and 

survive within a secondary organ. Further understanding of the early changes that occur in the primary 

tumor and events in the target organ that trigger the expression of MSGs may provide new therapeutic 

targets to suppress brain metastasis growth. 

3. Genetic Alterations Associated with Increased Brain Metastatic Potential 

Enhanced potential for the development of CNS metastases may be identified in the primary and 

define future therapeutic targets. For example, overexpression of human epidermal growth factor 

receptor 2 (HER2/neu) is predictive of a 3-fold increase in metastases to the lungs, liver, and brain 

compared to HER2/neu negative breast carcinomas [65–69]. This discovery has prompted clinical 
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trials for this subset of patients [70–72]. In lung adenocarcinoma, genetic alterations in HOXB9 and 

LEF1 lead to hyperactivity of the WNT/TCF pathway, which has been implicated in the growth of 

cancer stem cells and enhanced competence to metastasize to the bone and brain [69,73]. How 

overexpression of HOXB9 and LEF1 alters the interactions among tumor cell, pressures within the 

circulation, and brain endothelium is currently unknown. 

Other recently described gene expression signatures may predict outcome such as the risk of  

organ-specific dissemination [32,74]. For example, comparative genome-wide expression analysis on a 

breast cancer cell line with preference for migration to the brain identified three genes that mediate 

tumor cell passage through the blood brain barrier (BBB): COX2, HBEGF, and ST6GALNAC5. 

Activation of COX2 and HBEGF were also associated with pulmonary metastases which is interesting 

as more than 70% of patients with brain metastases from non-pulmonary primaries have co-existent 

lung metastases. As discussed previously, ST6GALNAC5 was observed only in the cell line associated 

with brain-tropism and appears to be integral to cell extravasation out of the vasculature and into the 

brain tissue [28]. These findings are only the earliest indicators of the underlying biology that defines 

brain tropism for some metastatic clones. Furthermore, the self-seeding phenomenon indicates that this 

is an on-going, active process and not a static phenomenon. This likely plays a role not only in the 

initial development of brain metastases but also for their recurrence, both at an original site and 

elsewhere in the brain, after therapy. The hope is that delineation of these mechanisms will provide 

novel therapeutic targets for both the prevention and treatment of brain metastases.  

4. Conclusions 

The pathophysiology of brain metastasis is complex and dependent upon both oncogenic processes 

and host organ responses. Multiple mechanisms determine the ultimate development of a brain 

metastasis including but not limited to brain-trophic tumor cell phenotypes, tumor cell survival in the 

vasculature and extravasation of those cells from the bloodstream and into a host organ, and the 

structure and function of the BBB. Many unanswered questions remain, including the molecular basis 

of brain-tropism and the signals that govern dormancy of tumor cells and their subsequent proliferation 

after a period of quiescence. Future work will hopefully identify therapeutic targets that will prevent 

brain metastases from taking hold or treat established CNS metastases. 
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