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Abstract: The magnetic remanence of silica microspheres with a low concentration of 

embedded cobalt ferrite nanoparticles is studied after demagnetization and remagnetization 

treatments. When the microspheres are dispersed in a liquid, alternating current (AC) 

magnetic susceptibility spectra reveal a constant characteristic frequency, corresponding to 

the rotational diffusion of the microparticles; this depends only on particle size and liquid 

viscosity, making the particles suitable as a rheological probe and indicating that 

interactions between the microspheres are weak. On the macroscopic scale, a sample with 

the dry microparticles is magnetically remanent after treatment in a saturating field, and 

after a demagnetization treatment, the remanence goes down to zero. The AC susceptibility 

of a liquid dispersion, however, characterizes the remanence on the scale of the individual 

microparticles, which does not become zero after demagnetization. The reason is that an 

individual microparticle contains only a relatively small number of magnetic units, so that 

even if they can be reoriented magnetically at random, the average vector sum of the 

nanoparticle dipoles is not negligible on the scale of the microparticle. In contrast, on the 

macroscopic scale, the demagnetization procedure randomizes the orientations of a 

macroscopic number of magnetic units, resulting in a remanent magnetization that is 

negligible compared to the saturation magnetization of the entire sample.  
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1. Introduction 

Composite particles with embedded magnetic nanoparticles are becoming increasingly important in 

biomedicine. Well-known examples include particles used as contrast agents for MRI and particles 

with a chemically functionalized surface for the magnetic separation of specific biological  

molecules [1,2]. The magnetic properties of the composite particles result from the type of embedded 

nanoparticles. Magnetic nanoparticles usually have a single permanent magnetic domain and the 

magnetic anisotropy determines whether thermal reorientation of the dipole moment by the Néel 

mechanism is rapid or slow. Whether or not the composite microparticles have a permanent magnetic 

dipole moment depends on the orientations of the nanoparticle dipoles and the rate of Néel relaxation. 

In most commercial applications, it is preferred to have magnetic microparticles without a 

permanent dipole moment. The advantage is that field-induced dipolar structures start to disappear as 

soon as the field is switched off. For magnetic separation applications, this means that the particles can 

be dispersed as single particles in their non-magnetized state and separated as large magnetic 

aggregates in their magnetized state. The disappearance rate of dipolar structures prepared in field is 

even at the basis of sensitive bio-assays that detect chemical interactions between the particles from a 

slowdown of the disaggregation rate [3]. Here, however, we choose to focus on microparticles with a 

permanent magnetic dipole moment, which have magnetic functional properties that are still  

relatively unexplored. 

Microparticles with a permanent dipole moment have the advantage that their orientation can be 

detected magnetically. In principle, this makes them suitable as a rheological probe on the 

microparticle scale, which can also be used in environments that are not accessible optically. As long 

as the microparticles do not interact with each other, their rotational diffusion occurs on a time scale 

that is determined by the size of the particles and the viscosity of the medium: 

                  
   

     
  (1)  

where fB is the Brownian relaxation frequency in Hz, ωB is the radial frequency in s
−1

, Dr is the 

rotational diffusion coefficient, kBT is the thermal energy, η is the viscosity of the solvent, and ah is the 

hydrodynamic radius of the microparticles. With magnetic particles, bio-assays have been developed 

that magnetically detect the slowdown of rotational diffusion that occurs when molecules adsorb to the 

particle surface, enlarging the hydrodynamic radius [4–8]. Moreover, cobalt ferrite nanoparticles have 

been used as rheological probes on the nanoscale [9] for instance to monitor the gelation of gelatin 

solutions [10] and to characterize the mechanical properties of ferrohydrogels [11]. 

The remanent microparticles that we study here consist of monodisperse silica microparticles with a 

diameter of 380 nm and an embedded shell of cobalt ferrite nanoparticles with a diameter of 14 nm 

(Figure 1), particles developed by Claesson and Philipse [12]. An outer layer of silica weakens the 
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dipolar interactions and prevents the formation of dipolar structures of the microparticles in an  

external magnetic field [13]. Their Brownian rotational motion was previously studied using  

frequency-dependent magnetic susceptibility measurements while the particles were dispersed in 

ethanol [14]. The weak interparticle interactions were shown to result in only a modest slowdown of 

rotational diffusion, up to concentrations where the microparticles self-assembled into colloidal 

crystals [14]. The weakness of the interparticle interactions, despite the permanent magnetic moment, 

in principle allows the microparticles to act as individual rheological probes.  

Figure 1. Silica microparticles with an embedded shell of cobalt ferrite nanoparticles:  

(a) TEM picture of the composite microspheres; and (b) schematic representation of the 

composite microspheres denoting the initial random orientation of the magnetic dipole 

moments. © IOP Publishing, 2007. Reproduced by permission of IOP Publishing.  

All rights reserved. doi:10.1088/0953-8984/19/3/036105 [12].  

 

Our objective here is to study the magnetic remanence of such microparticles in relation to their 

magnetic field history, by examining the effects of demagnetizing and remagnetizing the particles. 

Demagnetization procedures are well-known when it comes to bulk objects such as electromotors and 

magnetic data carriers [15]. Thermal demagnetization cannot be used in the case of colloidal 

dispersions of microparticles, because the solvent boils well before the Curie temperature of the 

magnetic material is reached and because the surface groups of the microparticles have a limited 

thermal stability. The particles might be demagnetized thermally in the dry state, but redispersing the 

particles in a solvent afterwards would be a challenge. To demagnetize our composite microparticles 

while in colloidal dispersion, we freeze the liquid and expose the sample to a magnetic field  

whose orientation alternates compared to that of the particles and whose magnitude is gradually  

decreased [15]. 

In the Results section, we first present our theoretical expectations on the basis of monodisperse 

embedded magnetic nanoparticles with fully blocked orientations of the magnetic dipole moments. 

This provides a framework to interpret the experimental results, which are complicated by 

polydispersity and Néel relaxation. Presentation of the experimental results starts with magnetization 

curves of the dry composite microparticles and of a dilute liquid dispersion of the separate 

nanoparticles, to determine the magnetic content per microparticle and the polydispersity of the 

nanoparticles. Next, magnetic remanence and its time dependence are characterized on the 

macroscopic scale, and the effect of carrying out a demagnetization procedure is demonstrated as well 
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on the macroscopic scale. Finally, the AC magnetic susceptibility of liquid colloidal dispersions is 

measured as a function of frequency and amplitude, to characterize the magnetic remanence before  

and after demagnetization, now on the scale of the microparticles, and this is followed by a  

general discussion. 

2. Results  

2.1. Theory 

The magnetic remanence of composite microspheres with embedded hard-magnetic nanoparticles 

depends on their magnetization history. This is discussed here theoretically, on the basis of embedded 

magnetic nanoparticles that are monodisperse and exhibit no Néel relaxation. 

After treatment in a saturating magnetic field, the maximum remanence of composite microparticles 

is limited by the orientations and magnetic anisotropy energy of the embedded nanoparticles. In 

theory, full remanence could be attained if all the nanocrystals were identically oriented and if the 

anisotropy energy were sufficiently high compared to the thermal energy, so that it would prevent any 

orientational relaxation of the dipole moments in zero field. In that case, all the nanoparticle dipoles 

would point in the same direction along the same crystalline easy axis of magnetization. The 

microparticle dipole moment μ would then be equal to the number N of embedded nanoparticles times 

the dipole moment μ1 of a single nanoparticle: μ   Nμ1 (Figure 2a). 

Figure 2. Schematic of the average net permanent dipole moment of remanent composite 

microparticles in three different magnetization states: (a) Saturation magnetization;  

(b) Maximum magnetization in zero field after saturation magnetization treatment; a 

distinction exists between the average magnetization in the direction of the previously 

applied field (½Nμ1) and that in the direction of the net magnetic dipole of the 

microparticle (typically ⅔Nμ1); (c) Minimum magnetization after randomization of the 

nanoparticle dipole orientations.  

 

A more realistic case is that the magnetic nanocrystals inside a microparticle are physically oriented 

at random. In zero field, the magnetization is then the vector sum of the nanoparticle dipoles with their 

various directions. Assuming that the easy axes of the nanoparticles are randomly oriented and that the 
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dipoles have relaxed to the direction that is the closest to the previously applied field direction, the 

theoretical remanence in the field direction should on average be ½ of saturation magnetization  

(Figure 2b). Taking the magnetic field treatment to be along the x-axis, ½ is the average x-component 

when the x-components of randomly oriented unit vectors are suddenly all given a positive sign. Note 

that the direction of the net dipole of the microparticle in zero field does not have to be along the  

x-axis. When the frame of reference is taken to be the direction of the net dipole of each microparticle 

(Figure 2b), the average remanence typically tends to ⅔ (which we calculated by numerical simulation 

of the average vector sum of N randomly oriented unit vectors with a positive x-coordinate). 

After a successful demagnetization treatment, the magnetization of the macroscopic sample as a 

whole should be completely negligible. On the scale of the individual microparticles, however, the 

situation is expected to be different. Even when all the nanoparticle dipoles inside one microparticle 

have random orientations, their vector sum is nonzero (Figure 2c). Mathematically, the sum of  

N randomly oriented unit vectors has a magnitude that is on average equal to the square root of N. In 

other words, the ensemble of nanoparticle dipole vectors describes a random walk. Therefore, the 

minimal remanence is nonzero. The same effect applies to the individual microparticles and to the 

entire macroscopic sample, but the scales are different. Relative to the total number N of nanoparticles 

present, the square root of N is much, much smaller in the case of the macroscopic sample (with its 

10
12

 microparticles per 3 mL) than in the case of an individual microparticle (with only a few hundred 

nanoparticles). In this theory, the relative effect of demagnetization is inversely proportional to the 

square root of N. 

2.2. Magnetic Content of the Composite Microspheres and Remanence on the Macroscopic Scale 

The magnetization M as a function of the applied magnetic field H was measured for cobalt ferrite 

nanoparticles in dilute dispersion and for dry composite microparticles made from such cobalt ferrite 

nanoparticles (Figure 3).  

Figure 3. (a) Magnetization curve of cobalt ferrite nanoparticles in dispersion. The 

measured curve was fitted with Equation 4 to obtain the magnetic moment distribution of 

the nanoparticles; the measurements are in the open symbols and the fit is in red;  

(b) Magnetization curve of a macroscopic sample of dry composite microparticles  

(0.52 mg), characterizing the magnetic content and indicating a remanence of about 30% 

for the macroscopic sample. © IOP Publishing, 2007. Reproduced by permission of IOP 

Publishing. All rights reserved. doi:10.1088/0953-8984/19/3/036105 [12]. 
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The average dipole moment and polydispersity of the nanoparticles can be calculated from the 

magnetization curve of the nanoparticles in dilute dispersion. The measured curve does not show 

hysteresis, allowing a polydisperse fit on the basis of the Langevin equation and a lognormal 

distribution [16]. The Langevin equation describes how the magnetization M depends on the  

magnetic field:  

                        
 

 
   (2)  

where Ms is the saturation magnetization, 

   
    

   
 (3)  

and µ0 is the magnetic permeability of vacuum, µ is the magnetic dipole moment of a nanoparticle, H 

is the magnetic field, and kBT is the thermal energy. For nanoparticles with a lognormal distribution 

and where interactions are negligible, the magnetization M at field H is given by 

    

                   
 

 

          
 

 

 (4)  

where P(μ) is the probability density function for μ. Equation 4 was used for a theoretical fit of the 

magnetization curve in Figure 3a to obtain the magnetic dipole moment of the individual nanoparticles. 

The magnetic dipole moment can be converted into an effective magnetic diameter dm via 

   
 

 
   

     (5)  

where ms is the material-dependent saturation magnetization per unit volume, 240 kA/m for cobalt 

ferrite, which was obtained from the magnetization curve in Figure 3a. This value for ms is much lower 

than the bulk value of 425 kA/m reported in the literature, probably due to the presence of a  

non-magnetic iron oxide layer [17]. We assume that both the magnetic dipole moment and the 

magnetic diameter have a lognormal distribution: 
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 (7)  

where P is the probability density function, µ
*
 and dm

*
 are respectively the dipole moment and 

magnetic diameter at the maximum of the distribution, and the width of the distribution is described by 

σµ = 3σd. A fit of the data in Figure 3a yields a mean magnetic dipole moment μ = 1.61 ×·10
−19

 Am
2
 

and σμ = 1.53, corresponding to dm = 11 nm and σd = 0.51. The positions of the maxima of the 

distributions are calculated using               
     : μm

*
 = 5.0·× 10

−2
 Am

2
 and dm

*
 = 9.7 nm. The 

lognormal distributions of the magnetic diameter and the probability density function of the magnetic 

moment are plotted in Figure 4. 
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The magnetic content of the microspheres was estimated from the magnetization curve of the dry 

microspheres (Figure 3b) and the bulk magnetization of cobalt ferrite: 42.1 mg of cobalt ferrite per 

gram of microspheres. Per silica microsphere, this corresponds to about 440 cobalt ferrite nanoparticles 

with a dipole moment of 1.61·× 10
−19

 Am
2
. The likelihood that the nanoparticles are present in small 

clusters due to magnetic interactions can be estimated from the distribution in Figure 4. The 

dimensionless dipolar contact interaction is given by  

   
   

 

         
 (8)  

where d is the particle diameter. About 13% of the nanoparticles is larger than 17 nm, corresponding to 

λ = 2, which is sufficient for nanoparticle aggregation [18,19]. This agrees with the presence of 

clusters in aqueous dispersions of cobalt ferrite nanoparticles of the type studied here as revealed by 

AC magnetic susceptibility measurements [20]. 

Figure 4. Distribution curves of the magnetic moment and the effective magnetic diameter 

of the cobalt ferrite nanoparticles, assuming lognormal distributions, calculated using 

Equations 6 and 7. P is scaled to the maximum of the distribution, Pmax. 

 

Figure 3b indicates that the magnetic remanence of a dry sample of our microparticles is on the 

order of 30% after saturation magnetization treatment. This is significantly lower than the theoretically 

expected value of 50% (Figure 2b). The reason is that part of the embedded nanoparticles shows 

relatively rapid Néel relaxation of the dipolar orientation inside the nanoparticles. An indication for the 

Néel relaxation rate of the nanoparticles is given by 

         
   
   

  (9)  

where τ0 is on the order of 10
−9

 s, K is the anisotropy constant, and Vm is the magnetic volume of the 

nanoparticles. The precise value of the anisotropy constant K for cobalt ferrite is not well known, with 

values of 120 kJ/m
3
 [21], 200 kJ/m

3
 [13,22], 180–300 kJ/m

3
 [23] and 3150 kJ/m

3
 [22,24] being quoted 
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by different authors. For K = 120 kJ/m
3
, cobalt ferrite particles smaller than 9.5 nm exhibit Néel 

relaxation with τN < 100 s (see Figure 5), so that they do not contribute to the remanence on the time 

scale of our measurements of the magnetization curves. Comparing this to the magnetic size 

distribution in Figure 4 indicates that only about 60% of nanoparticles should contribute to the 

magnetic remanence in the magnetization curves of dry particles, in good agreement with 50% 

remanence expected without Néel relaxation and 30% remanence actually observed. 

Figure 5. Characteristic Néel relaxation time τN as a function of the effective magnetic 

diameter dm of cobalt ferrite nanoparticles (Equation 9). 

 

2.3. Demagnetization Treatment: Effect on the Macroscopic Scale 

Figure 6 illustrates how a demagnetization treatment affects our dry particles on the macroscopic 

scale. In each nanoparticle in zero field, the magnetic dipole prefers to be oriented along a 

crystallographically determined easy axis, and the nanocrystals are randomly oriented. The dipolar 

orientation can be reoriented using a magnetic field, but the strength of the required field depends on 

the orientations of the nanoparticles with respect to the field and on the volume of the nanoparticles. 

The nanoparticle dipoles are first all aligned in a strong field in a first direction, then a slightly weaker 

field is applied in the opposite direction, and so on (Figure 6a). When the field amplitude has dropped 

below about 400 kA/m (Figure 6b), most but not all the nanoparticle dipoles are reoriented at each 

field switch, and as the field continues to alternate and to weaken, fewer and fewer nanoparticle 

dipoles are reoriented by the alternating field (Figure 6c). The end effect is that the nanoparticle 

dipoles are left behind in random orientations, resulting in zero remanent magnetization. 

Figure 7 illustrates in another way that a sample of immobile microparticles could be demagnetized 

fully on the macroscopic scale. After demagnetization of a sample, the initial magnetization curve 

starts at the origin, that is, with zero magnetization in zero external field. The hysteresis loop indicates 

how strong the field must be to affect the orientations of the dipoles inside the immobilized 

nanoparticles. In the −400 kA/m to +400 kA/m range, the forward and backward scans are not exactly 

alike, in line with Figure 6 and the high coercivity of the cobalt ferrite particles [15]. 
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Figure 6. Demagnetization of a macroscopic sample of dry cobalt ferrite-embedded silica 

spheres: (a) Stepwise switching of the magnetic field H from positive to negative values of 

decreasing magnitude; (b) Absolute value of the applied field on a logarithmic scale; and 

(c) magnetic remanence Mr scaled to the saturation magnetization Msat. 

 

Figure 7. Magnetization curve of demagnetized composite microparticles. The initial loop 

(in red) begins at zero magnetization, indicating full demagnetization of the sample. 

 

2.4. AC Susceptibility Measurements  

To study the magnetic remanence on the scale of the microparticles, the AC magnetic susceptibility 

was measured as a function of frequency while the particles were dispersed in ethanol. The 

susceptibility χ   χ’ − jχ” consists of an in-phase “real” component χ’ and an out-of-phase “imaginary” 

component χ”, both of which are plotted in Figure 8. Their dependence on the frequency f is given by  

     

     
 

     
    

 (10)  

     

      

     
    

 (11)  



Int. J. Mol. Sci. 2013, 14 18102 

 

 

where χ0 is the low-frequency limit and fchar is the characteristic frequency [25]. Both components were 

numerically fitted jointly as a function of f, assuming a lognormal distribution of fchar [12,14]. The 

average characteristic frequency of 2.5 Hz is of the order expected for the Brownian rotation of 

particles with a diameter of 380 nm in ethanol (see Equation 1, with η   1.074 mPa s, the viscosity of 

ethanol at 25 °C [12]). This indicates that magnetic relaxation of the sample requires rotation of the 

entire microparticles. In other words, the magnetic susceptibility is determined by the number of 

microparticles and their net permanent dipole moments, as opposed to being due to the Néel relaxation 

of the dipoles inside individual embedded nanoparticles [12]. From the polydispersity of fchar, a 

polydispersity of about 15% was calculated for the hydrodynamic radius, in agreement with a 

polydispersity of 18% from electron microscopy [12]. The different spectra were obtained by 

magnetizing the same particles at different fields after an initial demagnetization treatment. The 

characteristic frequency is practically the same in all the spectra, indicating that the rotation remains 

that of single microparticles, as opposed to magnetic assemblies of particles, which would relax at 

much lower frequencies [26]. 

Figure 8. Frequency dependence of the real and imaginary components of the complex 

magnetic susceptibility χ   χ’ − jχ” of cobalt ferrite-embedded silica spheres with a 

diameter d = 380 nm in ethanol at room temperature (170 A/m field amplitude). The same 

particles were magnetized to different extents after an initial demagnetization treatment; 

dependence of χ’ at 1 Hz on the magnetizing field is shown in Figure 9b. The relaxation at 

fchar = 2.5 Hz corresponds to the rotational diffusion rate of the microparticles.  

 

To demagnetize the magnetic microparticles in colloidal dispersion, we froze the solvent of the 

dispersion using liquid nitrogen and rotated the frozen dispersion with respect to a magnetic field of 

fixed orientation but decreasing magnitude (see Section 3.2). During the demagnetization treatment, 

the nanoparticles respond individually to the magnetic field whereas the microparticles are unable to 

physically rotate in the frozen solvent. Whether or not the nanoparticles are present in microparticles 

does not affect the response of the nanoparticles. The susceptibility at 1 Hz after consecutive 

demagnetization or remagnetization treatments is shown in Figure 9. The maximum susceptibility after 

magnetization treatment was a factor 7 higher than the minimum after demagnetization treatment, 

meaning that the dipole moment was higher by a factor of 2.7, since magnetic susceptibility scales 
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with the square of the dipole moment. Intermediate values were obtained by magnetizing in fields 

lower than 400 kA/m, when the in-field magnetization does not yet saturate the sample at 77 K. 

Figure 9. Real component χ’ of the magnetic susceptibility χ   χ’ − jχ” at 1 Hz for the 

remanent microsphere dispersions in ethanol: (a) After alternating treatments to magnetize 

at 1.5 MA/m or to demagnetize; (b) After demagnetization and remagnetization as a 

function of the remagnetization field strength. The demagnetization and remagnetization 

treatments were at 77 K, whereas the susceptibility was measured at room temperature. 

 

In principle, the microparticle dipole moment μ can be calculated from the low-frequency limit of 

the magnetic susceptibility, χ0, and the number N of microparticles present per unit volume V, because 

   
    

 

      

 (12)  

where μ0   4 ·× 10
−7

 J A
−2

m
−1

. However, the dipole moment can be determined more reliably from the 

low-frequency limit of the magnetic susceptibility as a function of the amplitude H of the applied 

alternating magnetic field, since this does not require precise knowledge of the concentration N/V [12]:  

     

       
 

    
 

  
 (13)  

where L(α) and α are given by Equations 2 and 3. Such data is presented in Figure 10. The observation 

that the susceptibility does not increase but only decreases at increasing field amplitude is direct 

evidence of a permanent rather than an induced dipole moment of the microparticles [12,27]. The fits 

and the calculated dipole moments assume that the average alignment of the microparticle dipoles in 

an external magnetic field is given by the Langevin function [12]. Assuming a lognormal distribution, 

the fitted polydispersity of the dipole moment was on the order of 30% after saturation magnetization 

treatment. This agrees with the 15% polydispersity in the microparticle radius and the fact that the 

nanoparticles are located in a spherical monolayer shell.  
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Figure 10. Field amplitude dependence of the real component χ’ of the magnetic 

susceptibility χ   χ’ − jχ” at 1 Hz (same samples as in Figure 9). The fitted values of the 

average magnetic dipole moment per microparticle, from top to bottom, were 3.01, 2.41, 

2.21, 1.64, and 1.32 in units of 10
−17

 Am
2
. This corresponds to 175, 138, 126, 96, and 75 

times 1.6·× 10
−19

 Am
2
, the average dipole moment of the embedded nanoparticles. 

 

The AC susceptibility measurements are relatively insensitive to nanoparticles with rapid Néel 

relaxation, since χ depends on the square of the dipole moment (Equation 12). The contribution due to 

Brownian rotation of a microparticle with a dipole moment µ = N × µ1 is proportional to N
2
, whereas 

the contribution of N nanoparticles with a dipole moment µ1 that respond individually by Néel 

relaxation is proportional to N. Nevertheless, the AC susceptibility measurements do show evidence of  

Néel relaxation, be it on time scales of minutes to weeks: a slow decrease of the remanent 

magnetization (Figure 11). The decrease in remanence with the logarithm of time is as expected for 

frozen ferrofluid spin glasses [28,29]. Two factors that affect the rate of decrease are the polydispersity 

in the nanoparticle dipole moments and the interactions between the dipoles. 

Figure 11. Slow decrease of the magnetic dipole moment of the microparticles after 

magnetization at 1.5 MA/m. The plot combines AC susceptibility data (calculated from χ0, 

open squares) and, at shorter times, rescaled remanent magnetization data acquired with the 

alternating gradient magnetometer on dry particles (filled circles). 
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3. General Discussion 

The dipole moments of our composite microparticles can now be compared to the theory (Figure 2). 

From the saturation magnetization of the microparticles (Figure 3), it was concluded that a 

microparticle contains about 440 nanoparticles. After treatment in a saturating magnetic field, the 

dipole moment from AC susceptibility measurements was found to be 175 × µ1 (Figure 10), with  

µ1 = 1.6·× 10
−19

 Am
2
 being the average dipole moment of a single nanoparticle. This is a remanence of 

40%, compared to 30% remanence indicated by the magnetization curve of dry particles (Figure 3). 

However, the remanence of 30% was measured in the direction of the previously applied field, 

whereas the remanence of 40% is the average per particle along the direction of magnetization of each 

microparticle in zero external field. From theory, the remanence in the direction of the net 

microparticle dipole (⅔N × µ1) is higher than in the direction of the initially applied field (½N × µ1) by 

1/3, which agrees with our experimental data. 

Theoretical agreement with the magnetic moment after demagnetization treatment is not as clear. 

The theoretical prediction is        , and probably the 40% of particles with rapid Néel relaxation 

should not be included in N. This leads to N = 264 and a predicted remanence of 21 × µ1, compared to 

75 × µ1 from AC susceptibility measurements. A possible explanation for this discrepancy is the 

presence of clusters in which magnetic nanoparticles are in the head-to-tail configuration rather than in 

a flux closure configuration, which would suppress the remanence. In that way, the randomly oriented 

magnetic units that have to be taken into account have a larger dipole moment, for instance 10 × µ1, 

and there are fewer of such units, for instance N/10 = 26. This will then lead to a higher remanence of 

order         μ      μ
 
. 

The theoretical predictions clearly give an oversimplified picture, and experimental agreement is 

not quantitative. Nevertheless, two general predictions seem to be confirmed by our data: (1) the 

average remanence after treatment in a saturating field is higher along the direction of each 

microparticle dipole than in the direction of the initially applied field, and (2) a demagnetization 

treatment does not lead to the full demagnetization of the individual microparticles, even though the 

sample appears to fully lose its remanence on the macroscopic scale. From theory, the relative effect of 

demagnetization is inversely proportional to the square root of the number N of nanoparticles, where  

N is huge for macroscopic samples (here per 3 mL there are typically 10
12

 microparticles with each 

about 440 nanoparticles) and much smaller for a single microparticle (here about 440). In practice, the 

difference in magnetic remanence between the lowest and the highest magnetization states in zero field 

should increase as the number of nanoparticles embedded per microparticle increases, and it should 

decrease when the nanoparticles interact with each other magnetically. 

The maximum extent to which remanent composite microspheres can be demagnetized may not 

only be of fundamental but also of practical interest. Remanent microparticles with stronger magnetic 

interactions than in our work can self-assemble into dipolar structures in zero field, in a similar way as 

has been observed with single-domain magnetic nanoparticles [18,19,30]. Since the microparticles can 

be magnetized or demagnetized by magnetic treatment, this can lead to the appearance or 

disappearance of zero-field dipolar structures, as was recently shown by Smoukov et al. [31]. In the 

low-magnetization state, the particles do not interact strongly with each other and can be dispersed in a 

liquid as single particles, resulting in a stable colloidal dispersion that is convenient to handle. In the 
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high-magnetization state, dipolar structures grow that are likely to settle much more rapidly to the 

bottom of the dispersion. 

4. Experimental Section  

4.1. Magnetically Remanent Silica Microspheres  

The experiments were performed on silica microspheres containing an embedded monolayer shell 

of cobalt ferrite nanoparticles. The synthesis of the particles is briefly summarized here and was 

described in detail by Claesson and Philipse [13]. Cobalt ferrite nanoparticles were prepared separately 

by aqueous coprecipitation [32], treated with HNO3 and Fe(NO3)3·9H2O solutions, and washed with 

water. In parallel, silica microparticles were prepared by the Stöber method [33], from 

tetraethyoxysilane in a mixture of ethanol, water, and ammonia. The silica particles were grafted with 

mercaptopropyl(trimethoxy)silane (MPTMS) to ensure that the subsequent adsorption of a monolayer 

of cobalt ferrite particles was irreversible. Finally, a shell of silica was added using the Stöber method, 

resulting in the particles characterized as “Sample 1” in [12]. They were surface-coated with  

3-(trimethoxysilyl)propyl methacrylate for steric colloidal stabilization and dispersed in ethanol at a 

concentration of 3.0·× 10
17

 particles per m
3
 (0.86 vol.%).  

4.2. Demagnetization of Liquid Dispersions 

Samples with 3 mL of colloidal dispersion in a glass sample tube with an internal diameter of  

6 mm were demagnetized as follows (Figure 12).  

Figure 12. Schematic illustration of the setup used to demagnetize the microparticles while 

dispersed in ethanol.  

 

The sample tubes were immersed in liquid nitrogen while being rotated at 400 rpm between the 

poles of a Bruker BE 25 V electromagnet (pole caps of 11 cm by 22 cm, 4 cm apart). The sample was 

held vertically by a rotating holder that is connected via a rubber transmission band to an electromotor 

situated 30 cm from the pole caps, where it is not disrupted by the magnetic field. The sample hung 

inside one end of a vertical U-tube prepared from flexible thermal insulating tubing that could be 

rapidly filled with liquid nitrogen by pouring it into the other end. The field was increased to  

1.5 MA/m (1.9 Tesla) in 10 s at room temperature, 240 s were taken to add liquid nitrogen to freeze the 
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sample, after which rotation was started and the field was linearly decreased to zero in 150 s. 

Remagnetization was also done cryogenically, without sample rotation. Caution should be taken when 

applying this procedure to aqueous samples, since in contrast to ethanol, water expands upon freezing. 

4.3. Magnetic Measurements 

Frequency-dependent measurements of the complex magnetic susceptibility were measured on  

3 mL samples of the colloidal dispersion using a homebuilt setup [34]. Measurements were done at 

295 K, from 0.1 to 500 Hz using a sinusoidal magnetic field of 170 A/m in amplitude, and at 1 Hz as a 

function of the magnetic field amplitude from 6 to 600 A/m. 

Smaller scale experiments were conducted on dry samples (8 mg of microparticles) using a 

Micromag 2900 alternating gradient magnetometer (Princeton Measurements Corporation, Princeton, 

NJ, USA) at room temperature. Magnetization curves were obtained at room temperature at a scanning 

rate of 25 kA/m per s. Also with this apparatus, samples can be demagnetized by an automatic 

procedure or manually, by setting different positive or negative field values in any desired sequence. 

The equipment was also used to measure how fast the remanent magnetization of the particles 

decreased on time scales of 1 to 1000 min. Time-dependent remanence measurements on time scales 

of 30 min to several weeks were measured using the homebuilt complex magnetic susceptibility meter. 

5. Conclusions  

The remanence of our microparticles with embedded cobalt ferrite nanoparticles does not become 

zero after a demagnetization treatment. The macroscopic sample appears fully demagnetized, but on 

the scale of individual microparticles, the number of randomly oriented magnetic clusters of 

nanoparticles is so small that the vector sum of their magnetic dipoles is not negligible. This illustrates 

a key difference between magnetization curves and AC susceptibility as a way to characterize the 

magnetic remanence of microspheres. Whereas magnetization curves give an average over all 

magnetic particle dipoles in the macroscopic sample, magnetic susceptibility spectra of liquid 

dispersions give an average magnetic dipole moment on the scale of the microspheres. 
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