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Abstract: A series of diaryl amines, ethers and thioethers were synthesized under 

microwave irradiation efficiently at presence of KF/Al2O3 in 83%–96% yields without any 

solvent. The salient characters of this method lie in short reaction time, high yields, general 

applicability to substrates and simple workup procedure. At the same time, their antifungal 

biological activities against six phytopathogen were evaluated. Most of the compounds 

(3b, 3c, 3g–o) are more potent than thiophannate-methyl against to Magnaporthe oryzae. 

This implies that diaryl amine or ether moiety may be helpful in finding a fungicide against 

Magnaporthe oryzae. 
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1. Introduction 

Microwave-assisted organic synthesis (MAOS) has been one of the most exciting areas of interest on 

which many reviews have been published in last three decades [1–4]. Numerous reactions, including 

condensations [5–8], cycloadditions [9–12], heterocycles formations [13–15], and metal catalyzed 

cross-coupling [16,17] have been explored under microwave conditions. Some of these have been 

applied to medicinal chemistry and total syntheses of natural products [18–20]. MAOS can facilitate the 

discovery of new reactions and reduce cycle time in optimization of reactions. In addition, it serves to 

expand chemical space in compound library synthesis. 

Diaryl heteratom moities can be found from natural products, pharmaceuticals or optical  

materials [21,22] (Figure 1). Traditionally, they are prepared through a copper-assisted  

Ullmann reaction by intermolecular SNAr way. However, the key concerns of this chemical operation 

are harsh conditions (reaction temperature >200 °C) and troublesome residue stemming from a 

stoichiometric amount of copper [23] in terms of chemical waste. Palladium and copper complexes with 

various kinds of ligands have been studied fully for the cross-coupling between heteroatom (N, O, S) 

with aryl halide [24–27]. Transition metal catalysis (including Cu [28], Ni [29,30], Fe [31–33]) are 

involved as a complementary means of cross-coupling. However, the researchers still are confronted 

with the cost of precious metal and metal residue in products. In our pursuing new heterocyclic 

structures which serve as potential bioactive compounds in agriculture, we discovered a new palladium 

catalyzed cyclization of diazonium salts to form dibenzo[d]furan [34] and 6H-benzo[c]chromenes [35]. 

In preparing the substrates of such kinds of reaction patterns, we need to rapidly obtain a quantity of the 

derivatives of diaryl amine, ether and thioether. The existing methods in the literature seem tedious, 

laborious or not applicable. Therefore, there is still a need for innovation in such a general chemical 

transformation in order to provide corresponding structures effectively and on a feasible scale.  

Herein, we wish to report an improved method in preparation of these kinds of substrates under 

microwave irradiation. 

Figure 1. Representive diaryl heteroatom molecules. 

 

2. Results and Discussion 

Initially, the o-nitro chlorobezene and aniline were chosen as starting materials of model reaction. 

Thus, the different bases and solvents were also involved in this test and the results are summarized in 

Table 1. The reaction was performed in polar non-protonic solvent and at presence of K2CO3 as base in 

refluxing temperature. To our regret, the conversion rate of both were below 45%, even after 12 h. 

Following this, we introduced microwave irradiation to the system: the conversion rate increased 

considerably. Then, several bases such as (K2CO3 Table 1, entry 3, NaOH, entry 5, KF/Al2O3 entry 8 and 

without base entries 6 and 7) were screened under microwave irradiation. Na2CO3 did not show a 
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positive effect on this conversion and NaOH showed a worse result. We suspected that the complication 

of the products was due to the high concentration of NaOH which will attack chloride directly. The 

solvent-free system was also performed and the yield is higher than in DMF because of the latter’s 

higher reaction temperature. Finally, a composite solid base KF/Al2O3 was chosen as the best catalyst 

for this reaction. A literature survey revealed that KF/Al2O3 showed wide spectrum applications in base 

catalyzed reactions [36–38]. 

Table 1. Screen conditions in diaryl amine formation a. 

Cl

NO2 NH2

+
H
N

NO2

1 2 3  

Entry Base Solvent MWI/Heat Yield(%) b 

1 K2CO3 DMF Heat to 80 °C 30 
2 K2CO3 DMA Heat to reflux 42 
3 K2CO3 DMF MWI 15 min c 75 
4 Na2CO3 DMF MWI 15 min c 62 
5 NaOH DMF MWI 15 min c 47 
6 none DMF MWI 15 min c 35 
7 none none MWI 15 min c 56 
8 KF/Al2O3 none MWI 15 min c 92 b 

a The reaction was performed at molar ratio of compound 1 and 2 at 1:1; b Isolated yields; c The internal 

temperature was set as 150 °C on a MAS-II microwave reactor; DMF: N,N-dimethylformamide;  

DMA: N,N-dimethylacetamide; MWI: microwave irradiation. 

Under these optimized reaction conditions, we next examined the scope of KF/Al2O3 catalyzed 

coupling of o-nitrophenylchloride 1 and a wide spectrum of substrates such as amines, phenols and 

thiophenols 2 for the synthesis of substituted analogues of diphenyl amine. The results are summarized 

in Table 2. A wide range of structurally diverse amines, phenols, and thiophenols (Table 2) can be 

coupled with o-nitrohalobenzene under this protocol to give the corresponding substituted diaryl hetero 

ethers in excellent yields. It should be noted that the reactants need preheat to melt before microwave 

irradiation. Among them, bromo (Table 2, entries 4 and 9) and chloro (Table 2, entries 5 and 14) groups 

can be tolerated. The bromo and chloro moieties could be functionalized to boric acid or stannane easily, 

so our method effectively allows the preparation of halo diaryl hetero ethers. Thus, all the products in 

our reactions listed in Table 2 were easily characterized on the basis of physical and spectral data and 

also by comparison with authentic samples. All products (Table 2) were fully characterized by 

spectroscopic methods, as well as by the comparison of the spectral data with reported values. 

Table 2. Synthesis of diaryl hetero atom moieties under MWI and KF/Al2O3 
a. 
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Table 2. Cont. 

Entry R1 R2 R3 Product 3 Yield (%) b 

1 H H H 
 3a 

92.3 c, 93.5 d 

2 H Me H 
 3b 

94.2 c 

3 H MeO H 
3c

100 c,d 

4 H Br H 
 3d 

85.2 c, 87.0 d 

5 H Cl H 
3e

83.7 c 

6 NO2 H H 

 3f 

93.8 d 

7 NO2 H Me 

 3g 

95.4 d 

8 H H H 
3h

91.7 d 

9 H Br H 
3i

89.5 c, 91.6 d 

10 H Me H 
3j

96.2 c,d 

11 H OMe H 
 3k 

99.0 c,d 

12 H H H 
 3l 

94.4 c 

13 H Me H 
3m

97.7 c 

14 H Cl H 
 3n 

89.4 d 

15 Cl Me H 
3o

94.7 c 

a The reaction was performed at molar ratio of compound 1 and 2 at 1:1; b isolated yield; c 2-nitrochlorobenzene 

were used; d 2-nitrofluorobenzene were used. 
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Having obtained these 15 compounds, their antifungal activities (3a–o) against six phytopathogenic 

fungi (i.e., Cytospora mandshurica, Curvularia lunata, Magnaporthe oryzae, Gloeosporium fructigenum, 

Alternaria alternate, Fusarium graminearum) were investigated at the concentration of 100 µg/mL  

in vitro by poisoned food technique [39]. Thiophanate-methyl, which is structurally similar to these 

compounds and a commercially available agricultural fungicide, was used as a positive control at  

100 µg/mL. For each treatment, three replicates were conducted. The radial growths of the fungal 

colonies were measured and the data were statistically analyzed. The inhibitory effects of the test 

compounds on these fungi in vitro were calculated by the formula: 

Inhibition rate (%) = (C − T) × 100/C (1)

where C represents the diameter of fungi growth on untreated Potato Dextrose Agar (PDA), and  

T represents the diameter of fungi on treated PDA. 

As outlined in Table 3, all the analogues of diaryl amine (entries 3a–g) showed only  

fairly good antifungal activities comparing with thiophannate-methyl. As for Alternaria lternata and 

Fusarium graminearum, compounds (3a, 3d–f), they show unsatisfactory activity. As for compounds 

3d–f, they were almost inactive to the phytopathogenic fungi. Diaryl ethers (entries 3h–k) also showed 

only fairly good antifungal activities. It should be noted that the inhibition rate of 3h to  

Curvularia lunata is as high as 62.67%, compared with the one of thiophannate-methyl, 37.95%. As 

for diaryl thioethers (3l–o), they showed moderate antifungi bioactivities. On the other hand, most of 

the compounds (entries 3b, 3c, 3g–o) are more potent than thiophannate-methyl against  

Magnaporthe oryzae. This implies that diaryl moiety may be more helpful in fungicide against 

Magnaporthe oryzae. 

Table 3. Antifungal activities of 3a–o to six phytopathogenic fungi. 

Compound 
Antifungal activities (inhibition%) 

Cytospora 
mandshurica 

Curvularia 
lunata 

Magnaporthe 
oryzae 

Gloeosporium 
fructigenum 

Alternaria 
lternata 

Fusarium 
graminearum 

3a 41.96 6.65 2.10 11.94 0.00 0.00 
3b 38.86 7.23 39.30 32.14 25.43 12.79 
3c 18.56 47.60 38.64 24.77 30.52 25.46 
3d 0.00 19.30 0.00 0.00 0.00 0.00 
3e 9.85 0.00 1.37 0.00 0.00 0.00 
3f 0.00 0.00 0.00 19.26 0.00 0.00 
3g 16.07 40.37 37.24 25.70 55.95 28.11 
3h 29.03 62.67 21.39 52.28 15.26 17.51 
3i 31.08 37.37 14.48 14.69 30.52 35.03 
3j 24.17 17.89 20.45 21.74 30.12 10.75 
3k 21.26 14.46 24.82 24.77 27.06 0.00 
3l 13.99 45.80 31.03 23.89 42.35 10.95 

3m 48.18 22.30 44.85 33.96 0.12 34.31 
3n 19.70 40.98 28.96 33.03 16.89 0.00 
3o 58.76 44.46 48.75 39.73 28.71 42.31 

Thiophannate
-methyl 

72.55 37.95 12.41 73.42 74.57 82.11 
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3. Experimental Section 

3.1. Typical Synthetic Procedure 

A well dispensed mixture of 2-nitrochloro benzene (10 mmol), aniline (10 mmol) and KF/Al2O3 (2 g) 

was vigorously stirred and irradiated in microwave reactor (Sineo MAS-II, Shanghai, China) at 

internal temperature 150 °C for 15 min. Then the reaction mixture was diluted by dichloro methane 

(60 mL) and the organic layer was washed by saturated aqueous NaHCO3 and brine, and dried with 

anhydrous MgSO4. The solvent was evaporated in vacuum and the residue was purified through 

column chromatography to give 3 (Table 2). The 1H-NMR and 13C-NMR data were recorded in 

deutrated chloroform solution with NMR spectrometers (DRX 500, Bruker, Billerica, Massachusetts) 

if not noted otherwise. The chemical shifts are measured relative to tetramethylsilane (TMS) (δ = 0) or 

chloroform (δ = 7.26) and the coupling J is expressed in Hertz. 

3.1.1. 2-Nitrodiphenylamine (3a) 

Orange solid, mp 74–76 °C (lit. [40], 76–77 °C). 1H-NMR: 9.50 (s, 1H), 8.20 (dd, 1H, J = 7.2, 1.4), 

7.35–7.45 (m, 3H), 7.20–7.30 (m, 4H), 6.78 (t, 1H, J = 6.9); 13C-NMR: 143.0, 137.9, 134.8, 132.4, 

129.7, 126.8, 125.4, 124.4, 117.5, 116.1. 

3.1.2. 4'-Methl-2-nitrodiphenylamine (3b) 

Orange solid, mp 69–70 °C (lit. [41], 69–70 °C). 1H-NMR: 2.38 (s, 3H), 6.73 (t, 1H, J = 7.8),  

7.13–7.16 (m, 3H), 7.22 (d, 2H, J = 8.3), 7.33 (t, 1H, J = 6.6), 8.19 (dd, 1H, J = 8.6, J = 1.4), 9.45 (s, 1H). 
13C-NMR: 21.0, 116.0, 117.1, 124.8, 126.7, 130.3, 132.8, 135.7, 135.8, 135.9, 143.7. 

3.1.3. 4'-Methoxy-2-nitrodiphenylamine (3c) 

Orange solid, mp 88–89 °C (lit. [40,41], 87–88 °C). 1H-NMR: 9.41 (s, 1H), 8.19 (d, 1H, J = 8.6),  

7.30 (t, 1H, J = 7.9), 7.20 (d, 2H, J = 8.3), 6.90–7.15 (m, 3H), 6.71 (t, 1H, J = 7.7), 3.84 (s, 3H). 
13C-NMR: 157.7, 144.2, 135.6, 132.5, 131.1, 127.3, 126.5, 116.8, 115.6, 114.7, 55.6. 

3.1.4. 4'-Bromo-2-nitrodiphenylamine (3d) 

Orange solid, mp 170–171 °C (lit. [40,41], 168–169 °C). 1H-NMR: 6.81 (t, 1H, J = 7.8), 7.15–7.21 (m, 

3H), 7.39 (t, 1H, J = 7.8), 7.52 (d, 2H, J = 8.6), 8.21 (dd, 1H, J = 1.4, J = 8.6), 9.39 (s, 1H). 13C-NMR: 

115.9, 115.9, 118.1, 118.4, 125.7, 126.8, 132.8, 135.8, 137.9, 142.4. 

3.1.5. 4'-Chloro-2-nitrodiphenylamine (3e) 

Orange solid, mp 170–171 °C (lit. [41], 168–169 °C). 1H-NMR (500 MHz, CDCl3): 6.83 (t, 1H,  

J = 8.0), 7.15–7.32 (m, 3H), 7.35–7.45 (m, 3H), 8.24 (dd, 1H, J = 8.6, 1.5). 13C-NMR: 115.9, 118.0, 

121.5, 125.6, 126.9, 129.3, 130.1, 135.7, 142.4, 144.1. 
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3.1.6. 2,4-Dinitrodiphenylamine (3f) 

Orange solid, mp 158–159 °C (lit. [42], 156–157 °C). 1H-NMR: 7.17 (d, 1H, J = 9.6), 7.32 (d, 2H,  

J = 7.7), 7.39 (t, 1H, J = 7.4), 7.52 (t, 2H, J = 7.7), 8.17 (dd, 1H, J = 2.6, J = 9.6), 9.17 (d, 1H, J = 2.6), 

9.99 (s, 1H). 13C-NMR: 116.1, 124.1, 125.5, 127.8, 129.9, 130.3, 131.1, 136.7, 137.4, 147.1. 

3.1.7. 2'-Methyl-2,4-dinitrodiphenylamine (3g) 

Orange solid, mp 123–124 °C (lit. [43], 124–126 °C). 1H-NMR: 2.27 (s, 3H), 6.83 (d, 1H, J = 9.6),  

7.28 (d, 1H, J = 3.6), 7.34 (dd, 2H, J = 3.6, J = 5.6), 7.39 (t, 1H, J = 4.8), 8.15 (dd, 1H, J = 2.6, J = 9.5), 

9.19 (d, 1H, J = 2.6), 9.83 (s, 1H). 13C-NMR: 17.9, 115.9, 124.2, 126.8, 127.7, 128.5, 130.0, 130.8, 

131.9, 134.9, 135.1, 137.2, 147.5. 

3.1.8. 2-Nitrophenyl phenyl ether (3h) 

Yellowish oil, 1H-NMR: δ = 8.29 (dd, 1H, J = 8.6, 1.4), 7.85 (dd, 1H, J = 8.3, 2.3), 7.35–7.45  

(m, 3H), 7.20–7.30 (m, 4H). 13C-NMR: 157.1, 149.9, 139.5, 134.2, 129.7, 123.5, 122.2, 118.0, 117.3. 

3.1.9. 4'-Bromophenyl-2-nitrophenyl ether (3i) 

Yellow solid, mp 68–69 °C (lit. [44], 71 °C). 1H-NMR: 6.92 (dd, 2H, J = 2.1, J = 6.8), 7.04 (dd, 1H,  

J = 1.0, J = 8.4), 7.25 (t, 1H, J = 7.6), 7.48 (dd, 2H, J = 2.1, J = 6.8), 7.54 (t, 1H, J = 8.0), 7.96 (dd, 1H, 

J = 1.6, J = 8.2). 13C-NMR: 117.2, 120.6, 120.9, 123.9, 125.9, 133.1, 134.3, 150.0, 155.2. 

3.1.10. 4'-Methylphenyl-2-nitrophenyl ether (3j) 

Yellow oil, 1H-NMR: 7.92–7.96 (m, 1H), 7.45–7.50 (m, 1H), 7.10–7.20 (m, 3H), 6.95–7.00 (m, 3H), 

2.37 (s, 3H); 13C-NMR: 153.7, 151.7, 141.5, 134.8, 134.4, 131.0, 126.1, 123.0, 120.2, 119.8, 21.2. 

3.1.11. 4'-Methoxyphenyl-2-nitrophenyl ether (3k) 

Yellow solid, mp 47–48 °C (lit., 48 °C). 1H-NMR: 3.81 (s, 3H), 6.91 (dd, 3H, J = 2.4, J = 6.8),  

7.02 (dd, 2H, J = 2.3, J = 6.8), 7.12 (t, 1H, J = 7.7), 7.44 (t, 1H, J = 7.7), 7.92 (dd, 1H, J = 1.6, J = 8.2). 
13C-NMR: 55.7, 115.1, 118.9, 121.2, 122.2, 125.7, 134.0, 140.7, 148.6, 151.9, 156.8. 

3.1.12. 2-Nitrodiphenylthioether (3l) 

Yellow solid, mp 81–82 °C (lit. [45], 80 °C). 1H-NMR: 6.86 (dd, 1H, J = 1.1, J = 8.2), 7.21 (t, 1H,  

J = 7.7), 7.34 (t, 1H, J = 7.7), 7.48–7.50 (m, 3H), 7.58 (dd, 2H, J = 1.9, J = 5.0), 8.22 (dd, 1H, J = 1.4,  

J = 8.3). 13C-NMR: 125.0, 125.8, 128.3, 130.1, 130.2, 131.0, 133.5, 136.0, 139.5, 144.9. 

3.1.13. 4'-Methyl-2-nitrodiphenylthioether (3m) 

Yellow solid, mp 88–90 °C (lit. [45], 88 °C). 1H-NMR: 2.43 (s, 3H), 6.85 (dd, 1H, J = 1.0, J = 8.2),  

7.19 (t, 1H, J = 7.7), 7.28–7.35 (m, 3H), 7.46 (d, 2H, J = 8.0), 8.22 (dd, 1H, J = 1.2, J = 9.3).  
13C-NMR: 21.4, 124.8, 125.8, 127.3, 128.1, 131.0, 133.4, 136.0, 140.1, 140.5, 144.8. 
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3.1.14. 4'-Chloro-2-nitrodiphenylthioether (3n) 

Yellow solid, mp 95–96 °C (lit. [45], 94 °C). 1H-NMR: 6.86 (dd, 1H, J = 1.1, J = 8.2), 7.24 (t, 1H,  

J = 7.8), 7.37 (t, 1H, J = 7.7), 7.46 (dd, 2H, J = 2.2, J = 8.8), 7.52 (dd, 2H, J = 2.0, J = 6.5), 8.23 (dd, 1H, 

J = 1.4, J = 8.2). 13C-NMR: 125.3, 125.9, 128.2, 129.6, 130.4, 133.6, 136.5, 137.2, 138.8, 145.1. 

3.1.15. 4'-Methyl-4-chloro-2-nitrodiphenylthioether (3o) 

Yellow solid, mp 119–120 °C (lit. [46], 121 °C). 1H-NMR: 2.43 (s, 3H), 6.78 (d, 1H, J = 8.8),  

7.30 (d, 3H, J = 7.6), 7.45 (d, 2H, J = 8.0), 8.21 (d, 1H, J = 2.3). 13C-NMR: 21.4, 125.5, 126.7, 129.3, 

130.5, 130.6, 130.9, 131.1, 133.5, 135.9, 138.9, 140.8, 144.8. 

4. Conclusions 

In conclusion, a practical KF/Al2O3 catalyzed synthesis analogue of diaryl heteroatom moties under 

MWI has been developed. This method offers several advantages, such as high yields, short reaction 

times, clean reaction profiles, and simple experimental and easy work-up procedures. Fifteen products 

were tested against six phytopathogenic fungi and their preliminary SAR were analyzed. 
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