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Abstract: Cyclins play important roles in cell division and cell expansion. They also interact 

with cyclin-dependent kinases to control cell cycle progression in plants. Our genome-wide 

analysis identified 52 expressed cyclin genes in tomato. Phylogenetic analysis of the 

deduced amino sequences of tomato and Arabidopsis cyclin genes divided them into  

10 types, A-, B-, C-, D-, H-, L-, T-, U-, SDS- and J18. Pfam analysis indicated that most 

tomato cyclins contain a cyclin-N domain. C-, H- and J18 types only contain a cyclin-C 

domain, and U-type cyclins contain another potential cyclin domain. All of the cyclin genes 

are distributed throughout the tomato genome except for chromosome 8, and 30 of them  

were found to be segmentally duplicated; they are found on the duplicate segments of 

chromosome 1, 2, 3, 4, 5, 6, 10, 11 and 12, suggesting that tomato cyclin genes experienced 

a mass of segmental duplication. Quantitative real-time polymerase chain reaction analysis 

indicates that the expression patterns of tomato cyclin genes were significantly different in 

vegetative and reproductive stages. Transcription of most cyclin genes can be enhanced or 

repressed by exogenous application of gibberellin, which implies that gibberellin maybe a 

direct regulator of cyclin genes. The study presented here may be useful as a guide for 

further functional research on tomato cyclins. 

Keywords: cyclin; tomato; phylogenetic analysis; gene duplication; gene expression; 

gibberellin 
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Abbreviations: RT-PCR, reverse transcription polymerase chain reaction; GA, gibberellic acid. 

1. Introduction 

Cell cycle regulation is of pivotal importance for plant growth and development. Cell cycle 

progression is primarily driven by a family of cyclin-dependent kinases (CDKs) in plants. Catalytic 

activities of CDKs are directly regulated by binding and activation of cyclins, and can be further 

controlled by several additional mechanisms, including protein phosphorylation/dephosphorylation, 

proteolysis, and CDK inhibitor protein binding [1–4]. Some studies have also indicated that cyclins 

contribute to the level of subcellular localization [5].  

The first plant cyclin was discovered in soybean in 1991 [6]. Since then, many plant cyclins have 

been isolated from various plant species. There are 49 cyclins in Arabidopsis, which can be divided into 

10 types on the basis of function and sequence analysis, including A- to D-type, H-, L-, T-, U-, SDS-, 

and J18-type [3]. F-type cyclins were reported in rice and suggested to be monocotyledon plant  

specific [4]. In addition, Q- and Z-types were reported in poplar and defined as new putative cyclin 

types [7]. According to their expression phase in the cell cycle, cyclins can be divided into two types,  

M- and G1-cyclins. M-cyclins, including the A- and B-cyclins, help to drive cells into M-phase. 

G1-cyclins, such as cyclins C, D and E, among others, become active towards the end of the G1-phase 

and are responsible for ushering the cell into S-phase [8]. 

It has been shown that a typical cyclin contains a conserved region called the cyclin core, which 

consists of two domains: cyclin N and cyclin C [9]. The cyclin N domain is also known as the cyclin box 

and is highly conserved, whereas, the cyclin C domain is less conserved. Some cyclins only contain a 

cyclin N domain but no cyclin C domain [10], which indicates that the cyclin C domain may not be 

critical for its function. 

Cyclin genes showed different expression patterns during the cell cycle, reflecting their various 

putative functions. Plant A- and B-type cyclins, known as mitotic cyclins, show a preferential 

expression pattern during mitosis; A-type cyclins are mainly expressed at the G1/S boundary stage, and 

combined with Cdk2, they can form a cyclin A/Cdk2 complex, which is required for S-phase transition 

and DNA replication control.  

Three A-type cyclins from tomato were characterized through auxin treatment experiments and 

provide new insights into cell cycle progression. B-type cyclin genes are expressed only within a narrow 

time window, from late G2 to mid M phase, and they contribute greatly to the G2/M transition [11–13]. 

In tomato, suppressed expression of SlCycB2 through RNAi significantly decreased the number of type I 

trichomes, indicating its involvement in the regulation of the trichome types [14]. Plants possess a 

higher complexity of A- and B-type cyclins, and much research has shown that they have extensive and 

complex functions. D-type cyclins were proposed to be environmental sensors and can trigger the G1/S 

transition through activation of the RBR/E2F-DP pathway [15–17]. Three D cyclin genes were isolated 

from young tomato fruit, the D3 cyclin is probably involved in transducing signals leading to fruit 

growth by cell divisions [18]. Several studies have verified that A-, B-, and D-type cyclins are critical for 

the mitotic cell cycle and mitotic growth. Few studies have focused on the functions of C-, H-, L-, T-, 

U-, and SDS-type cyclins; one report on dsCYC2, encoding a C-type cyclin in Phaeodactylum 

tricornutum [19], which displayed a light-dependent transcriptional pattern at the G1 checkpoint was found. 
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Phytohormones are key regulators in plant growth and development. Gibberellins (GAs) are one 

kind of phytohormones that play a central role in the regulation of growth and development with respect 

to environmental variability. The roles of GAs in controlling cell division and cell proliferation have 

been previously extensively documented [20–22]. 

Tomato is an important fruit plant that serves as a model system for carrying out functional genomics 

and investigating epigenetic regulation. However, although some tomato cyclins have been reported, 

genome-wide identification and phylogenetic analysis of the tomato cyclin family have not been 

reported. Recently, the whole genome sequence of tomato has been published, which provided an 

excellent opportunity for extensive study of tomato cyclins [23]. 

Here, we identify 52 cyclin genes in the tomato genome and report on a comprehensive protein 

sequence analysis, phylogenetic construction, chromosome distribution, and gene structure and 

duplication analysis. Tissue-specific and GA responsive expression patterns were also examined 

through quantitative real-time polymerase chain reaction analysis method. These results present a solid 

foundation for future cloning and functional analysis of tomato cyclin genes. 

2. Results 

2.1. Identification of Tomato Cyclin Gene Family 

To identify cyclin genes in the tomato genome, keyword searches and sequence alignment were 

performed against SGN, NCBI, DFCI and other public databases. After removing the redundant 

sequences, a total of 52 predicted tomato cyclins and/or homologues were identified in Table S1. Some 

A-, B- and D-type cyclins have been published previously (Table S2), unnamed tomato cyclin genes 

were named here according to their similarities with Arabidopsis cyclins (Table S3). The length of 

tomato cyclin proteins identified in this study ranges from 142 to 739 amino acids (aa) with an average 

of 343 aa. The SlCycB2;3 (142 aa) is the smallest tomato cyclin protein, wherein the cyclin domain 

appears to be truncated at the C-terminal end. SlCycB3;1 is the largest tomato cyclin protein (739 aa) 

and contains two cyclin domains. These genes were distributed on 11 tomato chromosomes, but mainly 

concentrated on chromosome 4 (9 members), rarely on chromosomes 5 and 9 (2 members) and absent 

from chromosome 8. All predicted genes and related information are listed in Table 1 including gene 

names, sequenced IDs, chromosome locations and protein length. 

Table 1. List of cyclin genes identified in tomato. Predicted genes and related information 

include sequenced ID, chromosome locations and protein length. 

Gene name Annotated CDS Chr. No. Protein length (aa) 

SlCycA1;1 Solyc11g005090.1.1 11 490 
SlCycA2;1 Solyc03g120440.1.1 3 458 
SlCycA2;2 Solyc06g065680.2.1 6 475 
SlCycA3;1 Solyc12g088530.1.1 12 354 
SlCycA3;2 Solyc04g078310.2.1 4 371 
SlCycA3;3 Solyc12g088520.1.1 12 355 
SlCycA3;4 Solyc12g088470.1.1 12 360 
SlCycA3;5 Solyc12g088500.1.1 12 354 
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Table 1. Cont. 

Gene name Annotated CDS Chr. No. Protein length (aa) 

SlCycA3;6 Solyc10g049360.1.1 10 378 
SlCycB1;1 Solyc10g078330.1.1 10 423 
SlCycB1;2 Solyc10g080950.1.1 10 462 
SlCycB1;3 Solyc06g073610.2.1 6 440 
SlCycB1;4 Solyc01g009040.2.1 1 435 
SlCycB2;1 Solyc02g061650.1.1 2 351 
SlCycB2;2 Solyc02g061690.1.1 2 162 
SlCycB2;3 Solyc04g081660.1.1 4 142 
SlCycB2;4 Solyc04g082430.2.1 4 393 
SlCycB2;5 Solyc12g094600.1.1 12 425 
SlCycB2;6 Solyc02g082820.2.1 2 434 
SlCycB2;7 Solyc03g032190.2.1 3 431 
SlCycB3;1 Solyc07g066660.2.1 7 739 
SlCycC1;1 Solyc06g083260.2.1 6 250 
SlCycD1;1 Solyc05g006050.2.1 5 337 
SlCycD2;1 Solyc12g087900.1.1 12 316 
SlCycD3;1 Solyc01g107730.2.1 1 364 
SlCycD3;2 Solyc12g088650.1.1 12 325 
SlCycD3;3 Solyc04g078470.2.1 4 336 
SlCycD3;4 Solyc02g092980.2.1 2 359 
SlCycD3;5 Solyc02g064860.1.1 2 235 
SlCycD3;6 Solyc02g064900.1.1 2 346 
SlCycD3;7 Solyc02g064910.1.1 2 235 
SlCycD4;1 Solyc11g010460.1.1 11 312 
SlCycD4;2 Solyc05g051410.2.1 5 344 
SlCycD5;1 Solyc04g076040.2.1 4 355 
SlCycD6;1 Solyc07g054950.1.1 7 310 
SlCycD6;2 Solyc03g006670.2.1 3 311 
SlCycD6;3 Solyc02g079370.2.1 2 297 
SlCycD7;1 Solyc04g077880.1.1 4 298 
SlCycH1;1 Solyc01g099310.2.1 1 328 
SlCycH1;2 Solyc04g072880.2.1 4 327 
SlCycL1;1 Solyc01g098350.2.1 1 426 
SlCycU1;1 Solyc07g052610.2.1 7 241 
SlCycU2;1 Solyc01g090800.2.1 1 220 
SlCycU3;1 Solyc09g065200.2.1 9 237 
SlCycU3;2 Solyc01g098930.2.1 1 226 
SlCycU4;1 Solyc01g089850.2.1 1 206 
SlCycU4;2 Solyc03g093790.2.1 3 196 
SlCycT1;1 Solyc10g078180.1.1 10 621 
SlCycT1;2 Solyc07g032480.2.1 7 368 
SlCycT1;3 Solyc09g075760.2.1 9 413 

SDS Solyc04g008070.1.1 4 641 
J18 Solyc04g078500.1.1 4 231 
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2.2. Phylogenetic Analysis of Cyclin Family 

To gain an understanding of the relationship between tomato and Arabidopsis cyclins, phylogenetic 

analysis was performed and an N-J phylogenetic tree including 52 tomato and 49 Arabidopsis cyclins 

was constructed (Figure 1). Consistent with the result of Arabidopsis, tomato cyclins can be grouped 

into 10 types, including A-, B-, C-, D-, H-, L-, T-, U-, J18- and SDS- (Solo Dancers) type, and the 

number of each type was 9, 12, 1, 16, 2, 1, 3, 6, 1 and 1, respectively. For A-, C-, U- and T-type,  

the numbers of tomato cyclins was 1, 1, 1 and 2, respectively, less than that of Arabidopsis; whereas the 

numbers of B-, H- and D-type was 1, 1, and 6 more, respectively, when compared with Arabidopsis.  

In addition, both tomato and Arabidopsis possess only one member of L-, SDS- and J18-type cyclins.  

A- and B-type tomato cyclins were more closely related to each other than to other types. T-, L- and 

H-type formed an independent clade. There were 16 members in D-type cyclins, which formed the 

largest cluster in tomato cyclin family. U-type cyclins formed a separate clade and all of them just 

contain one cyclin domain which was predicted to play a role in phosphate signaling. 

Figure 1. NJ tree of Tomato and Arabidopsis cyclins. The cyclins with “Soly” designations 

are from tomato. The remaining cyclins are from Arabidopsis. 

 

2.3. Structure and Protein Sequence Analysis of Tomato Cyclins 

Multiple sequence alignment of tomato cyclins revealed that most tomato cyclins contain a conserved 

cyclin core, which has a highly conserved domain cyclin N and/or a less conserved domain cyclin C 

(Figure 2). Pfam analysis indicated that almost all tomato cyclins have the cyclin N domain except 

U-type cyclins; C-, H- and J18-type only have cyclin C domain. Tomato U-type cyclins contain another 

potential cyclin domain, which is believed to play a role in phosphate signaling. In addition to the cyclin 
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core, A- and B-type cyclins also contain a destruction box (D-box), which is involved in cyclin 

proteolysis by the ubiqutin-dependent proteasome pathway. D-type cyclins may have another motif 

called the PEST region, which is rich in Pro(P), Glu(E), Ser(S), and Thr(T) residues, and is a marker for 

unstable proteins.  

Figure 2. Alignment of cyclin domains. Gene identity numbers are provided on the left. 

Color shading indicates types of amino acid residues conserved. The defined regions 

cyclin-N and cyclin-C are underlined. 
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The presence of an existing cDNA with a known corresponding position on the genome was required 

for the determination of the number of exons and introns. Intron phase is preferentially associated with 

its own set of residues: phase 0 introns with lysine, glutamine, and glutamic acid before the intron, and 

valine after; phase 1 introns with glycine, alanine, valine, aspartic acid and glutamic acid; phase 2 

introns with arginine, serine, lysine, and tryptophan. The intron positions are related to nucleotides, 

amino acid residues, and protein secondary structure. The intron numbers varied among different tomato 

cyclin members, and most of them ranged from 1 to 12. The data showed that one of tomato cyclins, 

SlcyclinJ18, has no intron. It is different from the Arabidopsis cyclinJ18 gene, which contains 8 introns. 

Our data also shows that one tomato cyclin, SlCycB3;1, contain 24 introns, while its homolog CycB3;1 

from Arabidopsis only contains 22 introns (Figure 3); this means the tomato SlCycB3;1 might possess 

more introns by DNA fragment insertion. 

Conserved motifs in cyclin genes were identified using the MEME motif search tool. Distinct motifs 

and their information were listed in Table 2. The locations of motifs matched well with the conserved 

regions revealed by multiple sequence alignment analysis. Twenty conserved motifs were identified in 

the tomato cyclin gene family (Figure 4). Motif 1, 2, 3 or 4 were found in most of the tomato cyclin 

family members, indicating that these conserved motifs may play critical roles in subfamily-specific 

functions. The same types of cyclins contain similar motifs. Other unknown motifs were also revealed 

by MEME motif search. Motifs 2 and 6 were mainly found in the N-terminal regions, while motifs 1, 3, 

7 and 9 were found mainly in the C-terminal regions. Only U-type cyclin had motifs 11 and 17 cyclin 

domains and motif 14 may be the PEST region of D-type cyclin. Although the functions of some motifs 

are not yet clear, the presence of these conserved motifs certainly reflects functional similarities among 

tomato cyclins sharing these common motifs. 

Table 2. Details of the putative motifs. 

Motif Motif length (AA) Best possible match 

1 21 LQLLGVTCLLLAAKYEEIxVP 

2 41 QKDVNESMRGILVDWLVEVHDKYKLxPETLYLAVNYIDRFL 

3 33 VLRMEKLVLNTLKWRMTVPTPYTFLRRFLKAAQ 

4 15 PSxIAAAAIYLARFT 

5 29 HPWSLTLEHHTGYSESQLKECVLLIVDLH 

6 29 DDAKNPLACVEYVEDIYAYYKKMEIEKRR 

7 21 LEFLSFYLAELCLLEYECLKF 

8 23 KLTAVRRKYSSHKFKCVALLGPP 

9 15 VEDFCYITDNAYTKK 

10 29 PPVRVTRPATRKFAAQMASQLQQPNKKRV 

11 47 AYYAKVGGITTREMNKLEVDFLFGLGFQLHVNVTTFESYCSYLEKEM 

12 50 CKEDPLDEGDLGGGYHSDERNWNVKKISPLLECDMFWEDGEVETLLSKEK 

13 50 NSPSRKDGIDVEEEQHLRKFYCFFLQDLGIRLKFPQKTIATALILCHRFY 

14 29 GVIDAYFSSESSNDSWVVASSVSSLPEPQ 

15 15 DLQVEDAKFVFEAKT 

16 20 GGERGRNRRALGDINQNLVG 

17 21 FHGLRAPNISIQSYLERIFKY 

18 49 MADFVTSTHRTKWIFTPQDIKHKYKVANHRAKQALEKYGTTRMEVDIDG 

19 21 LLRRAEQLILSTITDIRFLEY 

20 29 VLSEIQDLCNVGINQIEDKVFVSEPLRPK 
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Figure 3. Gene structure of tomato cyclins generated from GSDS. 
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Figure 4. MEME software characterized conserved motifs of tomato cyclins. Different 

colors represent different motifs and each motif is represented by a box numbered at the bottom. 

The names of genes and combined P value are exhibited on the left side of the figure. Grey 

lines represent the non-conserved sequences; the length of protein can be estimated using the scale 

at the bottom. Motifs 2 and 6 are the cyclin-N domain; Motifs 1,3,7 and 9 are the cyclin-C 

domain; Motifs 11 and 17 are the U-type cyclin domain; Motifs 14 is the D-type PEST region. 

 

2.4. Chromosomal Localization and Gene Duplication 

To determine the genomic distribution of cyclin genes, their chromosomal positions were identified 

according to the SGN database. All of the cyclin genes are distributed on 11 chromosomes throughout 

the tomato genome. However, the number of cyclin genes on each chromosome varies widely.  

A maximum number of nine genes is present on chromosome 4, followed by eight genes on 

chromosome 2. On the other hand, no cyclin gene was present on chromosome 8. Two chromosomes,  

4 and 12, have a group of cyclin genes in the vicinity of each other (Figure 5). Each type of cyclin gene 

except C-, L-, SDS and J18 was found distributed on at least two chromosomes. B-type cyclin genes are 

dispersed on up to eight chromosomes. Five of sixteen D-type cyclin genes are concentrated on 

chromosome 2, and four of nine A-type cyclin genes were distributed on chromosome 12.  

Chromosome 4 contained several types cyclin genes, such as A-, B-, D-, H-, SDS and J18 type, but 

chromosome 5 contained only one D-type cyclin. 
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Figure 5. Genome-wide distribution of cyclins on tomato chromosomes. Gene identity 

numbers are provided. Chromosome numbers are indicated at the top of each bar.  

 

Gene families are generated through either tandem duplication or large-scale segmental duplication 

during evolution [24]. Among tomato cyclin genes, 30 were found to be segmentally duplicated, which 

are located on duplicated segments on chromosomes 1, 2, 3, 4, 5, 6, 10, 11 and 12 (Figure 6).  

A maximum of nine cyclins are located in duplicated segments in chromosome 2, seven cyclins on 

chromosome 4, three cyclins on chromosomes 1 and 3, and two cyclins on chromosomes 10, 11 and 12. 

Duplicated segments on chromosomes 5 and 6 contain one cyclin. SlcycB1;1 and SlcycB1;2 were 

located on chromosome 10 and they were adjacent to each other. SlcycA3;1 and SlcycA3;2, SlcycB1;3 

and SlcycB1;4, SlcycB2;4 and SlcycB2;5, SlcycB2;6 and SlcycB2;7, SlcycD4;1 and SlcycD4;2, 

SlcycD6;2 and SlcycD6;3 were located on different chromosomes, respectively, and showed high 

sequence identities at protein level. We presumed that one of the genes derived from the other gene, and 

they underwent intra- or inter-chromosomal segmental duplication.  
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Figure 6. Depiction of segmentally duplicated cyclins on 12 tomato chromosomes. 

 

2.5. Organ-Specific Expressions of Tomato Cyclin Genes  

Since gene expression patterns can provide important clues for gene function, we performed 

quantitative RT-PCR to characterize the gene transcription profiles of the tomato cyclin genes from 

different tissues including roots, stems, young leaves, flower, mature green fruit, breaker fruit and ripe 

fruit. Since it is hard to exhaustively describe the expression profiles of all tomato cyclin genes, only  

14 members belonging to 10 types of tomato cyclins genes were selected to be checked. 
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Figure 7. Expression patterns of tomato cyclin genes in different tissues or organs.  

Rt, root; St, stem; YL, young leaf; FL, flower; MG, mature green fruit; BR, breaker fruit;  

RR, ripe fruit. Error bars represent standard deviations for three replicates. 

 

Previous studies have suggested that A-, B- and D-type cyclins were predominantly expressed in 

mitotically active organs: developing fruits, young leaves and roots [25]. As shown in Figure 7, the 

examined tomato A- and B-type cyclins genes were mainly expressed in young leaves and stems. Most 

examined D-type cyclins appeared to be constitutively expressed in all examined tissues. But during 

fruit development and ripening, most of the D-type cyclins show lower expression levels. SlcycD1;1, 

SlcycD2;1, SlcycD3;1, and SlcycD4;1 showed the lowest transcriptional levels at breaker stage, and the 

transcripts of SlcycD3;1 could not even be detected at this stage. Surprisingly, SlCycD7;1 showed a 

higher expression pattern in fruit at breaker and red ripe stages, indicating that different tomato D-type 
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cyclins might function in different ways to regulate tomato fruit growth and development, and the major 

function of SlCycD7;1 might be related to tomato fruit ripening. Our results also showed that, the 

examined tomato H- and L-type cyclin genes are likely expressed in all checked tissues, with a relatively 

higher level in flowers and young leaves. SlCycU1;1 and SlCycU4;1 showed a higher expression level 

both in young leaves and flowers, whereas SlCycU2;1 only showed higher expression level in young 

leaves. Like most of tested tomato A-, B-, and D-types cyclin genes, all examined tomato L- and U-type 

cyclin genes also showed lowest expression levels during fruit ripening. Our results also showed that a 

few tomato cyclin genes exhibit tissue-specific expression. For example, SlCycB1;1 is expressed only in 

vegetative organs. The tissue-specific expression profiling of tomato cyclins might enable the 

combinatorial usage of the genes in transcriptional regulation of different tissues, whereas ubiquitously 

expressed tomato cyclins might regulate the transcription of a broad set of genes. 

2.6. Expression of Tomato Cyclin Genes in Response to Exogenous GA 

Phytohormones are the major regulators of plant growth and development [26] and GAs are a class of 

phytohormones which can exert much influence on plant developmental processes, including stem 

elongation, leaf expansion, seed germination, flowering, sex expression, and leaf and fruit senescence [27]. 

GAs were sufficient to regulate the expression of cell cycle genes cycA1;1 and cdc2Os-3 in deepwater 

rice [22]. To determine which cyclin genes could respond to GA, we analyzed the expression patterns of 

a few cyclin genes followed with exogenous GA treatment. The results indicated that the expression of 

SlCycA3;1, SlCycB1;1, SlCycC1;1, SlCycD2;1, SlCycD4;1, SlCycH1;1, SlCycL1;1, SlCycU1;1 and 

SlCycU3;1 were GA induced, whereas the expression of SlCycD7;1 and J18 were GA suppressed.  

No obvious modification of the expression of SlCycA1;1, SlCycA2;4, SlCycD3;1 and SlCycD6;1  

were observed after GA treatment, which indicated that these genes may not be directly regulated  

by GA (Figure 8). 

3. Discussion 

3.1. Cyclin Gene Family and Their Structures 

Previous research has indicated that each cyclin plays a distinct role in cell cycle progression and cell 

division [11,13,14,19]. Cyclins can be divided into several classes according to their sequence 

similarity, expression patterns and protein activity during the cell cycle [28–32]. The numbers of cyclins 

in plant genomes are variable; it has been reported that the rice genome contains 49 cyclins and they can 

be classified into 9 types, including A-D-, F-, H-, L-, P-, and T-type [4]. Maize genome contains  

59 cyclins, which can only be classified into 6 types, including A-D-, F-, T-, and SDS-type [33].  

45 cyclins in the poplar genome were identified and can be classified into 7 types, including A-D-, Q-, 

T-, and Z-types [7]. The Arabidopsis genome contains 50 cyclins, which can be classified into 10 types, 

including A-D-, H-, L-, P-, T-, J18-, and SDS-type [3]. In our research, 52 cyclin genes in tomato 

genome were identified; as in Arbidopsis, these cyclins can be classified into 10 types.  
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Figure 8. Expression profiles of the tomato cyclin genes after exogenous GA treatment.  

The relative transcript levels of these genes were analyzed over a 24 h period after 100 μM 

GA treatment. 
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Since all of these reported plant genomes contain A-, D- and T-type cyclin genes, it may implied that 

these three types of cyclins are more conserved throughout the plant species. Arabidopsis and tomato 

shared the same 10 types of cyclins, and the number of cyclins in these two genomes is similar. This 

illustrates that the cyclin gene family in these two genomes is relatively conserved. Furthermore, a closer 

genetic relationship between Arabidopsis and tomato than any other reported plants was also confirmed.  

Protein sequence alignment and structure analysis shows considerable conservation and specific 

motifs in tomato cyclins (Figures 2 and 4). Similar to other cyclin families in plant species, almost all 

tomato cyclins contain a cyclin N domain except U-type cyclins, and C-, H- and J18-type cyclins only 

contain a cyclin N domain. This means that the N domain is more conserved than the C domain, and this 

was further confirmed through chromosome distribution analysis and cyclin motifs character analysis.  

3.2. Duplication of Tomato Cyclin Genes 

Gene duplications are one of the primary driving forces in the evolution of genomes and genetic 

systems [34]. The dramatic variations of most gene families in family size and distribution are affected 

by tandem duplications and segmental duplications [24]. Studies of Arabidopsis reveals that its genome 

contains a lot of large segmental duplications that originated from continuous polyploidy events and has 

been subjected to scrambling by chromosomal rearrangements [35–38]. In tomato, most of the 

duplications were concentrated on chromosome 2 and 4. It seems that duplication and subsequent 

expansion of cyclin genes occur frequently throughout evolution. These results shed light on the 

evolution process of the tomato genome. These results also indicate the presence of similar or 

overlapping functions among all segmentally duplicated cyclin genes, although their remarkable 

differences in amino acid sequences were observed. In this research, we also find that the expression 

pattern of tandem duplicated genes is highly similar.  

3.3. Organ-Preferential and GA Responsive Expression Profiles of Tomato Cyclin Genes  

Cyclin genes that show similar expression profiles during various developmental stages may have 

similar functions. According to the expression profile of tomato cyclins examined in this study, we can 

divide them into 3 different classes. The first class includes most of tomato cyclins, which are highly 

expressed in young leaves. The second class cyclin genes are mainly expressed in flowers. The third 

class cyclin genes transcripts can be detected in fruit at the breaker stage. It is interesting that most 

closely related cyclin genes show similar patterns of expression, such as SlCycA1;1, SlCycA3;1 and 

SlCycA3;2; SlCycU1;1 and SlCycU4;1, suggesting possible functional redundancy and conservation 

among these similar members.  

Surprisingly, some cyclin genes of tomato and Arabidopsis within the same clade in phylogenic 

analysis showed different expression patterns. For example, AtCycD7;1 was not detected in any of the 

Arabidopsis tissues or organs, whereas SlCycD7;1 was detected in all of the tomato tissues examined, 

and showed a relative higher expression level in breaker fruit. AtCycU4 was especially expressed in 

root, while SlCycU4 showed a higher expression level in flower. These results suggest that 

homologous cyclin genes of different plants may have same function in the cell cycle, whereas the 

roles they played in different plants might be different. Understanding expression patterns in different 
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tissues is the first step to clarify the function of cyclin genes. Therefore, cyclin genes with specific 

expression patterns could be the focus of functional studies in the future. 

Cell expansion and cell division were also regulated by several plant hormones. It has been reported 

that GAs play important roles in regulating the transcription of several cell cycle genes [21,39,40].  

In this research, we investigated the expression profiles of several cyclin genes following the treatment 

of exogenous GA. The transcripts of most tested tomato cyclins genes were elevated after GA treatment, 

differently, the transcription of SlCycD7;1 and J18 were obviously reduced, and only a few cyclin genes 

were not obviously affected (Figure 8). Previous studies have shown that GA can promote plant growth 

through cell expansion by stimulating the destruction of growth-repressing DELLA proteins, which 

can restrain cell cycle activity through enhancing the accumulation of cell cycle inhibitors.  

In this paper, we showed that GA can regulate the cell cycle through its influence on some cyclin 

genes’ transcription. It might be very interesting to uncover the regulatory mechanism underlying  

these processes. 

4. Materials and Methods 

4.1. Plant Materials 

Tomato (Solanum lycopersicum L. cv Ailsa Craig) plants were grown in a glasshouse with the a  

16 h light/8 h dark cycle. Samples of roots, stems, leaves, flowers and fruits were collected in adult 

plants, immediately frozen in liquid nitrogen and stored at −80 °C until use. In order to investigate the 

responses of the tomato cyclin genes to GA, six-week-old seedlings were sprayed with 100 uM GA, and 

the control plants were sprayed with water. Then the shoot samples (including leaves and stem) were 

harvested at 0, 0.5, 1, 2, 4, 8, 12 and 24 h later. Samples of control plants, which were sprayed with 

water, were also collected as the GA treatment plants. These samples were also immediately frozen in 

liquid nitrogen and stored at −80 °C. For all experiments, three biological samples were collected for 

further analysis. 

4.2. Identification of Putative Tomato Cyclin Genes 

The full length cDNA sequences of SlCycA1;1, SlCycA2;1, SlCycA3;1, SlCycB1;1, SlCycB2;1, 

SlCycD3;1, SlCycD3;2 and SlCycD3;3 were obtained from NCBI as reported previously [18,29].  

To obtain more cyclin gene sequences in tomato, the cDNA sequences of the above genes were 

subjected to BLASTN searches in the SOL Genomics Network (SGN) [41], NCBI [42] and DFCI [43] 

databases. Almost all of the Arabidopsis cyclins genes were reported previously, the sequences of 

these genes were extracted from NCBI database, and then they were used to do TBLASTN searches in 

the SGN database with the E-value cutoff set as le-10. To get more information on tomato cyclin 

genes, name search, using cyclin as a keyword in these databases was also conducted. All the protein 

sequences were analyzed in the Pfam HMM database [44] to find cyclin-N and cyclin-C domains. 

Overlapping genes were removed using a complete sequence alignment method in MEGA 5.0 [45]  

to obtain the final set of non-overlapping cyclin genes in tomato. 
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4.3. Phylogenetic Analysis of Tomato Cyclins 

Sequence alignment of multiple cyclins was performed using MEGA 5.0 [45], and an unrooted 

phylogenetic tree was constructed using the neighbor-joining (N-J) method with the pairwise deletion 

option selected and the passion correction set for the distance model. Phylogenetic relationships were 

analyzed by conserved structural alignments. Bootstrap analysis was performed using 1000 replicates. 

4.4. Structure Analysis of Cyclins in Tomato 

The cDNA sequences and their corresponding genomic DNA sequences of tomato cyclins were 

obtained from SGN database, then they were analyzed using the GSDS (Gene Structure Display Server) 

software [46]. To identify conserved cyclin motifs, the protein sequences of tomato cyclins were merged 

using the GENESTUDIO software that we download from the website (http://www.genestudio.com/), 

and then the protein sequences were analyzed using the MEME program [47]. The MEME program was 

employed using the following parameters: number of repetitions-zero or one, maximum number of 

motifs-20, optimum motif width set to >6 and <50. 

4.5. Chromosomal Localization and Gene Duplication Analysis of Tomato Cyclins 

The chromosomal distribution of putative tomato cyclins were identified by identifying their 

chromosomal position given in the SGN database.  

To find potential duplicated tomato cyclin genes, MCScanX software (http://chibba.pgml. 

uga.edu/mcscan2/) [48] was used. All tomato cyclin genes were compared against themselves and others 

using BLASTp program, with criterion of tabular format (-m 8) –b 5 –v 5 and e-value of 1e-5. The 

resulting blast hits were incorporated along with chromosome coordinates of all protein-coding genes as 

an input for MCScanX under default criterion. The result was analyzed using Perl script. 

4.6. RT-PCR and Real-Time qRT-PCR 

In order to study the expression patterns of the cyclins in various tissues, total RNAs were isolated 

from roots, stems, leaves and fruits at the stage of mature green (MG), breaker (BR) and red ripe (RR) 

using TriZol reagent (Invitrogen, Gaithersburg, MD, USA), according to the manufacturer’s instruction. 

The total RNA samples were treated with RNase-free DNase I to remove residual genomic DNA. About 

3 μg of the DNase I treated total RNA was used for first-strand cDNA synthesis with M-MLV reverse 

transcriptase and Oligo (dT)25; the product was diluted to a final volume of 200 μL. The primers used for 

the real-time PCR were designed by primer premier 5.0. Real-time PCR was performed with 

LightCycler 480 instrument. Each reaction contained 5 μL SYBR Premix, 3 μL cDNA samples, and  

0.5 μL of 10 μM gene specific primers in a final volume of 10 μL. The thermal cycle was as follows:  

95 °C for 5 min, 40 cycles of 95 °C for 10 s, 58 °C for 15 s and 72 °C for 20 s. Three technical 

replicates were performed for each sample. Tomato actin gene (GenBank ID: BT012695) was used as 

an internal control. All the primers used were listed in Table 3. 
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Table 3. List of primers used for Real-time qRT-PCR. 

Gene Forward primer sequence Reverse primer sequence 

SlCycA1;1 ATGACAACCCAGAATAAGCG ACCGAGTTCCGAGCAGAG 
SlCycA2;4 TTGGGTTCATCAGGAGGACT CTTCGCTTAGGCTGTTGAGA 
SlCycA3;1 CTAAGAAAAGAGCAGCAGAAGCA GATTCCTTATCTTTTTCAGCAACAG 
SlCycA3;2 GCTCCACAGGAACAACGAA CCACAACCCTTTTCACCTTC 
SlCycA3;4 AACCCACGAATCCAAACG CCAAGGAGTGAAGATGCTGA 
SlCycB1;1 GTATCTCGCCCCGTAACAAG TCTCCTCAGGTTTTGGCTTT 
SlCycC1;1 AAGTTCTGGAAGCCCTAAACTATTA GAATTAGGTCCATCTTATAGGTGTCA 
SlCycD1;1 CTGCTACTTCTTCTTCAAATCCA CGGAGAAACAGTCGGAGTAA 
SlCycD2;1 GTGATGGCTCAGGGGTTG GTTATGTGTTTGTGGGGTGC 
SlCycD3;1 CTGCCAAAGCCTCAAGCG CAGTGGAGCTAGTGTCATTCGC 
SlCycD4;1 GCAGTGGCAATGTCTGTTTC CCATTGGGAGTTTGAGGC 
SlCycD6;1 GATGGAGACGACGATGACGA TGATTGCGAATGGAAGAGTGA 
SlCycD7;1 AGATGGAGAGTTTGCTTTGTGAT AAAATCTTAAAAGCCTCTTCACAAT 
SlCycH1;1 ACCTGGGCAGTTGGCATT CGTCTTTGGAAGTCGGAGTC 
SlCycL1;1 CGTAGATTTCAAGTGCCCCTC TATTTTTGCTTTTGGAAGACTGTAA 
SlCycU1;1 CGGACGATGTAGCCACCC CCTGCCCCGTTGCTCAT 
SlCycU3;1 ATTGTCTTCTTGCCCCTTTT TCAGGTTCAGGTGCCAAAG 
SlCycU4;1 TCAAAATCTGATGCCGAAAC CGAAACAACAAGGGCTACAA 

J18 GATCGAGAATGAAGAAGGAGGT GATAGAATCGGTTGGCAAAAGT 
Actin GTCCTCTTCCAGCCATCCAT ACCACTGAGCACAATGTTACCG 

5. Conclusions 

In conclusion, we have presented an expression profile of 52 tomato cyclin genes along with an 

account of their phylogenetic relationships with Arabidopsis cyclin genes. The result indicates that 

groups of genes that show similar expression profiles during various developmental stages may or may 

not have similar functions. Protein sequence alignment and structure analysis show considerable 

conservation and specific motifs in tomato cyclins. Duplication and subsequent expansion have 

occurred frequently through the evolution of the tomato genome. The transcription of some cyclins can 

be induced by GA, suggesting that they may play a potential role in GA response. Therefore, these data 

would be useful in selecting candidate genes for functional validation in relation to various aspects of 

tomato vegetative growth and reproductive development. 
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