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Abstract: Atrazine molecular imprinted polymers (MIPs) were comparatively synthesized 

using identical polymer formulation by far-infrared (FIR) radiation and ultraviolet  

(UV)-induced polymerization, respectively. Equilibrium binding experiments were carried 

out with the prepared MIPs; the results showed that MIPuv possessed specific binding to 

atrazine compared with their MIPFIR radiation counterparts. Scatchard plot’s of both MIPs 

indicated that the affinities of the binding sites in MIPs are heterogeneous and can be 

approximated by two dissociation-constants corresponding to the high- and low-affinity 

binding sites. Moreover, several common pesticides including atrazine, cyromazine, 

metamitron, simazine, ametryn, terbutryn were tested to determine their specificity, similar 

imprinting factor (IF) and different selectivity index (SI) for both MIPs. Physical 

characterization of the polymers revealed that the different polymerization methods led to 

slight differences in polymer structures and performance by scanning electron microscope 

(SEM), Fourier transform infrared absorption (FT-IR), and mercury analyzer (MA). 

Finally, both MIPs were used as selective sorbents for solid phase extraction (SPE) of 

atrazine from lake water, followed by high performance liquid chromatography (HPLC) 

analysis. Compared with commercial C18 SPE sorbent (86.4%–94.8%), higher recoveries 
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of atrazine in spiked lake water were obtained in the range of 90.1%–97.1% and  

94.4%–101.9%, for both MIPs, respectively. 
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1. Introduction 

Molecularly imprinted polymers (MIPs) as an artificial template made recognition material with 

high affinity and selectivity for the target molecule, have attracted more and more attention since this 

technique was first developed by Wulff [1] and Mosbach [2]. MIPs have been widely applied in many 

fields including solid phase extraction (SPE) [3,4], chromatography [5,6], enantiomer separation [7], 

catalysis [8–10] and chemical sensors [11,12]. The potential of MIPs to act as SPE sorbents was first 

described by Sellergren for the selective determination of metabolites in urine samples [13]. Since this 

time, various examples of the application of MIPs to the extraction and cleanup of complex samples 

have been described in the literature [14–16]. The first use of a MIP-based SPE in water analysis was 

presented by Matsui et al. for atrazine and simazine [17]. Prasad et al. developed a biomimetic 

potentiometric sensor by dispersing the atrazine imprinted polymer particles in di-n-octyl phthalate 

plasticizer and embedding it in a polyvinyl chloride matrix. The polymerization process was initiated 

in an oil bath at 80 °C and heated for about 12 h. The resulting sensor responded to atrazine in the  

pH range 2.5–3.0 over a wide working concentration range (0.0001–10) mM with a detection limit of 

0.5 μM (0.1 ppm) [18]. Guzzella et al. developed a propazine MIP for use as a sorbent for SPE of 

common triazines found in water. This bulk polymerization was carried out over 24 h at 60 °C [19].  

Since photo irradiation facilitates homogeneous and rapid heat transfer through the reaction mixture, 

laboratory photoreactions are increasingly popular in the application of synthetic chemistry. Generally, 

polymer synthesis by photo irradiation is applicable to most types of polymerization methods, 

including step growth, free and controlled radical and ring opening polymerizations possible as well as 

modification and curing reactions [20–22]. Benefits include rapid synthesis, decreased side reactions, 

higher yields with greater monomer conversion and the ability to utilize “green” solvent systems [23,24]. 

Imma et al. utilised ultraviolet to prepare atrazine MIPs in a photochemical reactor at 350 nm and 4 °C 

for 16 h by bulk polymerization [25]. Koeber et al. prepared terbuthylazine MIPs as SPE materials for 

environmental analysis, which were similar to formulation by irradiating the solutions with a  

low-pressure mercury lamp for 24 h [26]. Zhang et al. prepared and evaluated melamine molecularly 

imprinted polymers by thermal- and photo-initiation methods [27]. However, there is little or no 

research on the mechanism of molecular imprinted polymers by far-infrared polymerization. 

Differences in physical properties between FIR radiation and UV-induced polymers have been noted, 

with speed and penetrability observed in photo-initiated free radical polymerization systems [28].  

In this work, far-infrared radiation and ultraviolet-induced free radical polymerization methods 

were applied to prepare atrazine MIPs using methacrylic acid (MAA) as the functional monomer, 

ethylene glycol dimethacrylate (EDMA) as the crosslinker, dichloromethane as the porogen,  

2,2'-azobisisobutyronitrile (AIBN) or Irgacure 1800 as the FIR- radiation initiator or UV- initiator, 

respectively. Comparative analysis of both MIPs and their respective NIPs were carried out using a 
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variety of instrumental methods (SEM, FT-IR and MA). Binding capacity and imprinting parameters 

were also evaluated in detail to exhibit differences in selectivity and discrimination for the template 

and structurally related compounds. The synthesized MIPs were utilized as SPE sorbents for selective 

extraction of atrazine from contaminated water samples, with sample recovery, followed by the 

determined by HPLC. 

2. Results and Discussion 

2.1. Physical Characterization of the Synthesized Polymers  

SEM was employed to observe the surface microscopic characteristics of the prepared polymers. 

Figure 1 shows the distinct differences between two NIPs due to different polymerization methods, 

which results in corresponding differences between the two MIPs. Regardless whether FIR- or  

UV-polymerization methods were used, it was shown that MIPs possessed more pores than NIPs and 

larger average pore diameters were observed for the MIPs. In contrast with MIPFIR, MIPUV exhibited 

significantly smaller average pore diameters and distinctly higher numbers of holes. The pores of the 

polymers are usually formed by two methods: (1) Large pores are obtained by the presence of 

porogenic agent (organic solvent); and (2) Cavities are in the imprinting procedure, by providing the 

specificity by reason of their complementarity towards the template molecules [29]. 

Figure 1. SEM of MIPs and NIPs prepared by FIR- and UV-polymerization methods. 

 

FT-IR spectrum is a useful method for characterizing intermolecular hydrogen bonding. The 

infrared spectra results of all samples were shown in Figure 2. No clear differences in IR bands were 

observed for the polymer samples prepared by the two different polymerization methods. There were 

three distinctive absorptions assigned to –COOH groups of the MAA units including C=O stretching 

vibration at 1702 cm−1, O–C–O absorption at 1200 cm−1, and –OH stretching vibration at 3440 cm−1. 

MIPFIR NIPFIR

MIPUV NIPUV
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For imprinted polymers prepared using MAA as a functional monomer, it was possible that some 

carboxylic acids changed into dimeric –COOH groups during the imprinting reaction. This means that 

even though the non-imprinted poly(MAA–EDMA) and the atrazine imprinted poly(MAA–EDMA) 

contain the same level of functional groups, more carboxylic acids in non-imprinted reference 

polymers may exist as hydrogen bonded dimers, so that the amount of “free” carboxyl groups in  

non-imprinted reference polymers becomes lower than the corresponding imprinted polymers.  

In general, no appreciable band corresponding to the acid dimer can be easily distinguished since the  

–COOH groups of MAA units associated with –NH groups of the template atrazine via a hydrogen 

bonding interaction during the polymerization [30]. We noted there were some significant IR bands at 

3600–3450 cm−1 for both NIPs comparative with MIPs. 

Figure 2. Comparative IR spectra of prepared materials by FIR- and UV-polymerization methods. 

 

Further analysis of polymer porosity was measured by mercury intrusion porosimetry in Figure 3.  

It can be seen that medium pores (10–100 nm) and large pores (100–800 nm) account for a large ratio 

for both MIPs. There were three kinds of pores for MIPFIR and NIPFIR centered at approximately 100, 

570, and 220 nm, respectively, with a gradual decrease of peak area accordingly. Whilst two kinds of 

pores for MIPUV and NIPUV were obtained with a pore size centred about 100 and 420 nm, 

respectively. Moreover, we note a proportionately greater presence of macropores centred at about  

100 nm for MIPUV, comparing MIPFIR, which accounts for the larger binding amount and surface area 

for the former. Slight difference of macropores and distinct differences occurred at the macropore 

level, account for the calculated variations in pore volume and total porosity. The speed of the 

polymerization process is highly dependent on the number of free radicals that the UV-initiator 

provides by dissociation under ultraviolet radiation. The faster that polymerization occurs, the greater 

the degree of conversion of the liquid monomer to a solid polymer. For far infrared thermal 

polymerization, various absorption energy levels exist for different reactant molecular and transition 

differences and vary significantly between levels. Hence, the actual absorption is a complex process, 

accompanied by various absorption energy level transitions. Table 1 lists the comparison of total pore 

volume, surface area and total porosity between MIPs and NIPs. This indicates that the addition of a 

template increased the large pores in MIPs so that pore size, total pore porosity and total pore volume 

in the MIPs is larger than those of the NIPs. Due to its larger surface area, pore volume and total 

porosity, it is easily understood that better recognition performance for template molecule was 

obtained for MIPUV in the next absorptive experiments.  
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Figure 3. Comparative pore-size distribution of both FIR- and UV-polymerization polymers. 

 

Table 1. Physical properties of the MIPs and NIPs determined by MA. 

Polymer Total pore volume (cm3/g) Surface area (m2/g) Total porosity (%) 

MIPFIR 0.44 198.92 64.58 
NIPFIR 0.39 145.74 52.93 
MIPUV 0.52 213.92 83.64 
NIPUV 0.48 179.25 77.13 

2.2. Adsorption Capacity of MIPs and NIPs 

Equilibrium adsorption experiments were performed to evaluate the binding affinity of MIPs for 

atrazine. In this experiment, the absorption quantity (Q) was calculated by equation as follows:  

Q = (C0 − C) × V/W (1) 

Here, C0 is added the template atrazine concentrations in the solution at initial, C is that of free 

template atrazine in the solution containing imprinted polymer after being shaken for 24 h. V and W 

are the volume of bulk solution and the weight of the dry polymer used, respectively. The average data 

of three measurement results were used for adsorption capacity analysis [31]. 

The sorption isotherms of atrazine on the MIP and NIP adsorbents are shown in Figure 4. It can be 

seen that the sorption of atrazine by the MIPs was significantly higher than that of the respective  

NIP controls, suggesting an imprinting effect for both MIPs. Template binding for MIPUV exceeded 

that of MIPFIR across the atrazine concentration range of 0.1–1.6 mmol/L, highlighting MIPUV stronger 

specific affinity for the target and suggesting the presence of a greater number of more accessible 

binding sites. Likewise, sorption of NIPUV is correspondingly higher than that of NIPFIR, which 

displayed its stronger non-specific affinity. This reflects the choice of polymerization method and 

resultant impact on the microstructure of the product polymers. Differences of binding amount could 

be obtained between the MIPs and their respective NIPs in different ranges of atrazine concentration. 

When the concentration of atrazine is greater than 0.4 mmol/L, higher differences of binding amount 

could be achieved for the photo-polymerized materials, compared with the thermal-polymerized 

materials. For example, the differences of binding amount between MIPs and NIPs are 2.21 and  

1.44 μmol/g, for FIR- and UV-induced materials, respectively, when atrazine concentration was equal 

to 0.2 mmol/L. This difference values were reversed to be 21.3 and 32.3 μmol/g at the concentration of 
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1.6 mmol/L, suggesting better discrimination between the sites exists in the case of MIPUV. This result 

showed that polymerization of MIP at lower temperatures forms polymers with greater specific affinity 

for the target versus polymers made at elevated temperatures. Usually, the relatively low temperatures 

with a prolonged reaction time were selected in order to yield a more reproducible polymerization. 

Where complexation is driven by hydrogen bonding, then lower polymerization temperatures are 

preferred, and under such circumstances photochemically active initiators may well be preferred as 

these can operate efficiently at low temperature. 

Figure 4. Comparison of equilibrium absorption obtained in separated experiments for 

both FIR and UV polymerization polymers. 

 

2.3. Scatchard Analysis 

If Langmuir models can be applied, the association constant Ka and specific site capacity Q can be 

determined from the slope and y intercept of lines obtained by least-squares regression of linear 

regions of the corresponding Scatchard plots. Here, the data of the static adsorption experiment was 

further processed with the Scatchard equation as follows [32]: 

Q/C = (Qmax –Q) Ka  (2) 

where, Ka is the association constant and Qmax is the apparent maximum number of binding sites.  

C is the free template atrazine concentration in the solution containing imprinted and non-imprinted 

polymers. Figure 5 shows saturation binding curves for the atrazine imprinted and non-imprinted 

polymers by using the saturated binding amount of a template. There are two distinct sections within 

the plot which can be regarded as straight lines, indicating that the affinities of the binding sites in 

MIPs are heterogeneous and can be approximated by two dissociation-constants corresponding to the 

high- and low-affinity binding sites for both polymers, respectively. When the binding amount was 

small, highly selective imprinted sites contributed largely in static conditions but in chromatographic 

retention these two types of binding sites acted simultaneously. The above phenomena in the Scatchard 

analysis are usual for MIPs [33].  

The parameters calculated from the curves quantitatively display the differences between two MIPs. 

The dissociation constants (Ka) and maximum binding amounts (Qmax) for high- and low-affinity 

binding sites were calculated from the Scatchard equation for the prepared polymers. The respective Ka 

and Qmax values are shown in Table 2. The difference in atrazine binding affinity to the MIPs and NIPs 
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clearly indicated the role of the imprinting process in the formation of specific binding sites. Ka and 

Qmax values for MIPUV were generally more than those of MIPFIR in the studied concentration of template.  

Figure 5. Scatchard plot over 0.1–1.6 mmol/L concentration range for FIR- (A) and  

UV-polymerisation materials (B). 

 

Table 2. The adsorption parameter of MIPs and NIPs. 

Polymer 
Linear regression equation Ka1 × 10−4 

(mol/L) 

Qmax1 

(μmol/g) 

Ka2 × 10−4 

(mol/L) 

Qmax2 

(μmol/g) High-affinity Low-affinity 

MIPFIR Q/C = 66.39 − 1.86Q Q/C = 35.23 − 0.31Q 5.38 35.70 32.30 113.93 

NIPFIR Q/C = 117.13 − 10.89Q Q/C = 34.95 − 1.69Q 0.92 10.76 5.93 20.70 

MIPUV Q/C = 67.23 − 1.37Q Q/C = 40.26 − 0.13Q 7.33 49.25 76.50 307.78 

NIPUV Q/C = 83.02 − 4.41Q Q/C = 54.04 − 2.04Q 2.27 18.96 4.90 26.49 

2.4. Selectivity Experiments for the Prepared Polymers  

After equilibrium binding experiments were performed according to the foregoing processes, the 

relative QMIP and QNIP for each analyte could be obtained, respectively. The chemical structures of the 

studied triazine compounds are illustrated in Figure 6. The imprinting factor expresses the ratio of 

specific-to-nonspecific binding for each compound (IF = QMIP/QNIP) [34]. In each case, analyte uptake 

was normalized against the levels of MIP adsorbed and expressed as selectivity index (SI):  

SI = I(analyte)/I(template) [35]. These IF and SI values obtained by two methods are given in Table 3.  

Figure 6. Molecular structure of six analytes for the specificity study. 
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Table 3. Maximum binding number (Qmax), imprinting factors (IF) and standardized 

selectivity index (SI) for MIPFIR, MIPUV, NIPFIR and NIPUV (n = 6). 

Substrate 
QMIP (μmol/g) QNIP (μmol/g) IF SI 

FIR UV FIR UV FIR UV FIR UV 

atrazine 27.12 36.12 12.96 17.47 2.09 2.07 1.00 1.00 
cyromazine 20.71 28.57 12.43 17.64 1.67 1.62 0.74 0.79 
metamitron 12.02 14.29 10.85 11.25 1.11 1.27 0.49 0.62 

simazine 18.55 25.52 11.59 15.66 1.60 1.63 0.71 0.79 
ametryn 15.13 23.87 11.07 16.13 1.37 1.48 0.61 0.72 
terbutryn 14.01 22.61 11.31 16.87 1.24 1.34 0.55 0.65 

It can be seen that both MIPs exhibited the highest specificity for atrazine. Furthermore, there is no 

distinct difference between MIPUV and MIPFIR in recognizing the other five analytes, with similar IF 

values recorded in each case, but greater SI values were calculated for MIPUV than their MIPFIR 

counterparts because of comparatively higher levels of specific binding. While atrazine exhibited  

large retention compared to other tested 1,3,5-triazine derivatives, other structurally different 

compounds like metamitron showed low-level retention. In IF, atrazine was retained more than other  

1,3,5-triazines, such as simazine, terbutryn and ametryn. Therefore it appears that the selectivity of 

MIPs for atrazine was clearly induced during the imprinting process. The induced recognition ability is 

particularly noteworthy, because the tested 1,3,5-triazines have only small structural differences. These 

experimental results demonstrate that imprinting is not only based on the interaction of analyte with 

functional groups within the three-dimensional polymer network, but also based on the combined 

effect of shape and size complementarity.  

2.5. Enrichment of Atrazine Using both MIPs, NIPs and C18 as SPE Cartridges 

The prepared polymers were compared against commercial C18 sorbents as the SPE solid phases to 

selectively extract atrazine from real water samples. The commercial C18 SPE column was 

successively preconditioned with 3 mL of methanol and 3 mL of LC-grade water. Atrazine solutions of 

different concentrations were then passed through the columns at a flow rate of 1.0 mL/min, the 

column was then washed with 3 mL of water containing 5% methanol at the same flow rate. The 

analyte retained on the polymer was then eluted with 3 mL methanol. These extracts were then 

evaporated carefully to dryness under a gentle stream of nitrogen at 25 °C, and the residue 

reconstituted into 3 mL of mobile phase for HPLC analysis. The above procedures were carried out 

according to the optimized conditions provided by the instruction book of the commercial C18 SPE 

column. Similar procedures for both MIPs and their respective NIPs SPE columns were optimized to 

pretreat the same lake water, followed by the determination by HPLC. Figure 7 shows that less 

atrazine was detected in lake water samples following extraction by both NIPs, whilst the atrazine peak 

sharply increased following extraction by MIP-SPE and C18 column separation, respectively. Under 

the same conditions, different peak area of atrazine was obtained to be 712, 654 and 621, respectively, 

after the lake water spiked with a final atrazine concentration of 5 mg/L passed through the prepared 

MIPUV, MIPFIR and commercial C18 column accordingly. Therefore, higher sensitivities and recoveries 

could be achieved by using MIPUV-SPE as the extraction sorbent. The spiked and determined atrazine 



Int. J. Mol. Sci. 2014, 15 582 

 

were summarized in Table 4. It can be found that the average recoveries of 90.1%–97.1%,  

94.4%–101.9% and 86.4%–94.8%, with a RSD lower than 7.49%, respectively. The results demonstrated 

that MIPUV-SPE had highest selectivity and enrichment ability. Hence, the MIP-SPE offers a simple 

and straightforward technique for direct analysis of atrazine from complicated water samples. 

Figure 7. Comparative HPLC chromatograms of the spiked lake water of atrazine with a 

final concentration 5 mg/L on MIP-SPE and C18-SPE columns. 

 

Table 4. Recoveries of atrazine obtained from spiked lake water samples. 

Polymer 
Standard addition 

amount (mg/L) 
Determined 

(mg/L) 
Recovery rate 

(%) 
RSD (n = 3) 

(%) 

MIPFIR 0.5 0.47 94.7 5.28 
 1 0.97 97.1 5.12 
 5 4.89 97.8 4.85 
 10 9.08 90.8 3.27 
 20 19.21 90.1 2.76 

MIPUV 0.5 0.47 94.6 7.13 
 1 0.95 95.3 4.52 
 5 4.92 98.4 4.13 
 10 9.44 94.4 3.47 
 20 20.37 101.9 5.92 

C18 0.5 0.45 90.3 7.49 
 1 0.86 86.4 3.78 
 5 4.56 91.2 4.26 
 10 8.95 89.5 2.51 
 20 18.96 94.8 2.17 

3. Experimental Section  

3.1. Reagents and Materials 

MAA, 99.5% and EDMA, 98% were purchased from Beijing Bailingwei Chemical Reagent Co. 

(Beijing, China) and distilled before use in the up-scaled version of the synthesis. AIBN was obtained 
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from North-China Special Chemical Development Center (Tianjin, China), and recrystallized from 

methanol before use. Irgacure 1800 was purchased from Ciba Specialty Chem. Inc. (Basel, 

Switzerland). Pesticide standards: atrazine (98.2%), cyromazine (95.7%), metamitron (95.8%), 

simazine (96.3%), ametryn (98.4), and terbutryn (96.8%) samples of technical grade were generously 

provided by China Agricultural University (Beijing, China) and Hunan Agricultural University 

(Changsha, China). All other chemicals used were chromatographically pure of analytical grade. 

Distilled and LC grade water was obtained from a super-purification system (Danyangmen Corp., 

Changzhou, China). 

All chromatographic evaluations were performed by a reversed-phase Agilent 1100 HPLC system 

from the Agilent Company (Santa Clara, CA, USA), containing a quaternary pump. Separation was 

carried out on a C18 chromatography column (150 mm × 4.6 mm i.d., particle size 4 μm, YMC 

America, Inc., Allentown, PA, USA). Pressure Blowing Concentrator (Supelco, Bellefonte, PA, USA), 

SPE Manifold (Supelco, Bellefonte, PA, USA), TENSOR27 infrared spectrometer (Bruker, Billerica, 

MA, USA), PM-33-11 Poremasters (Quantachrome Instruments, Boynton Beach, FL, USA), 

Quanta200 scanning electronic microscope (FEI, Hillsboro, OR, USA). The UV lamp used in the 

polymerizations was a medium-pressure mercury vapor lamp (Philips, HPK 125 W). The FIR 

irradiated using a FIR heater (rated output power at 1000 W, Westa Electric Appliances Co., Ltd., 

Foshan, China), which emitted radiation at the wavelength range from 10 to 140 μm.  

3.2. Preparation of Atrazine MIPs by FIR Radiation and UV-Induced Polymerization 

The synthesis of atrazine-imprinted polymer was similar to that reported in the literature for 

atrazine [17,20–22]. Briefly, atrazine (1 mmol, 0.215 g) and methacrylic acid (4 mmol, 0.35 mL) were 

taken in 50 mL ampoule bottle and the mixture was left in contact for 30 min for pre-arrangement. 

Subsequently, EDMA (20 mmol, 3.78 mL), AIBN (0.24 mmol, 0.043 g) and 5 mL of chloroform were 

added. The mixture was purged with N2 for 10 min and the bottle was sealed under this atmosphere. 

These samples were then placed in the holding tray in the middle of the FIR heater with rotation for 

even irradiation at a controlled temperature of 65 °C for 18 h to carry out the polymerization process. 

In comparison, 0.04 g photo-initiator (Irgacure 1800) was added instead of AIBN in the above 

solutions using the identical polymer formulation, but the sealed tubes were irradiated with a UV lamp 

(intensity, 0.016 W/cm2) at ice bath 0 °C for 6 h. After polymerization, the polymerization tubes were 

crushed, and the polymers were removed, then ground and sieved. Particles between 47 and 74 μm 

were collected and then repeatedly suspended in acetone to remove the small particles. Non-imprinted 

polymers (NIPs) were synthesized under the same conditions but without the addition of the template. 

The template was removed from the MIPs by Soxhlet extraction using a two step procedure: The 

mixture solution of acetic acid and methanol (1:9, v/v) was firstly used for washing about 12 h, 

followed by methanol for 6 h as a second step. This procedure was repeated four times. The extracts 

were analyzed by LC/VWD until a stable baseline was obtained. The prepared polymers were dried at 

60 °C for 24 h under vacuum and stored for the next experiments. The overall process for the 

preparation of MIPs is depicted in Figure 8. 



Int. J. Mol. Sci. 2014, 15 584 

 

Figure 8. Schematic representative of preparation of atrazine imprinted polymers for SPE. 

 

3.3. Preparation of SPE Cartridges Using the MIPs and NIPs as the Sorbents 

Briefly, a 60 mg dry polymer was fully mixed and packed into empty SPE cartridges of 3 mL 

between two frits (length of 65 mm and i.d. 10 mm, DIKMA Sci. & Tech., Beijing, China).  

The cartridges were subjected to vacuum for 30 s before insertion of a second frit on top of the sorbent 

bed. Four different cartridges using both polymers as the sorbents were prepared according to the 

above method in our experiments. 

3.4. Affinity and Specificity Study of Both MIPs  

In order to investigate the binding property of the resulted polymers, static absorption experiment 

and Scatchard analysis were employed in this work. In vials, the polymer particles 20.0 mg were 

mixed with 2.0 mL of various concentrations of atrazine (from 0.1 to 1.6 mmol/L) in chloroform. The 

mixture was shaken at 120 rpm in a thermostatic shaker at 25 °C for 24 h. These solutions were 

centrifuged and filtered, then followed by the determination of the free concentrations of atrazine by 

HPLC at 220 nm. Each binding amount was determined in triplicate and calculated based on the 

standard curve. Single-analyte binding experiments of other similar pesticides including cyromazine, 

metamitron, simazine, ametryn and terbutryn were also performed using the above method to 

investigate the specificity of MIPs for atrazine.  

3.5. MIP-SPE for Atrazine Standard Solutions and Real Samples 

Before loading analyte, the MIP-SPE column was previously conditioned with 5 mL of methanol 

and LC-grade water, successively. After atrazine standard solutions at different concentrations were 

passed through the columns at a flow rate of 1.0 mL/min, the columns were washed with 6 mL of 

water and 2 mL of methanol at the same flow rate. The analyte retained on the sorbent was eluted with 

5 mL methanol containing 5% ammonium hydroxide. These extracts were evaporated carefully to 

dryness with a gentle stream of nitrogen at 25 °C, and the residue was reconstituted into 1 mL of 

mobile phase for further HPLC analysis.  

Once the optimized MIP-SPE experimental conditions were established, lake water spiked with 

atrazine at five concentration levels of 0.5, 1, 5, 10 and 20 mg/L, respectively, was used to demonstrate 
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the applicability of the resulted MIPs to pre-concentration of atrazine from the real samples. Briefly, 

three bottles of 2 L water samples were collected from sampling sites in the East Lake of the Henan 

Institute of Science and Technology, and delivered to the analytical laboratory stored at 4 °C in a 

refrigerator. Static settlement and filteration of lake water samples should be dealt with prior to sample 

analysis. After the SPE cartridge was conditioned, then 5 mL of real sample was passed through. 

Finally, the eluate was dried using an N2 stream followed by adding the mobile phases with a final 

constant volume of 5 mL.  

HPLC conditions employed for this work were as follows: mobile phase, ethanol/water (60:40, v/v); 

flow rate, 1.0 mL/min; room temperature; UV detection at 220 nm; injection volume 20 μL. 

4. Conclusions 

UV-induced bulk polymerization of atrazine imprinted polymer results in a 3-fold reduction in 

preparation time compared with conventional FIR thermal initiation methods. The resultant MIPUV, 

which behaved different gross morphologies to their FIR counterparts, exhibited higher binding 

capacity to their counterparts MIPFIR. Furthermore, the high and low affinity sites present on MIPUV 

possessed significantly larger Ka and Qmax values than those of MIPFIR, indicating better discrimination 

between the sites exists in the case of MIPUV. MI-SPE-HPLC was successfully applied to the 

extraction and determination of atrazine in lake water and gradual increase of recovery for the 

determination of atrazine in lake water was, respectively, obtained using C18 SPE sorbent, MIPFIR and 

MIPUV accordingly. 
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