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Abstract: A series of 436 Munro database chemicals were studied with respect to their 

corresponding experimental LD50 values to investigate the possibility of establishing a 

global QSAR model for acute toxicity. Dragon molecular descriptors were used for the 

QSAR model development and genetic algorithms were used to select descriptors better 

correlated with toxicity data. Toxic values were discretized in a qualitative class on the 

basis of the Globally Harmonized Scheme: the 436 chemicals were divided into 3 classes 

based on their experimental LD50 values: highly toxic, intermediate toxic and low to non-toxic. 

The k-nearest neighbor (k-NN) classification method was calibrated on 25 molecular 

descriptors and gave a non-error rate (NER) equal to 0.66 and 0.57 for internal and external 

prediction sets, respectively. Even if the classification performances are not optimal, the 

subsequent analysis of the selected descriptors and their relationship with toxicity levels 

constitute a step towards the development of a global QSAR model for acute toxicity. 
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1. Introduction 

The Munro database is comprised of 613 chemicals representing a variety of pharmaceuticals, 

agricultural and industrial chemicals, substances used in food production and chemicals that have an 

impact on the environment [1]. A range of computational approaches has previously been developed 

for classifying the Munro database chemicals. The first effort was made by Munro et al., in 1996, 

where classification was based upon types of chemical structure. The authors proposed the approach as 

a method for establishing a toxicological threshold of concern (TTC) for all Munro database 

chemicals. The authors used a decision tree approach [2] to classify the selected Munro database 

chemicals into one of the three structural classes and reported that the cumulative distributions of No 

Observe Effect Levels (NOELs) belonging to all chemicals varied considerably among all the three 

structural classes, which implied that “chemical structure defines toxicity”. 

A scientific report submitted to European Food Safety Authority (EFSA) by Stocchero et al. [3] 

later demonstrated the strength of integrating physico-chemical data and toxicity data, in order to 

improve investigation of applicability of TTC schemes. The Principal Component Analysis (PCA) [4], 

Orthogonal Bidirectional Projections to Latent Structures-Discriminant Analysis (O2PLS-DA) [5] and 

clustering studies were carried out on Munro database chemicals using NOEL values as response 

variable. Applying these methods, the chemicals included in each study were initially divided into 

datasets based upon classes of hazard (I, II and III) and the results obtained were compared with data 

obtained after following a Cramer classification scheme [6]. Results confirmed that the Munro 

database is broadly representative of the chemical landscape, and the Cramer scheme could be robustly 

established for the classification of the database and emphasized the potential of chemoinformatics 

approaches for exploring relationships between chemical structure and toxicity. 

Both the above mentioned studies incorporated sub-chronic toxicity endpoint data (NOEL) for 

classification of the Munro database while there are no published studies using acute toxicity endpoint 

data (like LD50, LC50, TD50) on the same database. The main benefit of acute toxicity values is that 

they are obtained in less time (1–4 days), which can contribute to cost efficiency, and with less 

cumbersome experiments as compared to those used for sub-chronic and chronic toxicity values, 

which generally take from 28 days to 2 years of study, involve huge amount of money and require 

significant effort. Moreover, in 1959, Russell and Burch established the 3Rs principle (replacement, 

reduction, and refinement) for animal research [7]. The REACH (Registration, Evaluation, 

Authorisation and Restriction of Chemical Substances) Article 25 (1) has clearly stated that 

unnecessary animal testing should be avoided and should only be undertaken as a last resort [8]. 

Thus, in this computational study we elected to substitute sub-chronic toxicity values (NOEL) of 

Munro database chemicals by acute toxicity values (LD50) prior to model development. These LD50 

values were used to form classes of chemicals employing the Globally Harmonized Scheme (GHS) [9]. 

Accordingly, the aim of our research was to investigate whether it was possible to develop a  
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physico-chemical parameter-based global model for acute toxicity through the application of the GHS 

for classifying Munro database chemicals by means of QSAR modelling. 

2. Material and Methods 

The Munro dataset was initially screened to ensure its consistency. The 613 chemicals included on 

the Munro database were examined and authenticated based on the correct structure, the correct 

IUPAC name and the correct CAS registry number (RN). The web-servers ChemSpider [10] and 

Cactus [11] were used to retrieve the IUPAC name and CAS number and match the information 

obtained from both webservers using InChI key as identifier. Salts and mixtures were removed from the 

original dataset. To calculate Dragon descriptors exact smile notation was used as input, and smiles 

notation for each structure were carefully checked in ChemSpider, SigmaAldrich [12] and PubChem [13]. 

The smiles for cis/trans isomers and R/S enantiomers were carefully inspected and only canonical 

smiles were taken into consideration. 

All chemical structures containing diazo or guanidine functionalities were removed because of  

the presence of resonance structures, duplicate records and records missing either structure or CAS 

registry number were removed. There were 469 records that were found to have correct CAS, RN, 

IUPAC name and smile notation. The LD50 values (organism-rat, route-oral) for all those sorted 

records were searched for in Toxnet and RTECS webservers. Records with more than one endpoint 

value were removed. In the end, LD50 values for 441 chemicals (out of 469) were retrieved from 

Toxnet and RTECS. 

Two-dimensional Dragon molecular descriptors were employed for model development.  

Three-dimensional descriptors were not calculated, since geometry optimization can be a time consuming 

step and consequently limit the future application of the proposed model. A total of 3668 descriptors 

were calculated for all 441 chemicals using Dragon 6 software [14]. The number of descriptors calculated 

for each Dragon block is shown in Table 1. 

A filtering of the descriptors was performed in Dragon before exporting the descriptor values. 

Descriptors with one or more missing values were discarded, as well as constant, near constant and 

correlated descriptors. In the latter case, for each pair of descriptors with a correlation coefficient 

higher than 95%, the one showing the largest pair correlation with all the other descriptors was 

excluded. The reduced pool for the subsequent classification modeling included 1106 descriptors. 

Table 1. Calculated 2D descriptors for 441 Munro database chemicals. 

Sr. Descriptor Type No. of Descriptors 

1 Constitutional indices 43 
2 Topological indices 75 
3 Connectivity indices 37 
4 2D matrix based descriptors 550 
5 ETA indices 23 
6 Atom type E-state indices 170 
7 2D atom pairs 1596 
8 Drug like indices 27 
9 Ring descriptors 32 
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Table 1. Cont. 

Sr. Descriptor Type No. of Descriptors 

10 Walk and path counts 46 
11 Information indices 48 
12 2D auto correlations 213 
13 P-VSA like descriptors 45 
14 Edge adjacency indices 324 
15 CATS 2D 150 
16 Atom-centered fragments 115 
17 Molecular properties 20 
18 Functional group counts 154 

Total All 18 types 3668 

2.1. Descriptor Filtering and Outlier Detection 

Principal Component Analysis (PCA) was used to initially filter molecular descriptors and, in 

particular, remove irrelevant ones. PCA is a multivariate technique that aims to reduce dimensional 

space of data by projecting it in the form of principal components. The largest variance is associated 

with first principal component and second largest with next principal component [4,15]. PCA was 

performed on all 441 chemicals using 1106 descriptors and ten principal components were considered 

(explained variance maximum of 20% with PC1 and minimum of 3% with PC10). The data was auto 

scaled prior to PCA analysis. Loading scores for all ten components were used as criteria to sort 

descriptors: 460 descriptors were found to have their loading values higher than a defined threshold 

(0.06), thus retained for further studies. Other descriptors were discarded, since they did not encode 

relevant information for the structural and chemical description of the dataset. Moreover, five chemicals 

were identified as potential outliers in PCA score plot (supplementary file). Thus 436 chemicals and 

460 descriptors were finally retained for the subsequent model development. 

2.2. Modelling Methods 

2.2.1. Classification Scheme 

The quantitative toxicological response was discretized in a qualitative class on the basis of the 

GHS (Globally Harmonized Scheme). 

Class I: LD50 ≤ 300 mg/kg/day; 

Class II: 300 < LD50 ≤ 2000 mg/kg/day; 

Class III: LD50 > 2000 mg/kg/day; 

where, class I is the highly toxic, class II is the intermediate toxic and class III is the low to  

non-toxic class. 

2.2.2. k-Nearest Neighbors 

The k-NN classification method was applied in order to find the appropriate relationship between 

molecular structures, encoded in molecular descriptors, and the toxicity of chemicals [16,17]. The  
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k-NN classification rule is conceptually quite simple: a molecule is classified according to the classes 

of the k closest molecules, which means, it is classified according to the majority of its k nearest 

neighbors in the descriptors space. In this work, the Euclidean metric was used to measure distances 

between molecules. The k value giving the lowest classification error in cross-validation was selected 

as the optimal one. 

2.2.3. Descriptor Selection by Means of Genetic Algorithms 

Genetic algorithms (GAs) efficiently perform global searches within a high-dimensional space and 

can remove variables which are non-significant for the modelled property, noisy or correlated by 

chance. GAs start from an initial random population of chromosomes, which are binary vectors 

representing the presence or absence of molecular descriptors. An evolutionary process is simulated to 

optimize a defined fitness function and new chromosomes are obtained by coupling the chromosomes 

of the initial population with genetic operations (crossover and mutation). To decide the number of 

evaluations a series of 40 runs were performed. The first 20 runs were performed using the original 

descriptors, while the next 20 runs were performed using randomly shuffled chemicals [18]. These two 

sets of 40 runs were compared to identify major differences in outcomes. The major difference was 

observed after 100 evaluations run and was used as the stopping criteria, i.e., GA were performed with 

100 evaluations. GA were optimized on the basis of the non-error rate (NER) which indicates the 

tendency of the model to correctly classify chemicals [19]. 

To retrieve all 1106 descriptors for all 436 chemicals, to perform PCA and to carry out descriptor 

selection by Genetic Algorithm; we have used “ga_toolbox” and “pca” Matlab modules developed at 

Milano Chemometrics and QSAR Research Group, University of Milano-Bicocca, Milano, Italy. 

2.3. Model Validation 

The 436 Munro dataset chemicals were divided into training and test sets. The chemicals were 

randomly split, keeping 80% of chemicals from every class in the training set and the remaining 20% 

in the test set, thus the selection was performed maintaining the class proportions. The training set  

was used to select molecular descriptors and to build the classification models. Molecules of the test 

set were used just to evaluate the predictive ability of the trained models. The distribution of the  

436 chemicals into training and test sets is shown in Table 2. 

Table 2. The distribution of class I, II and III chemicals into training and test sets based on 

the principle of keeping 20% of chemicals from each class as a test set. 

 Class I Class II Class III Total 

Training 82 136 129 347 
Test 21 35 33 89 
Total 103 171 162 436 

The training set of 347 chemicals with 460 descriptors was subjected to variable selection (by GA) 

coupled with k-NN classification, while the test set did not participate to the model calibration and was 

used to validate the model. The internal validation of models was assessed by 5-fold procedure. The 
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347 chemicals from the training set were divided in five groups and the prediction of class parameters 

of every fifth group were carried out using the remaining four groups. The class of test group 

chemicals was predicted based on classes of its k neighbors from training group. The best model, built 

on the training set that had the highest NERcv and lowest class error, was subjected for external 

validation. The classification model’s performance was assessed by means of classification such as 

non-error rate (NER), sensitivity, specificity, precision and error rate (ER) [20]. All models were compared 

and the model with the lowest percentage error was chosen. 

To classify chemicals into training and test sets as well as to perform GA-coupled k-NN classification 

the “classification toolbox” Matlab modules developed at Milano Chemometrics and QSAR Research 

Group were used [21]. The Matlab classification toolbox module is freely available online [22]. 

3. Results and Discussion 

3.1. Genetic Algorithm 

The descriptor selection based on the GA strategy was applied to all 460 descriptors to build a k-NN 

classification model using the three classes as response variable. As our objective was the development 

of a physico-chemical parameter-based model for the prediction of acute toxicity, ultimately for use in 

the rapid screening of compounds, we limited ourselves to the use of 2D descriptors. The best k-NN 

model found by means of GAs comprised 25 molecular descriptors and was associated to the NERcv 

equals to 0.67 and NERfit on the training set (fitting) equal to 0.66 (see Table 4). The “k” selection with 

5-fold cross validation gave an optimal k value of 1. This means that just the closest molecule was used 

to calculate the class of each target molecule to be predicted. The 25 descriptors selected for k-NN 

classification are listed in Table 3. 

The model was able to correctly classify 194 of 347 of the training set chemicals. The sensitivity 

describes the model’s ability to correctly identify the correct class for an object, here a chemical. In 

case of training set prediction, the k-NN classification cross-validated model shows sensitivities of 

0.54, 0.49 and 0.65 for classes I, II and III respectively (Table 4). This statistic indicates that the k-NN 

classification model had 54% success in predicting highly toxic chemicals (class I), 49% for chemicals 

with intermediate toxicity (class II) and 65% for chemicals with low toxicity (class III). Specificity 

characterizes the ability of the particular class to reject molecules of all other classes. The k-NN 

classification cross-validated model shows high specificity values for all 3 classes. This indicates that 

the model can predict highly toxic chemicals (class-I) with a specificity rate of 0.81, 0.76 and 0.78 for 

classes II and III, respectively. When looking at the external validation set, the model demonstrated 

sensitivities of 0.39, 0.35 and 0.55 for classes I, II and III, respectively, and corresponding specificities 

of 0.73, 0.68 and 0.74. The model could correctly classify 38 of 89 of the external set chemicals. 

However, the slightly different performance between the training and test set was somehow expected, 

since test chemicals were not used in the model calibration. Importantly, our model data presented here 

can be compared with previous models correlating molecular structure and LD50 (organism-rat,  

route-oral) which yielded a predictive power associated with a r2 of less than 0.45 [23,24]. Keeping 

this in mind, our classification model did not show optimal performances in terms of a clear separation 

of toxicological classes, but did allow the establishment of a relationship between the molecular 
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structures of chemicals included in the Munro dataset and their oral dosed acute toxicities. For this 

reason, molecular descriptors included in the model were further analyzed in order to better understand 

their role in determining the toxicity level of chemicals. 

Table 3. Description of the 25 descriptors derived by the genetic algorithm coupled with  

k-NN classification. 

Sr. Name Description Type 

1 MATS1e 
Moran autocorrelation of lag 1 weighted by  

Sanderson electronegativity 
2D autocorrelations 

2 SpMAD_B(s) 
Spectral mean absolute deviation from Burden matrix 

weighted by I-State 
2D matrix-based descriptors 

3 SpPosA_B(p) 
Normalized spectral positive sum from Burden matrix 

weighted by polarizability 
2D matrix-based descriptors 

4 MATS1v 
Moran autocorrelation of lag 1 weighted by van der 

Waals volume 
2D autocorrelations 

5 Mi Mean first ionization potential (scaled on Carbon atom) Constitutional indices 

6 AAC Mean information index on atomic composition Information indices 

7 SpMAD_B(m) 
Spectral mean absolute deviation from Burden matrix 

weighted by mass 
2D matrix-based descriptors 

8 GATS1p Geary autocorrelation of lag 1 weighted by polarizability 2D autocorrelations 

9 C-026 R--CX--R Atom-centred fragments 

10 SIC0 
Structural Information Content index  

(neighborhood symmetry of 0-order) 
Information indices 

11 nDB Number of double bonds Constitutional indices 

12 SIC1 
Structural Information Content index  

(neighborhood symmetry of 1-order) 
Information indices 

13 ATS6e 
Broto-Moreau autocorrelation of lag 6 (log function) 

weighted by Sanderson electronegativity 
2D autocorrelations 

14 P_VSA_MR_3 P_VSA-like on Molar Refractivity, bin 3 P_VSA-like descriptors 

15 DLS_02 Modified drug-like score from Oprea et al., (6 rules) Drug-like indices 

16 nCL Number of Chlorine atoms Constitutional indices 

17 J_Dz(Z) 
Balaban-like index from Barysz matrix weighted by 

atomic number 
2D matrix-based descriptors 

18 SM6_B(s) 
Spectral moment of order 6 from Burden matrix weighted 

by I-State 
2D matrix-based descriptors 

19 GATS1v 
Geary autocorrelation of lag 1 weighted by  

van der Waals volume 
2D autocorrelations 

20 JGI4 Mean topological charge index of order 4 2D autocorrelations 

21 P_VSA_i_4 P_VSA-like on ionization potential, bin 4 P_VSA-like descriptors 

22 P-117 X3-P = X (phosphate) Atom-centred fragments 

23 B01[S-P] Presence/absence of S–P at topological distance 1 2D Atom Pairs 

24 B03[C-S] Presence/absence of C–S at topological distance 3 2D Atom Pairs 

25 BLTF96 Verhaar Fish base-line toxicity from MLOGP (mmol/L) Molecular properties 
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Table 4. Classification parameters of k-NN classification model. 

 NER ER 
Sensitivity Specificity 

Class Class 

   I II III I II III 

Fitting 0.66 0.34 0.53 0.46 0.65 0.80 0.74 0.78 
cv 0.67 0.33 0.54 0.49 0.65 0.81 0.76 0.78 

External 0.57 0.43 0.39 0.35 0.55 0.73 0.68 0.74 

3.2. Analysis Based on 25 Descriptors 

To determine how structures were related with toxicity classes, we performed a Principal 

Component Analysis (PCA) study on both training set and test set chemicals using the 25 descriptors 

selected for the k-NN classification model. 

3.2.1. Score Plot 

In the score plot, similar chemicals lie closer to each other with respect to the first two principal 

components. Whereas the chemicals which differ from each other are found further away from each 

other. Figure 1 illustrates how chemicals are distributed based on their similarities and differences, all 

chemicals are denoted by three different colors with their respective class (i.e., I (blue), II (red) and  

III (green)). PC-1 has shown 20% of variance while PC-2 has shown 16% of variance. For the  

347 training set chemicals the total variance associated with first two components was found to be 

36%. PCA correctly identified a molecular clustering based on the structural properties of molecules. 

By comparing score and loading plots, it is clear how clusters in the score plot are characterized by 

molecules with similar structures, as well as how the selected molecular descriptors encode the correct 

information to visualize and separate these structural clusters. 

In fact, most of the aliphatic alcohols were present at the left most side of the score plot, while 

halogenated benzenes were clustered on the right most side along principal component-1 (PC-1). The 

third distinct functional group was the halogenated alkenes and halogenated heterocyclic structures, 

which were projecting downward along with the PC-2. Those chemicals containing phosphate and 

sulphate functionalities were found to increase in the upward direction along with PC-2. A series of 

distinct characteristic structural sets are shown grouped with marked areas in Figure 1. 
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Figure 1. PCA score plot using 25 descriptors explaining similarity and variability in 

training set chemicals with respect to their corresponding class. 

 

When score plots of test set (Figure 2) was compared with training set (Figure 1), we found that the 

many similar functional groups formed clusters. 

Analysis of the score plots for training and test set chemicals showed that the classification model 

revealed a number of trends, the red and green marked sectors of Figures 1 and 2 have a slightly higher 

frequency of highly toxic chemicals (class-I) and a region (purple marked sectors) dominated by 

intermediate toxic chemicals (class-II). The blue, magenta, black and grey marked areas reveal on the 

contrary a higher frequency of class-III chemicals, especially in the most remote areas of the clusters. 

This can suggest a potential and underlying trend of relationships between the first PC and the toxicity 

level, which should be better clarified and analyzed in future studies. 
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Figure 2. PCA score plot using 25 descriptors explains similarity and variability in test set 

chemicals with respect to their corresponding class. 

 

3.2.2. Loading Plot 

The PCA Loading plot (Figure 3) was used as to analyse the importance of molecular descriptors 

for determining each component and thus the role of descriptors for the separation of clusters identified 

in the score plot. Chemicals placed in the left side of the score plot (with negative scores on PC1) are 

characterized by having high values of descriptors placed on the left side of the loading plot (negative 

values of loadings on PC1) and vice versa. The plot shows regions of both high and low variance as 

denoted by the two ellipses. The outer ellipse indicates 100% explained variance while the inner 

ellipse indicates that only 50% variance in the data could be explained. The first two PCs have 

explained 36% variance and that the outer 8 descriptors are those with highest loading (weight) on 

these PCs. The loading plot was analyzed with respect to score plot and the characteristics related to 

the distribution of chemicals in the PCA score plot are described in the following paragraph. 

The descriptor C-026 (atom centered fragments) and MATS-1v (Moran autocorrelation of lag 1 

weighted by van der Waals volume) have high weight for all chemicals in red marked sector which 

was dominated by class-I chemicals. Figures 1 and 2 describe the scaffold for atom centered fragment. 

As shown in Figures 1 and 2, the chemicals in the green marked sectors represent those with a 

halogenated alkene moiety, and are predominantly class I chemicals. It has been observed that along 



Int. J. Mol. Sci. 2014, 15 18172 

 

 

PC-2 the acyclic halogenated alkenes are present followed by more complex halogenated structures, 

e.g., halogen substituted aromatic and heterocyclic structures. The descriptor nCl (Number of Chlorine 

atoms) has a high weight for chemicals shown in the green marked sectors. The descriptor SpPosA_B(p) 

(Normalized spectral positive sum from Burden matrix weighted by polarizability) has a high weight 

for chemicals at right most side along PC1. The brominated chemicals laying at right most side as 

compared to chlorinated chemicals as bromine has a higher polarizability than chlorine. The acids, 

esters and alcohols were found along PC-1. Descriptors GATS1p (Geary autocorrelation of lag 1 

weighted by polarizability) and GATS1v (Geary autocorrelation of lag 1 weighted by van der Waals 

volume) have a high weight for chemicals in the black marked sectors where class III chemicals are 

dominant. The descriptor Mi (Mean first ionization potential (scaled on Carbon atom)) and descriptor 

nDB (number of Double Bonds) shows high weight for chemicals in the upper-left quadrant and 

explains the increase of unsaturation from the left to right direction along PC-1. The class III chemicals 

are dominant in this region. We have also noted that the presence of phosphate and sulphate 

functionality increases upward along PC2. This is due to the weight that descriptors B01[S-P] 

(Presence/absence of S–P at topological distance 1), B03[C-S] (Presence/absence of C–S at topological 

distance 3) and P-117 (X3-P = X (phosphate)). 

Figure 3. Loading plot describes significant descriptors. 

 

4. Conclusions 

The aim of this study was to develop a preliminary QSAR model for the prediction of acute 

toxicity. The Munro database was used as the basis for model calibration, as it provides a general 

coverage of chemical space with respect to physico-chemical properties. Our study constitutes the first 

attempt to classify the Munro database chemicals on the basis of LD50 data. Three classes were formed 

using a GHS protocol that divided the Munro database chemicals based upon particular LD50 value 

thresholds. The most relevant molecular descriptors were selected by means of the Genetic Algorithm 

and used to develop a k-NN classification model for the Munro database chemicals. The further PCA 
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analysis confirmed the importance of the selected descriptors in the clustering of chemicals based on 

structural features as well as highlighted their potential use for establishing a GHS scheme for 

classifying Munro database chemicals. We believe that this QSAR-based model for predicting acute 

toxicity may reveal unique insights concerning factors underlying acute toxicity and should be of 

interest for use in the preliminary screening of substances. Ultimately, this approach may contribute to 

a reduction in the use of animals in toxicity studies. 
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