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Abstract: Metabolomic-based approaches are increasingly applied to analyse genetically 

modified organisms (GMOs) making it possible to obtain broader and deeper information 

on the composition of GMOs compared to that obtained from traditional analytical 

approaches. The combination in metabolomics of advanced analytical methods and 

bioinformatics tools provides wide chemical compositional data that contributes to 

corroborate (or not) the substantial equivalence and occurrence of unintended changes 

resulting from genetic transformation. This review provides insight into recent progress in 

metabolomics studies on transgenic crops focusing mainly in papers published in the  

last decade. 
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1. Introduction 

The application of genetic engineering is considered one of the leading technological advances  

in modern biotechnology. The organisms derived from genetic engineering are commonly named 

genetically modified organisms (GMOs). Since the production of the first genetically modified (GM) 

plant in 1983, a variety of agronomic traits that include benefits in agronomic productivity and 

industrial processing have been developed. Among the most relevant traits present in authorized GM 
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crops, tolerance to herbicide and resistance to insects are prevalent worldwide. However, value-added 

traits such as different micronutrient content, faster ripening, improved feed value, and high levels of 

antioxidants, have also gained much attention recently [1–3]. 

Despite its important economic potential, authorization and commercialization of GMOs has been 

always controversial within the scientific community and the public sector. Several aspects of GMOs, 

including risk assessment, marketing, labeling, and traceability are strictly regulated in the European 

Union and other countries. In such regulations, the starting point in risk assessment of GMOs relies on 

the substantial equivalence concept that involves the comparison of the GMO under assessment with 

traditional varieties. Substantial equivalence concept is based on the assumption that commercialized 

traditional crops have been consumed for decades and have gained a history of safe use. Therefore, 

they can be used as comparators for the safety assessment of new GMOs derived from established 

plant varieties. One of the central safety issues under debate regarding GMOs is the occurrence of 

unintended changes resulting from genetic transformation. Unintended effects go beyond the primary 

expected effects of genetic modification, and represent statistically significant differences in a phenotype 

compared with an appropriate phenotype control [4]. Such unpredictable alterations are considered a 

significant source of uncertainty that might have an impact on human health and/or the environment [5]. 

Substantial equivalence evaluations are commonly approached using targeted analysis of predefined 

compounds that include natural toxins, macro-, micro-, and anti-nutrients, following recommendations 

in the Organization of Economic Cooperation and Development (OECD) consensus documents for 

individual crops [6]. This targeted approach has enabled the identification of unintended effects in 

some cases; however, its adoption within the substantial equivalence framework has raised several 

criticisms. Specifically, it has been argued that this targeted approach is biased, and that some 

unforeseen, unintended effects may escape detection [7]. In response to the bias and uncertainties 

associated with targeted analysis in comparative compositional evaluation of GMOs, a report by a 

panel of European Food Safety Agency recommended the development and use of profiling 

technologies such as omics technologies, with the potential to improve the breadth of comparative 

analyses [8]. More recently, a panel of experts on risk assessment and management has recommended 

profiling especially in cases where the most scientifically valid isogenic and conventional comparator 

would not grow, or not grow as well, under the relevant stress condition [9]. However, certain 

questions have been raised about the value of molecular profiling for GMO risk assessment [10]. Some 

arguments against profiling rely on the lack of validated procedures and the difficulty to interpret the 

differences observed between a certain GMO and its comparator. However, a number of reports 

demonstrating the suitability and applicability of different profiling approaches for comparative 

analysis of GMOs suggest good acceptance of these fast-evolving techniques by the scientific community. 

Omics technologies are essential tools for understanding the response of organisms to genetic and 

environmental changes [11]. In this context, metabolomics has the potential to provide new 

dimensions to GMO analysis, allowing detection of the effects (intended or not) that might take place 

as a result of genetic engineering application. However, metabolomic analysis faces some challenges 

since the diversity of metabolites found in plants is by far greater than in other organisms, being the 

actual size of the plant metabolome unknown [12–15]. A group of well-established analytical 

techniques, namely, nuclear magnetic resonance (NMR) and mass spectrometry (MS)-based 

techniques, are the most commonly used in the vast majority of metabolic profiling and fingerprinting 
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analyses of plants [16,17]. Although NMR requires limited sample preparation, medium to high 

abundance metabolites will be detected using this technique [18,19]. The field strength improvements 

in NMR superconducting magnets have increased the spectral resolution and detection sensitivity. 

Current MS-based approaches yield higher sensitivity than NMR when analyzing complex plant 

metabolite mixtures. The use of high and ultra-high resolution mass spectrometers greatly improves 

analytical performance and offers the best combination of selectivity and sensitivity [20,21]. However, 

to achieve the maximum high-throughput production of metabolic information from the analysis of the 

largest possible number of plant samples, sample pre-treatment should be reduced to a minimum. 

Moreover, a variety of novel direct MS-based approaches with great potential for metabolomics have 

been introduced in last years. An array of direct ionization or desorption/ionization techniques have 

been developed and combined for this purpose [22,23]. On the other side, the application of 

metabolomics approaches even to a limited number of samples results in a huge amount of data with 

its inherent difficulties in making a meaningful interpretation. In the last years, great efforts have been 

made to apply metabolomics approaches to investigate the compositional equivalence between GMOs 

and the conventional unmodified organisms. A variety of crops have been studied using mainly MS or 

NMR-based analytical platforms in combination with several statistical methodologies [4,24].  

The most general approach to find meaning in metabolomics datasets involves the application of 

multivariate analysis methods such as for example, partial squares discriminant analysis (PLS-DA) and 

principal component analysis (PCA). Multivariate methods allow the identification of the spectral 

features contributing most to variation or separation for further analysis. PCA is one of the most 

frequently used unsupervised methods for metabolic fingerprinting and it provides a means to achieve 

unbiased dimensionality reduction. Unsupervised refers to the modeling being done without user 

intervention and only on the explanatory variables, leaving any responses optional for later stages in 

the process. However PCA only reveals group structure when within-group variation is sufficiently 

less than between group variation. On the other side, PLS-DA often performs more efficiently for the 

interpretable decomposition than PCA. 

This review provides insight into recent progress in metabolomics studies on GM crops focusing 

mainly in papers published in the last decade (a list is given in Table 1). Below, cutting-edge 

applications of metabolomics in the context of GMO analysis are highlighted to illustrate its 

impressive potential. 
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Table 1. Metabolomic studies on GMOs (genetically modified organisms). 

GM Crop Tissue Donor Specie Genetic Modification Phenotype Analytical Technique References 

Rice 

Seed B. thuringiensis Cry1Ab Insect resistance FTIR MS, NMR [25] 

Seed B. thuringiensis Cry1Ac, sck Insect resistance GC-FID, GC-EI-Q MS [26] 

Leaf Z. mays C1, R-S Flavonoid production LC-ESI-Q MS, LC-DAD [27] 

Leaf, seed, root O. sativa YK1 Stress tolerance CE-ESI-Q MS [28] 

Seed O. sativa RCH10, RAC22, β-Glu, B-RIP Antifungal activity 
NIRS, GC-EI-Q MS,  

LC-DAD, ICP-AES 
[29] 

Seed O. sativa Mod. (Xa23, Xa21 genes) Insect resistance GC-EI-Q MS [30] 

Seed B. thuringiensis Cry1Ac, sck Insect Resistance LC-ESI-Q/TOF MS [31] 

Seed E. coli GlgC-TM Nutritionally enhanced LC-ESI-Q MS [32] 

Seed N. tabacum ASA2 Nutritionally enhanced LC-ESI-Q MS [33] 

Seed A. tumefaciens 
Psy-2A-CrtI  
Bar 

Nutritionally enhanced  

Herbicide tolerance 
GC-EI-TOF MS [34] 

Leaf, seed E. coli/O. sativa LysC, dapA/LKR/SDH Nutritionally enhanced LC-FTIR MS, GC-EI-Q MS [35] 

Maize 

Grain B. thuringiensis Cry1Ab Insect resistance NMR [36,37] 

Grain Z. mays Mod. (Rpd3 gene) Seed development NMR [38] 

Grain B. thuringiensis Cry1Ab Insect resistance NMR [39] 

Grain B. thuringiensis Cry1Ab Insect resistance CE-ESI-TOF MS [40] 

Grain B. thuringiensis Cry1Ab Insect resistance FT-ICR MS [41] 

Grain B. thuringiensis Bt toxin Insect resistance GC-EI-Q MS [42] 

Grain B. thuringiensis Cry1Ab Insect resistance GC-EI-Q MS [43] 

Grain 
B. thuringiensis  

A. tumefaciens 
Cry1Ab  

CP4 EPSPS 
Insect resistance  

Herbicide tolerance 
GC-EI-Q MS [44] 

Grain Z. mays 
Mod. (Zmpsy1, Pacrtl, Gllycb, Glbch, 

ParacrtW genes) 
Nutritionally enhanced LC-DA, LC-ESI-APCI MS [45] 

Grain B. thuringiensis Bt toxin 
Herbicide tolerance  

Insect resistance 
NMR, GC-EI-Q-MS [46] 
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Table 1. Cont. 

GM Crop Tissue Donor Specie Genetic Modification Phenotype Analytical Technique References 

Soybean 

Seed A. tumefaciens CP4 EPSPS Herbicide tolerance GC-EI-Q MS [42] 

Seed Agrobacterium spp. 837ASDIS Herbicide tolerance GC-EI-Q MS [43] 

Seed A. tumefaciens CP4 EPSPS Herbicide tolerance CE-ESI-TOF MS [47] 

Leaf, EC, seed N. tabacum ASA2 Nutritionally enhanced GC-EI-Q MS [48] 

Seed A. tumefaciens CP4 EPSPS Herbicide tolerance CE-ESI-TOF MS [49] 

Seed Avena spp Mod. (HPPD gene) Herbicide tolerance LC-ESI-Q MS, GC-EI-Q MS [50] 

Seed A. tumefaciens CP4 EPSPS Herbicide tolerance 
CE-ESI-TOF MS, GC-EI-TOF 
MS, LC-ESI-Q/TOF MS, ICP MS 

[51] 

Alfalfa Stem, leaf N. tabacum PAL2 Nutritionally enhanced LC-UV [52] 

Pea Leaf S. hygroscopicus Bar Herbicide tolerance NMR [53] 

Wheat 
Leaf U. maydis Chit/Gluc, RIP, Mod. (KP4 gene) Fungal resistance LC-DAD, LC-ESI-Q MS [5] 

Seed T. aestivum Glu-A1, Glu-D1 Nutritionally enhanced NMR [54] 

Potato 

Tuber 
A. pullulans,  
S. tuberosum 

W2, FK, Mal1, SamDC 
Starch biosynthesis, leaf  
morphology, ethylene 

production 
GC-EI-Q MS [6] 

Tuber S. tuberosum AGPase, StcPGM, StpPGM Altered starch composition GC-EI-Q MS [55–57] 

Tuber C. scolymus 1-SST, 1-FFT Inulin synthesis GC-EI-TOF MS, LC-ESI-Q MS [58] 

Tuber A. tumefaciens Potato virus Y Virus resistance CE-ESI-IT-MS/MS [59] 

Tuber A. thaliana DREB1A Stress tolerance GC-EI-TOF MS, LC-ESI-Q MS [60] 

Tuber A. pullulans W2 Waxy phenotype LC-UV, NMR [61] 

Leaf S. cerevisiae TPS1 Drought resistance GC-EI-Q MS [62] 

Tomato 

Fruit A. tumafaciens LBA4404 
Improved texture,  
mouthfeel, colour 

NMR [63] 

Leaf, fruit A. thaliana AtHXK1 
Altered carbohydrate 

metabolism 
GC-EI-Q MS [64] 

Fruit Z. mays LC1, C1 Increased flavonol content NMR [65,66] 

Fruit E. coli DXS Increased carotenoid content LC-DAD [67] 

Fruit V. vinifera Stilbene synthase Resveratrol synthesis LC-ESI-Q MS [68] 

Fruit R. dulcifica Miraculin Sweet flavor 
GC-EI-TOF MS, LC-ESI-Q/TOF 
MS, CE-ESI/TOF MS 

[69] 
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Table 1. Cont. 

GM Crop Tissue Donor Specie Genetic Modification Phenotype Analytical Technique References 

Tobacco Leaf E. coli/P. fluorencens Ent/CpmsB Salicylic acid producing plants NMR [70] 

Lettuce Leaf E. coli Asn A Growth enhanced NMR, GC-FID [71–73] 

Cucumber 
Fruit T. daniellii Thaumatin-II Sweet flavor GC-EI-TOF MS [74] 

Fruit T. daniellii Preprothaumatin-II Aroma, sweet flavor GC-EI-Q/TOF MS [75] 

Raspberry Fruit RBDV Virus movement protein Virus resistance GC-EI-Q MS [76] 

Grapevine Leaf E. coli Adh Abiotic stress 
GC-EI-Q MS, LC-ESI-IT MS, 

LC-DAD 
[77] 

Peppermint Leaf Mentha x piperita Mod. (MFS gene), DXR Essential oils content GC-FID [78] 

Cabbage Leaf A. tumafaciens Bar Herbicide tolerance LC-DAD, LC-ESI/Q MS [79] 

Papaya 
Fruit C. papaya Mod. (55-1 gene) Virus resistance LC-DAD, GC-FID [80] 

Pulp, Leaf C. papaya Mod. (rep gene) Virus resistance 
GC-EI-Q MS, LC-DAD,  

LC-ESI-Q MS 
[81] 

Poplar Cambial region P. trichocarpa Mod. (hipI-SOD gene) Superoxide production GC-EI-TOF MS, LC-ESI/TOF MS [82] 

Barley Seed B. amyloliquefaciens GluB, ChGP Antifungal activity LC-ESI-IT MS [83] 

AES: Atomic Emission Spectroscopy; APCI: Atmospheric Pressure Chemical Ionization; CE: Capillary Electrophoresis; DAD: Diode Array Detector; EC: Embryogenic 

culture; EI: Electron Impact; ESI: Electrospray Ionization; FID: Flame Ionization Detector; FTIC: Fourier Transform Infrared Spectroscopy; GC: Gas Chromatography; 

ICP: Inductively Coupled Plasma; ICR: Ion Cyclotron Resonance; IT: Ion Trap; LC: Liquid Chromatography; Mod.: Modification; NIRS: Near Infrared Spectroscopy;  

Q: Quadrupole; RBDV: Raspberry bushy dwarf virus; TOF: Time Of Flight. 
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2. Metabolomics and GM (Genetically Modified) Crops: Case Studies 

2.1. Rice 

Rice (Oryza sativa L.) is one of the most important food crops in the world being the main source 

of calories and protein intake for half of the world population [84,85]. Significant advances have been 

performed in rice biotechnology in order to solve problems related to disease, insect, pest and abiotic 

stress (temperature, salt, nutrition, drought, wounding, etc.) that cause yield reduction. Metabolomics 

has proved to be a useful approach in the study of rice. Different technological developments in 

metabolomics applied to rice have been described [86], including their use in the determination of 

unexpected and undesirable compounds accumulated in GM rice. 

GM rice (transformed with cry1Ab gene from Bacillus thuringinesis) and its wild type (WT) bred 

parent line were used as test materials to investigate the suitability of FTIR and NMR for metabolic 

fingerprinting, in combination with multivariate statistical analysis for sample classification [25].  

The overall results indicated the advantage of supervised over unsupervised statistical analysis for 

classification purposes. The metabolic profiling of three insect-resistant GM rice lines with inserted 

sck (trypsin proteinase inhibitor derived from cowpea) and cryIAc transgenes was approached by  

Zhou et al. [26] using GC-FID. In that study, metabolic profiles of wild and GM rice varieties were 

compared to assess the unintended effects related to the genetic modification. In order to determine the 

environmental effects on metabolites, wild samples with different sowing dates or sites were analyzed. 

Results from that study indicated the levels of malic acid, asparagine, sorbitol and gluconic acid 

differed in rice planted at different locations whereas sucrose, mannitol and glutamic acid levels were 

the major metabolic differences affected by gene insertion. However, one of the main conclusions  

of that study was that growing conditions and gene modification induced similar influence on most  

of metabolites. 

Amongst the numerous kinds of flavonoids produced in GM rice (transformed with maize C1 and  

R-S regulatory genes), dihydroquercetin (taxifolin), dihydroisorhamnetin (3'-O-methyl taxifolin)  

and 3'-O-methyl quercetin were the major flavonoids detected using LC [27]. In a different report, 

Takahashi et al. [28] focused on the analysis of GM rice plants overexpressing NADPH-dependent  

HC-toxin reductase (YK1) gene product, which possesses dihydroflavonol-4-reductase (DFR) activity 

and provides biotic and abiotic stress tolerance. Authors applied CE-MS to analyze polar metabolites 

involved in glycolysis, tricarboxylic acid cycle and pentose phosphate pathways. The analyses 

indicated slight changes in the amounts of several metabolites in YK1-overexpressing plant tissues 

when compared with those of the same rice variety containing the hygromycin-resistant gene  

(vector alone). For instance, cis-aconitate, isocitrate and 2-oxoglutarate levels were higher in leaves,  

fructose-1,6-bisphosphate and glyceraldehyde-3-phosphate levels were lower in roots, and glutathione 

levels were significantly increased in calli. Although most of the metabolic changes could not be 

directly associated with the function of the transgene, authors hypothesized potential links between the 

elevation of glutathione level in calli, NADPH levels and DFR activity. Jiao et al. [29] reported  

a comprehensive metabolomics approach based on various analytical techniques including NIRS,  

GC-MS, LC, ICP-AES and chemometrics for the discrimination of three GM rice varieties from their 

conventional counterparts. The GM rice varieties included: (1) rice with resistance to blast, bearing 
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four antifungal genes, RCH10, RAC22, β-1,3-Glu, and B-RIP; (2) rice with resistance to sheath blight, 

transformed to contain a rice chitinase gene, an alfalfa β-1,3-glucanase gene, and p35H containing  

a hygromycin phosphotransferase gene; and (3) rice with resistance to insects, containing sck, trypsin 

proteinase inhibitor derived from cowpea and cry1Ac gene from Bacillus thuringiensis. The levels of 

several amino acids, fatty acids, and vitamins, were altered to different extents in GM rice samples, 

suggesting that these unintended compositional alterations may be related to the genetic 

transformation. More recently, the metabolite profiles of a GM rice line C418-Xa21 (with bacterial 

blight-resistance genes), and two non-GM lines, C418 and C418/Xa23, were investigated using  

GC-MS [30]. After GC-MS analysis, cluster analysis (CA), PCA and PLS-DA were used to find 

differences between metabolic fingerprints obtained from different samples. As a conclusion of their 

study, authors indicated that the GM rice line was substantially equivalent to traditional cultivars apart 

from the change detected for succinic acid levels that fell outside the boundaries of natural variability 

observed between the two non-GM varieties. A similar approach, but using a different analytical 

platform, was adopted by Chang et al. [31] to investigate unintended effects of transgenic rice with 

cry1Ac and sck genes. In that work, LC-MS-based metabolomics in combination with PCA and  

PLS-DA were used to find the metabolites that permitted differentiating insect-resistant GM rice from 

its native counterparts. The authors also considered different sowing dates or locations as source of 

metabolite variation. Their findings suggested that environmental factors played a greater role than 

gene insertion for most metabolites. Although results also indicated slight variations in the levels of 

phytosphingosine, palmitic acid, 5-hydroxy-2-octadenoic acid and three other unidentified metabolites 

in the GM rice variety, the changes could not be related to the transgene. 

The improvement of the nutritional properties in staple foods, such as rice, may have a major 

impact on the quality of life of the world’s population. The over-accumulation of primary or secondary 

metabolites caused by the introduction of the genetic modification may affect unexpected processes in 

the plant’s physiology through a sequence of several events that may include altered gene expression. 

Rice has been modified not only to improve agronomic traits but also to enhance its nutritional 

properties. The effect of the insertion of a cytoplasmic-localized AGPase mutant gene from  

Escherichia coli to enhance starch synthesis in rice was evaluated using LC-MS [32]. The studied GM 

rice lines showed elevated levels of ADP-glucose, accordingly with their higher AGPase activity. The 

levels of glucose 1-phosphate, UDP-glucose and glucose 6-phosphate were also elevated to the same 

relative extent in the GM lines compared with the WT rice line. A putative explanation for these 

changes was the inefficient utilization of ADP-glucose for starch synthesis due to a limitation in their 

transport into the amyloplast or as substrate by starch synthases. Glucose and fructose levels were also 

elevated in the GM rice. However, analysis of metabolite ratios showed no significant differences due to 

genetic manipulation. The same LC-MS analytical platform for metabolite profiling was applied to 

evaluate the additional effects of the tryptophan-fortified rice line by genetic engineering [33]. No 

marked effects on the amounts of other major metabolites were described in that work. However, 

uneven distribution of tryptophan in the plants was described in a time-dependent manner, with the 

highest level being observed in young developing tissues. Kim et al. [34] have recently studied the 

substantial equivalence between carotenoid fortified GM rice and five conventional rice cultivars 

(three white and two red grain colors) using GC-MS-based profiling of polar metabolites. It was 
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suggested that GM rice was substantially equivalent to its conventional counterpart since GM rice was 

indistinguishable from the non-GM counterpart using the proposed non-targeted approach. 

The GM-rice lines with increased lysine levels developed by Long et al. [35] are representative 

examples of essential nutrient improvement in crops by genetic engineering. It is noteworthy  

to mention that lysine is the first limiting essential amino acid in cereal grains (including rice). Authors 

genetically engineered rice to increase lysine levels following three different strategies: (1) expressing 

bacterial genes to enhance lysine biosynthesis; (2) using RNA interference of rice genes to  

down-regulate its catabolism; and (3) combining 1 and 2 to achieve both metabolic effects. The 

developed GM-rice plants contained free lysine levels increased up to ~12-fold in leaves and ~60-fold in 

seeds. In this work, the LC-MS technique was highly valuable for investigating the profile of 11 

intermediate compounds involved in the Lys metabolic pathway in both rice seeds and leaves. These 

analyses revealed the existence of lysine catabolism in leaves and different regulatory mechanisms of 

lysine accumulation between rice leaves and seeds. 

2.2. Maize 

Maize (Zea mays L.) is another important crop worldwide for food, animal feed and bioenergy 

production [87]. GM maize, covering about 25% of total grown maize, has an important place in 

agriculture. Metabolomics has proved to be useful for predicting important agronomic traits. A first 

attempt to identify and classify maize seeds obtained from GM maize plants containing the Cry1Ab 

transgene, following a metabolomic fingerprinting approach, was carried out by Manetti et al. [36,37]. 

They demonstrated the capabilities of NMR and multivariate statistical data analysis to classify the 

maize seeds GM plants and their non-GM counterparts without the need of a complete assignment of 

the spectra. In another published report, a similar approach was used to study the introduction of the 

antisense-mediated down-regulation and over-expression of the Rpd3 gene in the genome of a maize 

inbred line [38]. Piccioni et al. [39] also applied NMR to profile the metabolome of insect-resistant 

GM maize containing the cry1A(b) gene. Using this technique, 40 water-soluble metabolites were 

identified in all samples; nevertheless, based on the quantitative data, multivariate analysis allowed the 

discrimination between GM and non-GM samples. The metabolites responsible for such discrimination 

were ethanol, citric acid, glycine-betaine and trehalose, which showed higher levels in the GM maize 

samples. A clear link between the alterations in the concentration of these metabolites and the genetic 

modification was not found. 

CE-MS has also proved to be helpful on the detection of the statistically significant differences in the 

metabolic profiles of varieties of conventional and insect-resistant GM maize [40]. Main differences 

were observed in the levels of L-carnitine and stachydrine between conventional and GM maize. The 

potential of combining two MS-based metabolomics approaches (namely, FTIR-MS and CE-MS) and 

pressurized liquid extraction (PLE), a green extraction technology, was evaluated later by the same 

research group to study GM maize [41]. Three GM varieties of insect-resistant maize and their 

corresponding isogenic lines grown under the same field conditions were analyzed. In that work, it was 

found that some metabolic pathways (amino acid, purine metabolism and folate biosynthesis, among 

others) were clearly altered in the GM varieties compared with their respective isogenic lines. 
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The amino acids profiles of insect-resistant GM maize (containing cry1Ab gene) and herbicide-tolerant 

soybean (containing CP4-EPSPS construct) were studied by GC-MS [42]. In that case, fast recovery of 

amino acids from maize and soybean grains was achieved with supercritical fluid extraction (SFE) 

with modified CO2. Following that procedure, various differences were detected in the amino acid 

profiles in GM maize and GM soybean when compared with their corresponding isogenic  

non-modified varieties. However, a direct association between the observed changes and the genetic 

modification could not be found. Following a similar analytical approach by GC-MS, the obtained 

profile of major and minor fatty acids in insect-resistant GM (cry1Ab gene) maize indicated high 

similarity when compared with its isogenic line grown in the same conditions [43]. On the contrary, 

the metabolic profiling by GC-MS carried out by Skogerson et al. [88] revealed that metabolome 

content was highly dependent on genotypic variation. More recently, Frank et al. [44] used also  

GC-MS profiling to investigate the impact of genetic modifications of insect-resistant maize  

(DKC78-15B, TXP 138F) and herbicide-tolerant maize (DKC78-35R) versus environmental 

influences (maize were grown together in different areas). The majority of differences observed were 

related to environmental factors rather than to the genetic modifications. Among them, location and 

season were predominant factors on the variability of metabolite profiles (Figure 1). Asiago et al. [89] 

designed a complex experiment to study the potential of metabolomic approaches to elucidate the 

biological variation in the expression of many metabolites due to environment, genotype, or both. 

Using GC-MS, 156 and 185 metabolites were measured in grain and forage maize samples, 

respectively. A similar approach, LC-MS was applied to detect a total of 286 and 857 metabolites in 

grain and forage samples, respectively [90]. The results indicated that the environment had the highest 

impact on the relative amounts of metabolites in both grain and forage. Rivera et al. [45] developed an 

ultra-high performance liquid chromatography (UHPLC)-MS method for carotenoid profiling to 

characterize GM maize lines expressing several carotenogenic genes, obtaining satisfactory results in 

terms of recoveries (82%–108%), detection limits (0.02–0.07 μg/mL) and repeatability (better than 

13% Relative Standard Deviation, RSD) [45]. 

In general, studies are focused on acquiring only one omic level. Few attempts have been made to 

achieve comprehensive omic profiling in GM plants [82]. In this sense, Barros et al. [46] published an 

exploratory study about the use of different omics techniques to study the transcriptome, proteome and 

metabolome of two GM maize varieties (Bt and RR) for safety evaluation purposes. The effects of 

environmental conditions (year of harvest, agricultural practices and location) on GM maize were also 

studied at the three levels of information. Analysis using 1H-NMR and GC-MS platforms for 

metabolomics, gene expression microarray for transcriptomics and 2-D gel electrophoresis (2-DGE) 

analysis for proteomics revealed that the environment was shown to cause more variation in the gene, 

protein and metabolite expression of the maize samples than the different genotypes. 
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Figure 1. Principal component analysis of GC-MS metabolite profiling data (triplicate 

analysis of combined fractions I–IV) of Bt maize (∆, ▲), Roundup Ready maize (◊, ♦), and 

the near-isogenic counterpart (○, ●) grown at the locations Lichtenburg (white symbols) 

and Petit (black symbols) in 2004 (A) and at Petit in 2004 (○, ∆, ◊), 2005 (gray circle, gray 

triangle, gray diamond) and 2006 (●, ▲, ♦) (B). For Petit 2005, three field replicates were 

analyzed in triplicate. Reprinted with permission from Frank et al. [44], copyright 2012 

American Chemical Society. 

 

2.3. Soybean and Other Legumes 

Soybean (Glycine max), classified under plant legume, is an important source of vegetable oil and 

protein. The GM soybean variety tolerant to glyphosate herbicide is one of the most extended GM 

crops in the world. The first work related to substantial equivalence of GM soybean through  

a metabolomic approach was carried out by García-Villalba et al. [47]. In that work, authors developed 

a CE-MS-based analytical strategy to compare the metabolic profile of conventional and GM soybean 

(CP4 EPSPS construct) [47]. More than 45 different metabolites, including carboxylic acids, 

isoflavones, and amino acids were tentatively identified. Among metabolite differences between GM 

and conventional soybean, most noteworthy differences were found in the concentration of proline, 

histidine, asparagine and 4-hydroxy-L-threonine. The latter, disappeared in the GM soybean compared  

to its parental non-GM line. In a comprehensive study, Inaba et al. [48] investigated the metabolite 

profile of herbicide-tolerant GM soybean, expressing an anthranilate synthase (ASA2) gene that is 

characterized by the accumulation of tryptophan in leaves, seeds and embryogenic cultures [48]. 

Metabolite profiles of different tissues were obtained by GC-MS revealing slight elevation of tyrosine 

and phenlylalanine levels in the GM soybean line. As authors mentioned in their work, a possible 

explanation for the elevation of these two amino acids in cells, that have increased levels of 

tryptophan, could be a feedback insensitive anthranilate synthase due to a mutation or transgene 

insertion, but further experiments are required to confirm this point. Also, Giuffrida et al. [49] studied 

the herbicide-tolerant GM soybean line using a chiral CE-MS method. Authors observed some 

quantitative differences in the chiral amino acid profile between the GM soybean and the 

untransformed genotype. However, further work remains to be done in order to investigate whether these 



Int. J. Mol. Sci. 2014, 15 18952 

 

 

differences could be a direct consequence of the genetic transformation. In a recent work, the issue of 

substantial equivalence assessment for herbicide-tolerant GM soybean has been addressed [50]. Thus, to 

study the metabolome within the context of the natural variation, 49 conventional soybean lines and 

one GM line were analyzed. Using LC-MS and GC-MS, the metabolome of the GM soybean presented 

no significant deviation from natural variation (represented in Figure 2) with the exception of changes 

in the targeted engineered pathway. 

Figure 2. Metabolomic profiles and hierarchical clustering of 169 metabolites across the 

49 soybean conventional lines and one GM line. The mean values for 8 biological 

replications per line were shown. Red and green indicate high and low levels, respectively, 

relative to the median value for all samples. The first (green label) and second (purple 

label) columns correspond to the isogenic and GM line, respectively. The columns 

numbered from 1 to 48 correspond to other conventional soybean cultivars. Reprinted with 

permission from Clarke et al. [50]. 

 

In a recent paper, Kusano et al. [51] have presented the results obtained from a comprehensive 

metabolomic study on a soybean lineage representing 35 years of breeding and increasing yield 

potential and three glyphosate-tolerant GM lines. The analytical strategy combined CE-MS, GC-MS, 
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LC-MS and ICP-MS with multivariate analysis to successfully discriminate samples. The differences 

between the conventional and GM lines were small, indicating that genetic modification is not an 

important contributor to metabolite variability. Metabolomic data indicated that differences between 

older and newer soybean varieties provided novel and significant information on the impact of varietal 

development on biochemical variability, suggesting that safety assessments will need to consider that 

transgene insertion is not a major source of metabolite variability. 

Apart from soybean, alfalfa (Medicago sativa L.) is a leading forage legume crop due to its high 

nutritive value. Several alfalfa lines have been genetically engineered to lower its lignin content with 

the final goal of improving alfalfa digestibility in ruminants. Thus, Chen et al. [52] used LC with UV 

detection to analyze soluble phenolics, wall-bound phenolics and cell wall lignins from GM alfalfa 

(with genetically downregulated O-methyltransferase genes) samples to study the effects of single 

gene disruption in the monolignol branch of phenylpropanoid biosynthesis. The results indicated that 

although the genetic modification decreased lignin biosynthesis, it also affected the levels of cell  

wall-bound ferulic acid. Pea plant, another well-known legume, has also been object of metabolomics 

studies. For instance, six independent lines of GM pea, transformed with a plasmid containing five 

transgenes and a Ds transposable element, were studied using NMR [53]. In their study, authors 

included the analysis of two control groups, the non-transformed pea plant control and the null 

segregant control from which the transgene has been lost. Multivariate analysis on the basis of PCA 

and linear discriminant analysis (LDA) failed to provide an acceptable classification of samples. In 

addition, statistical analysis revealed similar results, suggesting that the null segregant group was 

significantly different from the wild type, indicating that factors other than the presence of the 

transgene had significant effects on the metabolite profile. 

2.4. Wheat 

While much of the produced maize and soybeans are directed to feed animals or to be transformed 

into bioethanol, most wheat is consumed by humans as bread or pasta. Due to the socio-economic 

impact of this crop, GM wheat varieties have not legally been approved yet. Baker et al. [54] 

investigated the substantial equivalence of a series of GM wheat lines, transformed with Glu-A1 and 

Glu-D1 genes, with improved processing quality. In their study, the authors used NMR and 

multivariate analysis to compare the metabolite profiles of the GM wheat lines with their 

corresponding parental lines. The main differences between GM and parent lines were found in 

maltose and sucrose levels. However, a detailed explanation of the potential link between the observed 

metabolic changes and the genetic modification was not provided in that work. In the same study,  

GC-MS was employed for amino acid profiling, observing that differences between the control and 

GM lines were within the same range as the differences observed due to environmental factors 

(location and year). 

2.5. Potato 

Potato (Solanum tuberosum L.) is another relevant food crop in the world. It is also an alternative 

source of raw material for bioethanol production [91]. Potato has also been subject of a several 

metabolomic studies [92]. In a series of works, Roessner et al. [55–57] have demonstrated the potential 
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of GC-MS for metabolite profiling of GM potato tubers. GC-MS was also the analytical platform of 

choice for the analysis of key compounds to investigate unintended effects in GM potato lines with 

altered carbohydrate metabolism (up-regulated or down-regulated fructokinase gene expression) [6]. 

The statistically significant differences between non-GM and GM lines were not associated with any 

specific construct. Interestingly, significant differences were also observed between non-transformed 

tubers and both, tissue culture derived tubers and tubers obtained from transformation with an empty 

vector, suggesting the occurrence of somaclonal variation. Global analysis of metabolite content using 

LC-MS and GC-MS was carried out to evaluate the degree of similarity between inulin-producing GM 

potatoes, transformed with 1-fructosyltransferase (1-SST) and fructan:fructan 1-fructosyltransferase 
(1-FFT) genes, and conventional cultivars [58]. Multivariate analysis of chromatographic data showed 

that the most discriminatory ions with a significant impact on genotype separation were predicted to 

represent fructans of different degree of polymerization (DP), Figure 3. 

Figure 3. Identification of discriminatory metabolites in GM potato lines, some of them 

expressing 1-SST and 1-FFT (SST/FFT), and others expressing 1-SST (SST), by LC-MS 

and GC-MS. (A) Overlaid single-ion chromatograms from LC-MS analysis of top-ranked 

predicted variables to represent ions derived from fructans, detected in SST/FFT potato 

tubers. Each color represents a single ion (m/z). Three degree of polymerization fructan is 

marked with a red asterisk; (B) GC-TOF extracted ion chromatogram m/z 217 for GM and 

non-GM potato tubers, enlarged for discriminatory disaccharide and trisaccharide regions. 

Separation of inulotriose 1 and inulotriose 2 from 1-kestose and raffinose is marked with a 

red asterisk. Metabolic signals from four conventional potato cultivars: Desiree 1 (green); 

Desiree 2 (yellow); Linda (red) and Solara (light blue), and two types of GM lines: SST34 

(purple) and SST/FFT19 (dark blue) are represented in this figure. Reprinted with 

permission from Catchpole et al. [58]. 

Other relevant transgenic modification was based on the construction of virus resistant potato 

plants. Tubers were studied by CE-MS in order to determine and compare their glycoalkaloid content 

with equivalent non-GM potato variety [59]. CE-MS analysis revealed no substantial differences in 
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GM tubers. Apart from targeted changes and the observed large variation in metabolite profile between 

the conventional cultivars, GM potatoes under study were shown to be substantially equivalent to 

traditional cultivars. In a recent work, differences between GM lines, containing dehydration response  

element-binding protein 1A transgene, and the non-GM parent cultivars were investigated [60]. In that 

work, LC-MS profiling revealed higher levels of the glutathione metabolite, γ-aminobutyric acid and 

β-cyanoalanine, a byproduct of ethylene biosynthesis, in the GM lines. Combinations of metabolic 

information provided by different analytical platforms (NMR and LC-UV) have been demonstrated to 

be largely complementary in terms of metabolites detected in potato tubers [61]. Information obtained 

from both analytical platforms was combined with the aim to detect unintended effects. Once more,  

it was found that the largest differences were found not between the GM potatoes and controls but 

between conventional varieties. 

The responses to prolonged drought stress of wild type White Lady and the GM drought-tolerant 

TPS1 potato lines were studied by Kondrák et al. [62] at both transcriptional and metabolic levels.  

The expression of 57 genes was found to be altered in GM potato leaves compared to that in wild type 

potato leaves. Substantial increases in the detected proline, inositol and raffinose levels in the leaves  

of both potato lines seemed to be a general response to drought stress. In general, the biochemical 

changes detected did not clearly reflect the changes in gene expression. Authors concluded that inositol 

synthesis was influenced by transcriptional and/or biochemical changes induced, not exclusively  

by drought, but also by the transgene expression, whereas raffinose and proline synthesis  

were drought-specific. 

2.6. Tomato 

Tomato (Lycopersicon esculentum) is also a major food crop worldwide. The first work on 

metabolite comparison based on NMR analysis suggested minimal variations between isogenic  

non-GM and GM lines across sites or seasons (about 95% of all analyzed metabolites presented the  

same concentration) [63]. A metabolite profiling methodology, based on the combined use of GC-MS, 

conventional spectrophotometric LC and bioinformatic tools, was employed to study the influence of 

hexokinase activity on tomato fruit metabolism. To achieve this, different tissues of GM tomato plants 

overexpressing hexokinase gene product were analyzed at different developmental stages [64].  

Their comprehensive analysis revealed some interesting findings regarding the influence of hexokinase 

on primary metabolism and its dependence on the environmental factors. A NMR study by  

Le Gall et al. [65,66] showed a significant increase of kaempferol glycosides in the flesh of GM 

tomato over-expressing maize transcription factors LC and C1. Apart from the significantly increased 

content of several flavonoid glycosides, the levels of other unrelated metabolites such as citric acid, 

sucrose, phenylalanine, and trigonelline, among others, were found to be different in GM tomato. 

However, the reported changes in mean values were relatively minor (less than 3-fold) and within the 

natural variation that would be observed in a field-grown crop. Long et al. [67] used LC to profile 

carotenoid and phenolic compounds of a panel of tomato lines representing a range of phenotypes of 

carotenoids or flavonoids levels (wild-type, mutants and various GM tomato lines). The GM lines 

included the DXS up-regulated plants which contained increased carotenoids, and the CRTI line, 

containing a bacterial (Erwinia uredovora) desaturase, which resulted in fruit with elevated (4.0-fold) 
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β-carotene content and lutein levels and reduced (10-fold) phytoene levels. In the same investigation, 

tomato lines manipulated in cytochrome P450 ferulate 5-hydroxylase to increase the ferulate levels 

were also included. The study was aimed at investigating how manipulation of carotenoids or 

flavonoids pathways may affect other secondary metabolism pathways. It could be observed that 

perturbations to the biosynthesis of flavonoids or carotenoids independently did not affect the overall 

content of these relevant compounds. LC-MS was also employed for the analysis of GM tomato plants 

over-expressing grape stilbene synthase genes [68]. The analysis revealed that the genetic modification 

of the tomato plants originated from different levels of accumulation of four stilbenes  

(i.e., trans- and cis-piceid and trans- and cis-resveratrol), depending on the stages of ripening. Other 

metabolites (rutin, naringenin, and chlorogenic acid) were suggested to be related to the genetic 

transformation. More recently, characterization of the GM tomato metabolome was approached by 

Kusano et al. [69]. In that study, two GM tomato varieties over-expressing miraculin glycoprotein and 

a panel of six traditional tomato cultivars were selected to prove a methodology based on three 

different metabolomics platforms. More specifically, data from CE-MS, GC-MS and LC-MS were 

summarized in single consensus datasets for further multivariate analysis. The combination of the three 

platforms allowed the statistical analysis of datasets containing over 175 unique tentatively identified 

metabolites and more than 1400 peaks with no or imprecise metabolite annotation. This analytical 

setup provided metabolite coverage of 85% of the chemical diversity found in the LycoCyc database. 

Results showed that >92% of the tested peaks in the transgenic lines deviated less from the control line 

than the accepted limit estimated using the reference panel of traditional cultivars. 

2.7. Other GM Crops 

GM tobacco has also been investigated in metabolomics studies. Choi et al. [70] applied 1H NMR 

and multivariate analysis techniques to differentiate wild type and GM tobacco plants overexpressing 

salicylate biosynthetic genes. The major compounds contributing to the discrimination were 

chlorogenic acid, malic acid, glucose and sucrose. Based on literature data, authors discussed potential 

associations between those altered metabolite levels and the increase of salicylic acid levels in plants; 

however, none of these changes in primary metabolites were directly related with salicylic acid 

biosynthesis. Sobolev et al. [71–73] published a series of papers where they applied NMR to investigate 

different metabolic aspects of GM lettuce with enhanced growth properties (over-expressing the 

asparagine synthetase A gene from E. coli). Statistical analysis of NMR data demonstrated significant 

increases in content of short-chain inulin oligosaccharides in GM lettuce leaves compared to those 

detected in the wild type plant. Interestingly, that was considered an unexpected effect because the 

transgenes aims at modifying the asparagine level, together with the nitrogen status, rather than the 

carbohydrate content [71–73]. 

An important application of transgenic modification is focused on the improvement of organoleptic 

characteristics of food. For instance, a GM cucumber plant has been transformed with the thaumatin-II 

gene to improve its taste [74]. The GC-MS analysis of five GM cucumber varieties bearing that 

transgene and its non-modified counterparts revealed that GM lines differ in their metabolic profiles 

and that those differences could be associated to the transgene integration site. However, the range of 

some of the observed changes was narrow, and authors classified them as somaclonal effects. Also, 
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common changes in phenylalanine, aspartate, ethanolamine, pipecolate and benzoic acid levels were 

detected in the GM lines that could not be linked to the genetic modification. Another GM cucumber 

plant with enhanced aroma properties did not show significant differences when compared with its 

parental non-GM line by GC-MS [75]. Maolowicki et al. [76] studied the impact in certain metabolites 

in GM raspberry resistant to bushy dwarf virus (RBDV). Volatile compounds of RBDV-resistant 

raspberry lines were analyzed by GC-MS and compared with the wild-type. Whereas no flavor 

compounds tested in this study showed any difference between the GM lines and the wild-type 

raspberry, much larger variations were observed between sites and harvest seasons. The content of 

phenolic compounds and volatile secondary metabolites was investigated by GC-MS and LC-MS in 

GM grapevine plants over- and under-expressing alcohol dehydrogenase (adh) gene [77]. In that case, 

the main goal was to study the putative role of alcohol dehydrogenase in plant development and 

response to stress. Metabolite profiles indicated some differences in the degree of polymerization of 

proanthocyanidins, as well as increased levels of sucrose, carotenoid- and shikimate-derived volatiles 

in the GM plant. Supported by literature data, the authors discussed that some link could exist between 

alcohol dehydrogenase activity and the changes observed in sucrose metabolism. On the other side,  

the changes observed in secondary metabolites were not directly related with the role of alcohol 

dehydrogenase in the plant metabolism. 

LC-DAD-based metabolic fingerprinting approach was used to evaluate undesirable changes in GM 

Chinese cabbage containing the bar gene [79]. In addition to genetic modification, sample periods  

(4- and 8-week old plants) were also subjected to study through metabolome analysis. It was observed 

that the time of samplings affected the metabolome in a higher extent than the genetic modification. 

The advantages of using multiple analytical platforms to explore the composition of complex 

samples become evident. Adopting this strategy, complementary metabolomic information was obtained 

on the compositional differences between papaya (Carica papaya L.) transformed with the replicase 

gene for resistance to papaya ringspot virus (PRSV) and the non-GM counterpart [80,81]. Profiles of 

volatile organic compounds, sugar/polyals, organic acids, carotenoids and alkaloids in GM and non-GM 

papaya were obtained by GC-MS and LC-MS analytical platforms [81]. The metabolite variation 

between GM and non-GM papaya was slight during the two harvesting times studied in the work. 

Papayas harvested across different time periods showed a higher degree of compositional variability. 

Transcriptome and metabolome analysis on GM barley plants (with different disease-resistance and 

nutritional traits) and their conventional counterparts grown in field with and without amendment of 

soil with mycorrhizal (Amykor) was performed by Kogel et al. [83]. In their work, a comparative 

analysis of 72 metabolites obtained in different culture conditions revealed slight differences in the 

abundance of some of them, as can be seen in Figure 4. The overall conclusion is that cultivar-specific 

differences in transcriptome and metabolome greatly exceed effects caused by transgene expression. 
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Figure 4. Differentially abundant metabolites in barley leaves. Overview of differentially 

abundant metabolites from the targeted profiling approach with leaf material from  

4-month-old, field-grown barley plants representing the treatments (A) cultivar or (B) 

Amykor. The schematic metabolic diagrams in (A) and (B) represent a map of all analyzed 

metabolites. The heatmap strips next to the metabolite names were taken from the 

hierarchical cluster analysis, with red signals denoting an increased metabolite content 

relative to average and green signals indicating decreased metabolite contents relative to 

average. GP, Golden Promise; B, Baronesse; ChGP, Chitinase GP; GluB, Glucanase B; M, 

Amykor treatment. Reprinted with permission from Kogel et al. [83]. 
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3. Concluding Remarks 

A large number of new transgenic varieties of crops with desired traits are rapidly being introduced 

in the global market. The application of metabolomics for the safety assessment of GMOs is providing 

relevant information regarding the associated metabolite alteration as a result of gene modification. 

Exhaustive, unbiased metabolic profiling or fingerprinting of plants is greatly accelerating in the last 

years as demonstrated in this review. The chemical complexity of the plant metabolome, as well as the 

large dynamic range of concentrations are major challenges to be faced by metabolomics. To address 

these challenges, advances in analytical platforms have played a key role to unravel potential GM 

effects at the molecular level. Metabolomics studies (e.g., comparing GM crops with their wild type 

parent lines) are often combined with different culture conditions, from more geographical locations, 

multiple years, and different growing seasons, etc., in order to investigate the natural metabolome 

variability. In general, results show that compared with genetic modifications, environmental 

variations usually produce greater major differences in metabolome composition. 

Although the applications of metabolomics have not been validated yet within the regulatory 

framework for food safety assessment, it can be considered a powerful approach and a key strategy to 

screen compositional changes increasing the possibility of detecting unintended effects associated with 

genetic modification in GM plants. However, in order to understand the biological significance and 

impact of the detected changes, the large amount of data generated in metabolomics studies needs to  

be processed, integrated and interpreted together with data generated by other high-throughput 

technologies such as proteomics and transcriptomics as proposed by the new Foodomics strategy [93]. 

Although combinations of different omics technologies have been applied for the analysis of molecular 

alterations in GMOs, none of these studies have reported substantial correlations due to the lack  

of suitable integrative strategies. In this sense, the development of appropriate Systems Biology 

approaches providing new means to integrate and summarize omics data will help on the applicability 

of global approaches that can reveal new relationships, which cannot be found otherwise. However, 

before data integration procedures can be practically applied to GMO analysis, much effort will have 

to be made to develop effective integrative statistical approaches and appropriate computational 

frameworks for describing molecular systems and connecting omics databases. In this context, the 

development and implementation of initiatives to generate tools and databases that allow sharing 

metabolite data obtained from metabolomics studies will also be important [94]. 

Acknowledgments 

This work was supported by an AGL2011-29857-C03-01 project (Ministry of Education and 

Science, Spain). Alberto Valdés thanks the Ministry of Economy and Competitiveness for his FPI  

pre-doctoral fellowship. 

Author Contributions 

The manuscript was written through contributions of all authors. All authors have given approval to 

the final version of the manuscript. 
  



Int. J. Mol. Sci. 2014, 15 18960 

 

 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Lönnerdal, B. Genetically modified plants for improved trace element nutrition. J. Nutr. 2003, 

133, 1490S–1493S. 

2. McGloughlin, M.N. Modifying agricultural crops for improved nutrition. New Biotechnol. 2010, 

30, 494–504. 

3. Dunwell, J.M. Transgenic cereals: Current status and future prospects. J. Cereal Sci. 2014, 59,  

419–434. 

4. Cellini, F.; Chesson, A.; Colquhoun, I.; Constable, A.; Davies, H.V.; Engel, K.H.; Gatehouse, A.M.; 

Kärenlampi, S.; Kok, E.J.; Leguay, J.J.; et al. Unintended effects and their detection in genetically 

modified crops. Food Chem. Toxicol. 2004, 42, 1089–1125. 

5. Ioset, J.R.; Urbaniak, B.; Ndjoko-Ioset, K.; Wirth, J.; Martin, F.; Gruissem, W.; Hostettmann, K.; 

Sautter, C. Flavonoid profiling among wild type and related GM wheat varieties. Plant Mol. Biol. 
2007, 65, 645–654. 

6. Shepherd, L.V.T.; McNicol, J.W.; Razzo, R.; Taylor, M.A.; Davies, H.V. Assessing the potential 

for unintended effects in genetically modified potatoes perturbed in metabolic and developmental 

processes. Targeted analysis of key nutrients and anti-nutrients. Transgenic Res. 2006, 15, 409–425. 

7. Millstone, E.; Brunner, E.; Mayer, S. Beyond “substantial equivalence”. Nature 1999, 401,  

525–526. 

8. EFSA. Guidance document of the Scientific Panel on Genetically Modified Organisms for the risk 

assessment of genetically modified plants and derived food and feed. EFSA J. 2006, 99, 1–100. 

9. Ad Hoc Technical Expert Group (AHTEG). Final report of the ad hoc technical expert group on 

risk assessment and risk management under the Cartagena protocol on biosafety. In Proceedings 

of the United Nations Environment Programme Convention for Biodiversity, Ljubljana, Slovenia,  

20–23 April 2010. Available online: https://www.cbd.int/doc/meetings/bs/bsrarm-02/official/ 

bsrarm-02-05-en.pdf (accessed on 15 October 2014). 

10. Chassy, B.M. Can –omics inform a food safety assessment? Regul. Toxicol. Pharmacol. 2010, 58, 

S62–S70. 

11. Valdés, A.; Simó, C.; Ibáñez, C.; García-Cañas, V. Foodomics strategies for the analysis of 

transgenic foods. TrAC Trends Anal. Chem. 2013, 52, 2–15. 

12. Schauer, N.; Fernie, A.R. Plant metabolomics: Towards biological function and mechanism.  

Trends Plant Sci. 2006, 11, 508–516. 

13. Hall, R.D. Plant metabolomics: From holistic hope, to hype, to hot topic. New Phytol. 2006, 169, 

453–468. 

14. Harrigan, G.G.; Martino-Catt, S.; Glenn, K.C. Metabolomics, metabolic diversity and genetic 

variation in crops. Metabolomics 2007, 3, 259–272. 



Int. J. Mol. Sci. 2014, 15 18961 

 

 

15. Dixon, R.A.; Gang, D.R.; Charlton, A.J.; Fiehn, O.; Kuiper, H.A.; Reynolds, T.L.; Tjeerdema, R.S.; 

Jeffery, E.H.; German, J.B.; Ridley, W.P.; et al. Applications of metabolomics in agriculture.  

J. Agric. Food Chem. 2006, 54, 8984–8994. 

16. Seger, C.; Sturm, S. Analytical aspects of plant metabolite profiling platforms: Current standings 

and future aims. J. Proteome Res. 2007, 6, 480–497. 

17. Hegeman, A.D. Plant metabolomics-meeting the analytical challenges of comprehensive 

metabolite analysis. Brief. Funct. Genomics 2010, 9, 139–148. 

18. Eisenreich, W.; Bacher, A. Advances of high-resolution NMR techniques in the structural and 

metabolic analysis of plant biochemistry. Phytochemistry 2007, 68, 2799–2815. 

19. Pan, Z.; Raftery, D. Comparing and combining NMR spectroscopy and mass spectrometry in 

metabolomics. Anal. Bioanal. Chem. 2007, 387, 525–527. 

20. García-Cañas, V.; Simó, C.; León, C.; Ibáñez, E.; Cifuentes, A. MS-based analytical 

methodologies to characterize genetically modified crops. Mass Spectrom. Rev. 2011, 30,  

396–416. 

21. Herrero, M.; Simó, C.; García-Cañas, V.; Ibáñez, E.; Cifuentes, A. Foodomics: MS-based 

strategies in modern food science and nutrition. Mass Spectrom. Rev. 2012, 31, 49–69. 

22. Ibáñez, C.; García-Cañas, V.; Valdés, A.; Simó, C. Novel MS-based approaches and applications 

in food metabolomics. TrAC Trends Anal. Chem. 2013, 52, 100–111. 

23. Takats, Z; Wiseman, J.M.; Cooks, R.G. Ambient mass spectrometry using desorption electrospray 

ionization (DESI): Instrumentation, mechanisms and applications in forensics, chemistry, and 

biology. J. Mass Spectrom. 2005, 40, 1261–1275. 

24. Hoekenga, O.A. Using metabolomics to estimate unintended effects in transgenic crop plants: 

Problems, promises, and opportunities. J. Biomol. Tech. 2008, 19, 159–166. 

25. Keymanesh, K.; Darvishi, M.H.; Sardari, S. Metabolome comparison of transgenic and non-transgenic 

rice by statistical analysis of FTIR and NMR spectra. Rice Sci. 2009, 16, 119–123. 

26. Zhou, J.; Ma, C.; Xu, H.; Yuan, K.; Lu, X.; Zhu, Z.; Wu, Y.; Xu, G. Metabolic profiling of 

transgenic rice with cryIAc and sck genes: An evaluation of unintended effects at metabolic level 

by using GC-FID and GC-MS. J. Chromatogr. B 2009, 877, 725–732. 

27. Shin, Y.M.; Park, H.J.; Yim, S.D.; Baek, N.I.; Lee, C.H.; An, G.; Woo, Y.M. Transgenic rice lines 

expressing maize C1 and R-S regulatory genes produce various flavonoids in the endosperm.  

Plant Biol. 2006, 4, 303–315. 

28. Takahashi, H.; Hayashi, M.; Goto, F.; Sato, S.; Soga, T.; Nishioka, T.; Tomita, M.;  

Kawai-Yamada, M.; Uchimiya, H. Evaluation of metabolic alteration in transgenic rice 

overexpressing dihydroflavonol-4-reductase. Ann. Bot. 2006, 98, 819–825. 

29. Jiao, Z.; Si, X.X.; Li, G.K.; Zhang, Z.M.; Xu, X.P. Unintended compositional changes in 

transgenic rice seeds (Oryza sativa L.) studied by spectral and chromatographic analysis coupled 

with chemometrics methods. J. Agric. Food Chem. 2010, 58, 1746–1754. 

30. Wu, J.; Yu, H.C.; Dai, H.F.; Mei, W.L.; Huang, X.; Zhu, S.F.; Peng, M. Metabolite profiles of 

rice cultivars containing bacterial blight-resistant genes are distinctive from susceptible rice.  

Acta Biochim. Biophys. Sin. 2012, 44, 650–659. 



Int. J. Mol. Sci. 2014, 15 18962 

 

 

31. Chang, Y.; Zhao, C.; Zhu, Z.; Wu, Z.; Zhou, J.; Zhao, Y.; Lu, X.; Xu, G. Metabolic profiling 

based on LC/MS to evaluate unintended effects of transgenic rice with cry1Ac and sck genes. 

Plant Mol. Biol. 2012, 78, 477–487. 

32. Nagai, Y.S.; Sakulsinghroj, C.; Edwards, G.E.; Satoh, H.; Greene, T.W.; Blakeslee, B.;  

Okita, T.W. Control of starch synthesis in cereals: Metabolite analysis of transgenic rice expressing 

an up-regulated cytoplasmic ADP-Glucose pyrophosphorylase in developing seeds. Cell Physiol. 
2009, 50, 635–643. 

33. Matsuda, F.; Ishihara, A.; Takanashi, K.; Morino, K.; Miyazawa, H.; Wakasa, K.; Miyagawa, H. 

Metabolic profiling analysis of genetically modified rice seedlings that overproduce tryptophan 

reveals the occurrence of its inter-tissue translocation. Plant Biotechnol. 2010, 27, 17–27. 

34. Kim, J.K.; Park, S.Y.; Lee, S.M.; Lim, S.-H.; Kim, H.J.; Oh, S.-D.; Yeo, Y.; Cho, H.S.; Ha, S.H. 

Unintended polar metabolite profiling of carotenoid-biofortified transgenic rice reveals substantial 

equivalence to its non-transgenic counterpart. Plant Biotechnol. Rep. 2013, 7, 121–128. 

35. Long, X.; Liu, Q.; Chan, M.; Wang, Q.; Sun, S.S. Metabolic engineering and profiling of rice with 

increased lysine. Plant Biotechnol. J. 2013, 11, 490–501. 

36. Manetti, C.; Bianchetti, C.; Bizzarri, M.; Casciani, L.; Castro, C.; D’Ascenzo, G.; Delfini, M.;  

di Cocco, M.E.; Lagana, A.; Miccheli, A.; et al. NMR-based metabonomic study of transgenic 

maize. Phytochemistry 2004, 65, 3187–3198. 

37. Manetti, C.; Bianchetti, C.; Casciani, L.; Castro, C.; di Cocco, M.E.; Miccheli, A.; Motto, M.; 

Conti, F. A metabonomic study of transgenic maize (Zea mays) seeds revealed variations in 

osmolytes and branched amino acids. J. Exp. Bot. 2006, 57, 2613–2625. 

38. Castro, C.; Manetti, C. A multiway approach to analyze metabonomic data: A study of maize 

seeds development. Anal. Biochem. 2007, 371, 194–200. 

39. Piccioni, F.; Capitani, D.; Zolla, L.; Mannina, L. NMR metabolic profiling of transgenic maize 

with the Cry1A(b) gene. J. Agric. Food Chem. 2009, 57, 6041–6049. 

40. Levandi, T.; Leon, C.; Kaljurand, M.; García-Cañas, V.; Cifuentes, A. Capillary electrophoresis 

time-of-flight mass spectrometry for comparative metabolomics of transgenic versus conventional 

maize. Anal. Chem. 2008, 80, 6329–6335. 

41. Leon, C.; Rodriguez-Meizoso, I.; Lucio, M.; Garcia-Cañas, V.; Ibañez, E.; Schmitt-Kopplin, P.; 

Cifuentes, A. Metabolomics of transgenic maize combining Fourier transform-ion cyclotron 

resonance-mass spectrometry, capillary electrophoresis-mass spectrometry and pressurized liquid 

extraction. J. Chromatogr. A 2009, 1216, 7314–7323. 

42. Bernal, J.L.; Nozal, M.J.; Toribio, L.; Diego, C.; Mayo, R.; Maestre, R. Use of supercritical fluid 

extraction and gas chromatography-mass spectrometry to obtain amino acid profiles from several 

genetically modified varieties of maize and soybean. J. Chromatogr. A 2008, 1192, 266–272. 

43. Jimenez, J.J.; Bernal, J.L.; Nozal, M.J.; Toribio, L.; Bernal, J. Profile and relative concentrations 

of fatty acids in corn and soybean seeds from transgenic and isogenic crops. J. Chromatogr. A  
2009, 1216, 7288–7295. 

44. Frank, T.; Röhlig, R.M.; Davies, H.V.; Barros, E.; Engel, K. Metabolite profiling of maize  

kernels—genetic modification versus environmental influence. J. Agric. Food Chem. 2012, 60,  

3005–3012. 



Int. J. Mol. Sci. 2014, 15 18963 

 

 

45. Rivera, S.M.; Vilaró, F.; Zhu, C.; Bai, C.; Farré, G.; Christou, P.; Canela-Garayoa, R.  

Fast quantitative method for the analysis of carotenoids in transgenic maize. J. Agric. Food Chem. 
2013, 61, 5279–5285. 

46. Barros, E.; Lezar, S.; Anttonen, M.J.; van Dijk, J.P.; Röhlig, R.M.; Kok, E.J.; Engel, K.H. 

Comparison of two GM maize varieties with a nearisogenic non-GM variety using transcriptomics, 

proteomics and metabolomics. Plant Biotechnol. J. 2010, 8, 436–451. 

47. García-Villalba, R.; León, C.; Dinelli, G.; Segura-Carretero, A.; Fernández-Gutiérrez, A.;  

Garcia-Cañas, V.; Cifuentes, A. Comparative metabolomic study of transgenic versus 

conventional soybean using capillary electrophoresis-time-of-flight mass spectrometry.  

J. Chromatogr. A 2008, 1195, 164–173. 

48. Inaba, Y.; Brotherton, J.E.; Ulanov, A.; Widholm, J.M. Expression of a feedback insensitive 

anthranilate synthase gene from tobacco increases free tryptophan in soybean plants. Plant Cell Rep. 
2007, 26, 1763–1771. 

49. Giuffrida, A.; León, C.; García-Cañas, V.; Cucinotta, V.; Cifuentes, A. Modified cyclodextrins for 

fast and sensitive chiral-capillary electrophoresis-mass spectrometry. Electrophoresis 2009, 30, 

1734–1742. 

50. Clarke, J.D.; Alexander, D.C.; Ward, D.P.; Ryals, J.A.; Mitchell, M.W.; Wulff, J.E.; Guo, L. 

Assessment of genetically modified soybean in relation to natural variation in the soybean seed 

metabolome. Sci. Rep. 2013, 3, doi:10.1038/srep03082. 

51. Kusano, M.; Baxter, I.; Fukushima, A.; Oikawa, A.; Okazaki, Y.; Nakabayashi, R.;  

Bouvrette, D.J.; Achard, F.; Jakubowski, A.R.; Ballam, J.M.; et al. Assessing metabolomic and 

chemical diversity of a soybean lineage representing 35 years of breeding. Metabolomics 2014, 

doi:10.1007/s11306-014-0702-6. 

52. Chen, F.; Duran, A.L.; Blount, J.W.; Sumner, L.W.; Dixon, R.A. Profiling phenolic metabolites in 

transgenic alfalfa modified in lignin biosynthesis. Phytochemistry 2003, 64, 1013–1021. 

53. Charlton, A.; Allnutt, T.; Holmes, S.; Chisholm, J.; Bean, S.; Ellis, N.; Mullineaux, P.;  

Oehlschlager, S. NMR profiling of transgenic peas. Plant Biotechnol. J. 2004, 2, 27–35. 

54. Baker, J.M.; Hawkins, N.D.; Ward, J.L.; Lovegrove, A.; Napier, J.A.; Shewry, P.R.; Beale, M.H. 

A metabolomic study of substantial equivalence of field-grown genetically modified wheat.  

Plant Biotechnol. J. 2006, 4, 381–392. 

55. Roessner, U.; Wagner, C.; Kopka, J.; Trethewney, R.N.; Willmitzer, L. Simultaneous analysis of 

metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J. 2000, 23,  

131–142. 

56. Roessner, U.; Willmitzer, L.; Fernie, A.R. High-Resolution metabolic phenotyping of genetically 

and environmentally diverse potato tuber systems. Identification of phenocopies. Plant Physiol. 
2001, 127, 749–764. 

57. Roessner, U.; Luedemann, A.; Brust, D.; Fiehn, O.; Linke, T.; Willmitzer, L.; Fernie, A.R. 

Metabolic profiling allows comprehensive phenotyping of genetically or environmentally 

modified plant systems. Plant Cell 2001, 13, 11–29. 

  



Int. J. Mol. Sci. 2014, 15 18964 

 

 

58. Catchpole, G.S.; Beckmann, M.; Enot, D.P.; Mondhe, M.; Zywicki, B.; Taylor, J.; Hardy, N.;  

Smith, A.; King, R.D.; Kell, D.B.; et al. Hierarchical metabolomics demonstrates substantial 

compositional similarity between genetically modified and conventional potato crops. Proc. Natl. 
Acad. Sci. USA 2005, 102, 14458–14462. 

59. Bianco, G.; Schmitt-Kopplin, P.; Crescenzi, A.; Comes, S.; Kettrup, A.; Cataldi, T.R. Evaluation 

of glycoalkaloids in tubers of genetically modified virus Y-resistant potato plants (var. Désirée) 

by non-aqueous capillary electrophoresis coupled with electrospray ionization mass spectrometry 

(NACE-ESI-MS). Anal. Bioanal. Chem. 2003, 375, 799–804. 

60. Iwaki, T.; Guo, L.; Ryals, J.A.; Yasuda, S.; Shimazaki, T.; Kikuchi, A.; Watanabe, K.N.;  

Kasuga, M.; Yamaguchi-Shinozaki, K.; Ogawa, T.; et al. Metabolic profiling of transgenic potato 

tubers expressing Arabidopsis dehydration response element-binding protein 1A (DREB1A).  

J. Agric. Food Chem. 2013, 61, 893–900. 

61. Defernez, M.; Gunning, Y.M.; Parr, A.J.; Shepherd, L.V.; Davies, H.V.; Colquhoun, I.J.  

NMR and HPLC-UV profiling of potatoes with genetic modifications to metabolic pathways.  
J. Agric. Food Chem. 2004, 52, 6075–6085. 

62. Kondrák, M.; Marincs, F.; Antal, F.; Juhász, Z.; Bánfalvi, Z. Effects of yeast trehalose-6-phosphate 

synthase 1 on gene expression and carbohydrate contents of potato leaves under drought stress 

conditions. BMC Plant Biol. 2012, 12, doi:10.1186/1471-2229-12-74. 

63. Noteborn, H.P.; Lommen, A.; van der Jagt, R.C.; Weseman, J.M. Chemical fingerprinting for the 

evaluation of unintended secondary metabolic changes in transgenic food crops. J. Biotechnol. 
2000, 77, 103–114. 

64. Roessner-Tunali, U.; Hegemann, B.; Lytovchenko, A.; Carrari, F.; Bruedigam, C.; Granot, D.; 

Fernie, A.R. Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals 

that the influence of hexose phosphorylation diminishes during fruit development. Plant Physiol.  
2003, 133, 84–99. 

65. Le Gall, G.; Colquhoun, I.J.; Davis, A.L.; Collins, G.J.; Verhoeyen, M.E. Metabolite profiling of 

tomato (Lycopersicon esculentum) using 1H NMR spectroscopy as a tool to detect potential 

unintended effects following a genetic modification. J. Agric. Food Chem. 2003, 51, 2447–2456. 

66. Le Gall, G.; DuPont, M.S.; Mellon, F.A.; Davis, A.L.; Collins, G.J.; Verhoeyen, M.E.; Colquhoun, I.J. 

Characterization and content of flavonoid glycosides in genetically modified tomato 

(Lycopersicon esculentum) fruits. J. Agric. Food Chem. 2003, 51, 2438–2446. 

67. Long, M.; Millar, D.J.; Kimura, Y.; Donovan, G.; Rees, J.; Fraser, P.D.; Bramley, P.M.;  

Bolwell, G.P. Metabolite profiling of carotenoid and phenolic pathways in mutant and transgenic 

lines of tomato: Identification of a high antioxidant fruit line. Phytochemistry 2006, 67,  

1750–1757. 

68. Nicoletti, I.; de Rossi, A.; Giovinazzo, G.; Corradini, D. Identification and quantification of 

stilbenes in fruits of transgenic tomato plants (Lycopersicon esculentum Mill.) by reversed phase 

HPLC with photodiode array and mass spectrometry detection. J. Agric. Food Chem. 2007, 55, 

3304–3311. 

  



Int. J. Mol. Sci. 2014, 15 18965 

 

 

69. Kusano, M.; Redestig, H.; Hirai, T.; Oikawa, A.; Matsuda, F.; Fukushima, A.; Arita, M.;  

Watanabe, S.; Yano, M.; Hiwasa-Tanase, K.; et al. Covering chemical diversity of  

genetically-modified tomatoes using metabolomics for objective substantial equivalence 

assessment. PLoS One 2011, 16, e16989. 

70. Choi, H.K.; Choi, Y.H.; Verberne, M.; Lefeber, A.W.; Erkelens, C.; Verpoorte, R.  

Metabolic fingerprinting of wild type and transgenic tobacco plants by 1H NMR and  

multivariate analysis technique. Phytochemistry 2004, 65, 857–864. 

71. Sobolev, A.P.; Segre, A.L.; Giannino, D.; Mariotti, D.; Nicolodi, C.; Brosio, E.; Amato, M.E. 

Strong increase of foliar inulin occurs in transgenic lettuce plants (Lactuca sativa L.) 

overexpressing the Asparagine Synthetase A gene from Escherichia coli. J. Agric. Food Chem.  
2007, 55, 10827–10831. 

72. Sobolev, A.P.; Capitani, D.; Giannino, D.; Nicolodi, C.; Testone, G.; Santoro, F.; Frugis, G.; 

Iannelli, M.A.; Mattoo, A.K.; Brosio, E.; et al. NMR-metabolic methodology in the study of GM 

foods. Nutrients 2010, 2, 1–15. 

73. Sobolev, A.P.; Testone, G.; Santoro, F.; Nicolodi, C.; Iannelli, M.A.; Amato, M.E.; Ianniello, A.; 

Brosio, E.; Giannino, D.; Mannina, L. Quality traits of conventional and transgenic lettuce  

(Lactuca sativa L.) at harvesting by NMR metabolic profiling. J. Agric. Food Chem. 2010, 58, 

6928–6936. 

74. Tagashira, N.; Plader, W.; Filipecki, M.; Yin, Z.; Wiśniewska, A.; Gaj, P.; Szwacka, M.;  

Fiehn, O.; Hoshi, Y.; Kondo, K.; et al. The metabolic profiles of transgenic cucumber lines vary 

with different chromosomal locations of the transgene. Cell Mol. Biol. Lett. 2005, 10, 697–710. 

75. Zawirska-Wojtasiak, R.; Gośliński, M.; Szwacka, M.; Gajc-Wolska, J.; Mildner-Szkudlarz, S. 

Aroma evaluation of transgenic, thaumatin II-producing cucumber fruits. J. Food Sci. 2009, 74, 

C204–C210. 

76. Malowicki, S.M.M.; Martin, R.; Qian, M.C. Comparison of sugar, acids, and volatile composition 

in raspberry bushy dwarf virus-resistant transgenic raspberries and the wild type “meeker”  

(Rubus Idaeus L.). J. Agric. Food Chem. 2008, 56, 6648–6655. 

77. Tesniere, C.; Torregrosa, L.; Pradal, M.; Souquet, J.M.; Gilles, C.; Dos Santos, K.; Chatelet, P.; 

Gunata, Z. Effects of genetic manipulation of alcohol dehydrogenase levels on the response to 

stress and the synthesis of secondary metabolites in grapevine leaves. J. Exp. Bot. 2006, 57,  

91–99. 

78. Lange, B.M.; Mahmoud, S.S.; Wildung, M.R.; Turner, G.W.; Davis, E.M.; Lange, I; Baker, R.C.; 

Boydston, R.A.; Croteau, R.B. Improving peppermint essential oil yield and composition by 

metabolic engineering. Proc. Natl. Acad. Sci. USA 2011, 108, 16944–16949. 

79. Kim, J.K.; Ryu, T.H.; Sohn, S.I.; Kim, J.H.; Chu, S.M.; Yu, C.Y.; Baek, H.J. Metabolic 

fingerprinting study on the substantial equivalence of Genetically Modified (GM) Chinese 

cabbage to non-gm cabbage. J. Korean Soc. Appl. Biol. 2009, 52, 186–192. 

80. Tripathi, S.; Suzuki, J.Y.; Carr, J.B.; McQuate, G.T.; Ferreira, S.A.; Manshardt, R.M.; Pitz, K.Y.; 

Wall, M.M.; Gonsalves, D. Nutritional composition of Rainbow papaya, the first commercialized 

transgenic fruit crop. J. Food Compos. Anal. 2011, 24, 140–147. 

81. Jiao, Z.; Deng, J.C.; Li, G.K.; Zhang, Z.M.; Cai, Z.W. Study on the compositional differences 

between transgenic and non-transgenic papaya. J. Food Compos. Anal. 2010, 23, 640–647. 



Int. J. Mol. Sci. 2014, 15 18966 

 

 

82. Srivastava, V.; Obudulu, O.; Bygdell, J.; Löfstedt, T.; Rydén, P.; Nilsson, R.; Ahnlund, M.; 

Johansson, A.; Jonsson, P.; Freyhult, E.; et al. OnPLS integration of transcriptomic, proteomic 

and metabolomic data shows multi-level oxidative stress responses in the cambium of transgenic 

hipI- superoxide dismutase Populus plants. BMC Genomics 2013, 14, doi:10.1186/1471-2164-14-893. 

83. Kogel, K.H.; Voll, L.M.; Schäfer, P.; Jansen, C.; Wu, Y.; Langen, G.; Imani, J.; Hofmann, J.; 

Schmiedl, A.; Sonnewald, S.; et al. Transcriptome and metabolome profiling of field-grown 

transgenic barley lack induced differences but show cultivar-specific variances. Proc. Natl. Acad. 
Sci. USA 2010, 107, 6198–6203. 

84. Cantrell, R.P.; Reeves, T.G. The rice genome. The cereal of the world’s poor takes center stage. 

Science 2002, 296, doi:10.1126/science.1070721. 

85. Goff, S.A.; Ricke, D.; Lan, T.H.; Presting, G.; Wang, R.; Dunn, M.; Glazebrook, J.; Sessions, A.; 

Oeller, P.; Varma, H.; et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). 

Science 2002, 296, 92–100. 

86. Oikawa, A.; Matsuda, F.; Kusano, M.; Okazaki, Y.; Saito, K. Rice metabolomics. Rice 2008, 1,  

63–71. 

87. Choudhary, V.K.; Suresh-Kumar, P. Maize production, economics and soil productivity under 

different organic source of nutrients in eastern himalayan region, India. Int. J. Plant Prod. 2013, 

7, 167–186. 

88. Skogerson, K.; Harrigan, G.G.; Reynolds, T.L.; Halls, S.C.; Ruebelt, M.; Iandolino, A.;  

Pandravada, A.; Glenn, K.C.; Fiehn, O. Impact of genetics and environment on the metabolite 

composition of maize grain. J. Agric. Food Chem. 2010, 58, 3600–3610. 

89. Asiago, V.M.; Hazebroek, J.; Harp, T.; Zhong, C. Effects of genetics and environment on the 

metabolome of commercial maize hybrids: A multisite study. J. Agric. Food Chem. 2012, 60, 

11498–11508. 

90. Baniasadi, H.; Vlahakis, C.; Hazebroek, J.; Zhong, C.; Asiago, V. Effect of environment and 

genotype on commercial maize hybrids using LC/MS-based metabolomics. J. Agric. Food Chem. 

2014, 62, 1412–1422. 

91. Duvernaya, W.H.; Chinna, M.S.; Yencho, G.C. Hydrolysis and fermentation of sweetpotatoes for 

production of fermentable sugars and ethanol. Ind. Crop Prod. 2013, 42, 527–537. 

92. Urbanczyk-Wochniak, E.; Baxter, C.; Kolbe, A.; Kopka, J.; Sweetlove, L.J.; Fernie, A.R.  

Profiling of diurnal patterns of metabolite and transcript abundance in potato (Solanum tuberosum) 

leaves. Planta 2005, 221, 891–903. 

93. García-Cañas, V.; Simó, C.; Herrero, M.; Ibáñez, E.; Cifuentes, A. Present and future challenges 

in food analysis: Foodomics. Anal. Chem. 2012, 84, 10150–10159. 

94. Fukushima, A.; Saito, K. Development of the Arabidopsis metabolome database. Plant Physiol. 
2014, doi:10.1104/pp.114.240986. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


