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Abstract: We present a new tool for hepatocarcinogenicity evaluation of drug candidates
in rodents. ToxDBScan is a web tool offering quick and easy similarity screening of
new drug candidates against two large-scale public databases, which contain expression
profiles for substances with known carcinogenic profiles: TG-GATEs and DrugMatrix.
ToxDBScan uses a set similarity score that computes the putative similarity based on similar
expression of genes to identify chemicals with similar genotoxic and hepatocarcinogenic
potential. We propose using a discretized representation of expression profiles, which use
only information on up- or down-regulation of genes as relevant features. Therefore, only the
deregulated genes are required as input. ToxDBScan provides an extensive report on similar
compounds, which includes additional information on compounds, differential genes and
pathway enrichments. We evaluated ToxDBScan with expression data from 15 chemicals
with known hepatocarcinogenic potential and observed a sensitivity of 88%. Based on
the identified chemicals, we achieved perfect classification of the independent test set.
ToxDBScan is publicly available from the ZBIT Bioinformatics Toolbox.
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1. Introduction

Developing new drugs is a very cost-intensive process. Estimates of the overall cost for developing
Food and Drug Administration (FDA) approved drugs range from $160 million to $1.8 billion for one
drug, based on success rates of only 12% to 23% for drugs entering the clinical phase [1]. Low success
rates in combination with high requirements for approval by the FDA or similar agencies lead to the
immense costs per approved drug. Depending on the estimate, between 40 and 65 percent of the total cost
is spent during the preclinical phase [1]. Animal studies are required prior to approval for clinical studies.
These animal studies are expensive, both in terms of required resources (i.e., animals, researchers,
chemicals), as well as time. While clinical trials are generally more expensive than preclinical trials,
the success rate is much lower for preclinical trials. Therefore, a larger number of preclinical trials is
required per approved drug, which leads to high costs accumulating in the preclinical phase.

Drug candidates with genotoxic effects are identified early in the preclinical phase with genotoxicity
assays, e.g., the Ames test [2]. However, carcinogenic effects can also arise irrespective of genotoxic
events, e.g., by inhibition of apoptosis or initiation of proliferation [3]. Currently, no approved short-term
assays are available for non-genotoxic carcinogenicity. The current gold standard in the preclinical
assessment of non-genotoxic carcinogenicity is the two-year rodent assay [4]. During this assay, a group
of rodents, typically rat or mice, is treated with the drug candidate in a multitude of the estimated
human dosagaes (see ICH Safety Guidelines S1A-S1C and OECD Test Guideline 451). The treated
group is compared with a non-treated control group to identify a potential increase in cancer incidents,
e.g., by histopathology. This process is not only cost-intensive, but can lead to the late discovery of the
carcinogenic effects of the drug candidate. These failures late in the preclinical phase contribute to the
low success rate and are particularly expensive [5].

The field of toxicogenomics uses computational biology approaches to investigate toxicological
questions, such as carcinogenicity prediction for drug candidates. This includes in silico approaches,
e.g., quantitative structure-activity relationship (QSAR) models [6], as well as approaches that combine
high-throughput methods, such as microarrays or next-generation sequencing with computational
analysis [7]. The combination of short-term rodent assays with machine learning has been shown to
be able to predict the outcome of the two-year rodent assay [7]. This toxicogenomics approach uses
microarray data obtained from the treated and control animals after one, two or four weeks, or even a
longer duration of treatment with the drug candidate.

The problems of these studies are the small sample size, due to budget or time restrictions, and
the large diversity of potential modes of action (MOAs) observed for non-genotoxic carcinogens.
Whereas DNA damage response and p53 signaling can be observed for most genotoxic carcinogens,
non-genotoxic carcinogens act through several distinct mechanisms, e.g., chronic cell injury,
immunosuppression, increased secretion of trophic hormones or altering receptor activity [3]. During
the last decade, the problem posed by non-genotoxic carcinogens led to the development of two large
databases that are publicly available: Open TG-GATEs [8] and DrugMatrix [9]. These databases allow a
more comprehensive analysis of MOAs of non-genotoxic carcinogens. To our knowledge, no tool exists
that allows the analysis of both databases. Most studies that investigated toxicogenomics approaches
focused on established machine learning methods that are applied to expression profiles obtained from
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specific microarrays [7]. Therefore, it is difficult to construct prediction systems for new expression
profiles that were obtained by different researchers under different conditions.

In this paper, we present ToxDBScan, which is an easy interface for the information included in
these databases. ToxDBScan enables researchers to quickly identify compounds that show similar
perturbations on the gene expression level in the liver of male rats. Compatibility across available
microarray platforms is provided through the abstraction of array-specific probe set identifiers to
gene symbols. In addition, ToxDBScan performs pathway enrichment analyses against the KEGG
database [10]. The ToxDBScan web application is freely available from the ZBIT Bioinformatics
Toolbox [11]. Because only the up- and down-regulated genes are required as input for the web
application, no confidential data needs to be uploaded in order to perform analyses. This allows a quick
and easy identification of potentially similar compounds for further mechanistic analysis, assessment of
their hepatocarcinogenic potential or mode of action discovery.

2. Results and Discussion

2.1. Gene Fingerprint Extraction

Gene fingerprints were extracted for each condition based on the intensity ratio (treated to control
animals) with two thresholds: 1.5-fold and two-fold deregulation. Figure 1 shows the distribution of
gene fingerprint sizes. At least one deregulated gene was identified for each threshold in all conditions.

Figure 1. Gene fingerprint sizes for different intensity ratio thresholds. (a) Low threshold,
1.5-fold deregulation; (b) high threshold, two-fold deregulation.
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For the less conservative 1.5-fold deregulation threshold, the gene fingerprint size ranges from
23 to 6525 genes, with a median size of 131 genes. Gene fingerprint sizes were smaller for conditions
from TG-GATEs, with a median size of 111 genes, compared to a median size of 603 genes for
DrugMatrix conditions. For the stricter two-fold deregulation threshold, gene fingerprint sizes range
from 5 to 3224 genes, with a median size of 32 genes. Again, gene fingerprint sizes were smaller for
TG-GATEs conditions, with a median size of 27 genes, compared to a median size of 152 genes for
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conditions from DrugMatrix. This difference may be a result of the higher dose levels administered in
DrugMatrix experiments.

2.2. Identification of Similar Conditions

For each chemical in the evaluation dataset (see Table 1), we used our similarity score to
extract the most similar conditions from the combined TG-GATEs and DrugMatrix databases.
The extracted conditions were compared to the evaluation chemicals based on genotoxicity and
carcinogenicity information.

Table 1. Chemicals used for evaluation. Male Wistar rats were treated with the chemicals
each day for up to 14 days. For each chemical, the Chemical Abstracts Service (CAS)
registry number, dosing time and dose is listed, as well as the short name that is used in
the tables and figures. The last column lists the databases that contain the test compound
(DM = DrugMatrix, TGG = TG-GATEs). Adapted from Römer et al. [12].

Compound Short Name CAS Number Dosing Time (day) Dose (mg/kg/day) Contained in

Genotoxic carcinogens (GCs)

Direct Black 38 CIDB 1937-37-7 7 146 -
Nitrosodimethylamine DMN 62-75-9 7 4 DM

Non-genotoxic carcinogens (NGCs)

Piperonyl butoxide PBO 51-03-6 3 1200 -
Methyl carbamate MCA 598-55-0 14 400 -
Dehydroepiandrosterone DHEA 53-43-0 14 600 -
Methapyrilene MP 135-23-9 14 60 TGG, DM
Thioacetamide TAA 62-55-5 7 19.2 TGG, DM
Diethylstilbestrol DES 56-53-1 3 10 DM
Wy-14643 WY 50892-23-4 3 60 TGG, DM
Acetamide AAA 60-35-5 14 3000 TGG
Ethionine ET 67-21-0 14 200 TGG
Cyproterone acetate CPR 427-51-0 14 100 DM
Phenobarbital PB 50-06-6 14 80 TGG, DM

Non-hepatocarcinogens (NCs)

Cefuroxime CFX 55268-75-2 14 250 -
Nifedipine NIF 21829-25-4 14 3 TGG

Ten of the 15 chemicals in the evaluation set are contained in either TG-GATEs, DrugMatrix or
both. These 10 substances included eight non-genotoxic carcinogens (NGCs), one non-hepatocarcinogen
(NC) (nifedipine, NIF) and one GC (nitrosodimethylamine, DMN). For five of these eight NGCs
(acetamide (AAA), ethionine (ET), methapyrilene (MP), phenobarbital (PB) and thioacetamide (TAA))
an experiment with the same substance was returned as the best hit (see Figure S1). The remaining three
NGCs (cyproterone acetate (CPA), diethylstilbestrol (DES) and Wy-14643 (WY)) were placed second in
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the returned list of similar experiments, due to the existence of related NGCs for which higher similarity
scores were observed (see Figure S1).

The identification of similar NGCs also allows a mode of action analysis. For instance, WY was
found to be most similar to the chemicals, fenofibrate, clofibric acid and clofibrate (see Figure 2a).
These are known to activate peroxisome proliferator-activated receptor alpha (PPARa) [13], suggesting a
PPARa-related mode of action for WY (as shown by Peraza et al. [13]). Fenofibrate, clofibric acid, WY
and clofibrate are also among the most similar chemicals for DHEA (see Figure 2b). This may indicate
a PPARa-related mode of action for DHEA, as has previously been shown by Mastrocola et al. [14].

For PBO, several NGCs were identified as the most similar chemicals: omeprazole,
hexachlorobenzene, carbamazepine and spironolactone (see Figure 2c). Three of these chemicals,
omeprazole, hexachlorobenzene and carbamazepine, are classified as enzyme inducers [15,16],
suggesting an enzyme-inducing mode of action for PBO, as demonstrated by Goldstein et al. [17].
Similar results are obtained for other enzyme inducers in the test set, e.g., cyproterone acetate (CPR)
and PB. Omeprazole, spironolactone and carbamazepine are found among the most similar compounds
for CPR, suggesting enzyme induction as the major MOA, as Schulte-Hermann et al. demonstrated [18].
Carbamazepine and hexachlorobenzene are among the most similar compounds for PB, which again
suggests enzyme induction as an MOA, as has been shown by Waxman et al. [19]. Sulfasalazine, which
is classified as an enzyme-inducing NGC by Uehara et al. [16], is also among the compounds most
similar to PB, but has no associated positive test for hepatocarcinogenicity in CPDB and is therefore
considered an NC.

The NGCs, TAA, MP and ET, are considered hepatotoxic oxidative stressors by Uehara et al. [16].
For TAA, the most similar compound is MP, but with a low similarity compared to the TAA experiments
contained in TG-GATEs. Among the compounds most similar to MP are carbon tetrachloride and TAA,
which supports the hepatotoxic MOA, but also the PPARa-activator, gemfibrozil, and the genotoxic
compound, hydrazine. For ET, the most similar compounds include TAA and MP, as well as carbon
tetrachloride, which is also a hepatotoxic oxidative stressor [16].

The genotoxic compound DMN was not recalled, which may also be due to the different dosage
and duration of treatment (10 mg/kg/day for five days in DrugMatrix vs. 4 mg/kg/day for seven days in
the evaluation dataset). However, nitrosodiethylamine, which is very similar to DMN chemically, was
identified as the most similar compound for DMN, along with other GCs. For the second genotoxic
chemical, C.I Direct Black (CIDB), the five most similar compounds identified in the databases are all
GCs; the highest scoring is acetamidofluorene (see Figure 2d).

This evaluation shows that our similarity score allows the identification of similar compounds to
provide leads for mechanistic analysis, carcinogenicity evaluation and mode of action detection.
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Figure 2. Gene expression heat maps of similar compounds. For selected test chemicals,
we extracted the most similar chemicals included in either TG-GATEs or DrugMatrix. Each
column corresponds to a chemical that was identified as similar. The chemicals are sorted
from left to right by descending similarity score. The heat maps show the log2 fold change of
20 selected genes from the gene fingerprints of the test chemical. Genes above the black line
are upregulated at least 1.5-fold in the test chemical, and genes below are downregulated,
respectively. Genes were selected based on average expression in the identified chemicals.
The color bar above the chemical name indicates the hepatocarcinogenicity annotation, and
the legend is shown in (a). (a) Wy-14643 (NGC); (b) dehydroepiandrosterone (NGC);
(c) piperonyl butoxide (NGC); (d) C.I Direct Black (GC).
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2.3. Threshold Selection

In order to select an appropriate similarity threshold for the compound fingerprints, we determined
for each chemical how many conditions with an equal toxicological class are among the five, 10 and 20
nearest neighbors, i.e., most similar conditions (see Table 2). The less conservative threshold of 1.5-fold
deregulation performs slightly better than the stricter threshold. On average, 4.3 out of the five, 8.0 out
of the 10 and 14.4 out of the 20 most similar were treated with a chemical of the same carcinogenicity
class. For each chemical in the test set, relative similarity scores S̃ were computed by dividing the
observed similarity score for a certain condition by the maximum similarity score. The percentage
of conditions annotated with the same carcinogenicity class in the subset of conditions with a relative
similarity score higher than 0.8 and 0.7 was computed (see Table 3). Again, a slightly better performance
was observed for the less conservative fold change cutoff. On average, 88% of the identified conditions
with a S̃ > 0.8 were of the same class as the evaluation chemical, while only 80% conditions with
matching classes were found for S̃ > 0.7. Our evaluation with expression profiles from an independent
dataset show that our similarity score allows robust identification of compounds with similar genotoxic
and hepatocarcinogenic potential. The identification is possible for chemicals that are already in one or
both databases, as well as for compounds that are not included in any of the two databases.

Table 2. Percentage of correctly identified conditions. The most similar conditions were
extracted for each chemical in the evaluation set. The percentage of conditions with the
same carcinogenicity class in the five, 10 and 20 most similar conditions was calculated.

Chemical
1.5-Fold Deregulation 2-Fold Deregulation

Best 5 Best 10 Best 20 Best 5 Best 10 Best 20

Genotoxic carcinogens

CIDB 100 100 95 100 90 90
DMN 80 70 50 100 80 75

Non-genotoxic carcinogens

PBO 100 80 65 80 70 75
MCA 60 60 45 80 60 50
DHEA 100 90 85 100 90 80
MP 80 70 70 80 50 40
TAA 100 80 65 100 70 60
DES 100 100 100 100 100 100
WY 100 90 90 100 100 95
AAA 60 50 35 80 60 50
ET 100 100 100 100 100 85
CPR 80 80 65 60 60 60
PB 80 60 45 20 20 25

Non-hepatocarcinogens

CFX 100 90 85 60 70 85
NIF 60 80 70 60 70 70

Mean 86 80 71 82 73 70
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Table 3. Percentage of correctly identified conditions. The most similar conditions were
extracted for each chemical in the evaluation set. The percentage of conditions with the
same carcinogenicity class and a relative similarity above 0.8 and 0.7 was calculated.

Chemical
1.5-Fold Deregulation 2-Fold Deregulation
S̃ ≥ 0.8 S̃ ≥ 0.7 S̃ ≥ 0.8 S̃ ≥ 0.7

Genotoxic carcinogens

CIDB 100 100 100 100
DMN 70 48 78 71

Non-genotoxic carcinogens

PBO 77 66 73 76
MCA 100 100 100 100
DHEA 88 89 100 80
MP 100 100 100 100
TAA 100 100 100 67
DES 100 100 100 100
WY 100 91 100 94
AAA 60 42 67 55
ET 100 100 100 100
CPR 71 57 50 60
PB 100 60 0 20

Non-hepatocarcinogens

CFX 100 88 33 50
NIF 50 67 100 100

Mean 88 80 80 78

Across all evaluations, the 1.5-fold deregulation threshold led to better results for the similarity
search. This may be due to the larger number of genes available for the similarity scoring of the
evaluation compounds (median fingerprint size: 269 genes). The smaller fingerprint sizes observed
for the higher threshold (see Figure 1) may contain too few specific genes, which are only slightly
deregulated. Particularly, for NGCs and NCs, the number of deregulated genes is very small when using
the two-fold deregulation threshold, with a median fingerprint size of 53 genes. Based on the above
evaluations, we propose using the 1.5-fold deregulation threshold and consider conditions with a relative
similarity score S̃ > 0.8 as likely to share the same class.

2.4. Hepatocarcinogenicity Prediction

Above, we proposed using an intensity ratio threshold of 1.5-fold deregulation for gene fingerprint
extraction and a relative fingerprint similarity of more than 0.8 to identify similar compounds. To assess
the viability of these thresholds, we performed a classification of an independent test set. For each
chemical, we extracted gene fingerprints using a 1.5-fold deregulation threshold. These were compared
to the database using our similarity score. Conditions with a relative similarity score S̃ ≥ 0.8 were
considered as similar, whereas conditions with S̃ < 0.8 were considered different. To assign the
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carcinogenicity class, we performed an over-representation test for GC and NGC, respectively. We
calculated the ratio of GCs (RGC) and NGCs (RNGC) in the similar conditions. For each chemical,
a random permutation test was performed to assess the significance of the observed GC and NGC
percentages. Each permutation test used a gene fingerprint of the same size as the test compound
containing genes randomly drawn from the genes available in the database. We performed n = 100, 000

repetitions with different randomly drawn gene fingerprints to estimate the distribution of the RGC and
RNGC. The p-value of the over-representation test for GCs was computed as pGC = N

n
, where N is

the number of random gene fingerprints that contained a higher ratio of GCs. Analogously, pNGC was
computed. Each test chemical was classified as a GC, if pGC < 0.05, or as a NGC, if pNGC < 0.05, or as
an NC, if pGC > 0.05 and pNGC > 0.05. The results of the over-representation test are shown in Table 4.
The correct class was predicted for all 15 chemicals in the evaluation set.

Table 4. Classification results. Similar conditions in TG-GATEs and DrugMatrix were
identified by computing the similarity score S and selecting conditions with a relative
similarity S̃ > 0.8. Ratios of genotoxic carcinogens (RGC) and non-genotoxic carcinogens
(RNGC) were computed based on the annotation of the similar conditions. A permutation
test (n = 100, 000) was performed to assess the significance of over-representation of GCs
(pGC) and NGCs (pNGC). If the p-values were significant for α = 0.05, the corresponding
class was predicted. If no significant enrichment was found for either of the two classes, the
test chemical was predicted as non-hepatocarcinogen (NC). Significant p-values are printed
in bold font.

Chemical RGC pGC RNGC pNGC Prediction

Genotoxic carcinogens

CIDB 1.00 0.001 0.00 1.000 GC
DMN 0.70 0.008 0.20 0.615 GC

Non-genotoxic carcinogens

MP 0.00 1.000 1.00 0.007 NGC
TAA 0.00 1.000 1.00 0.012 NGC
DES 0.00 1.000 1.00 <0.001 NGC
WY 0.00 1.000 1.00 <0.001 NGC
PBO 0.00 1.000 0.77 0.002 NGC
MCA 0.00 1.000 1.00 0.017 NGC
AAA 0.00 1.000 0.60 0.048 NGC
DHEA 0.00 1.000 0.88 <0.001 NGC
ET 0.00 1.000 1.00 <0.001 NGC
CPR 0.00 1.000 0.71 0.018 NGC
PB 0.00 1.000 1.00 0.019 NGC

Non-hepatocarcinogens

CFX 0.00 1.000 0.00 1.000 NC
NIF 0.25 0.132 0.25 0.399 NC
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2.5. Web Application

ToxDBScan is available as a web application from the ZBIT Bioinformatics Toolbox [11]. The ZBIT
Bioinformatics Toolbox runs on a Galaxy Project web server [20–22], which provides a user-friendly and
sustainable platform for tools used in scientific research. No local installation is required for running
the application. ToxDBScan generates an HTML report, which is shown directly inside the ZBIT
Bioinformatics Toolbox. This report includes the results of the database scan for similar compounds,
enriched KEGG pathways, as well as information on the NGC-specificity and information content of
the deregulated genes (see Figure 3). This information can be used for a mechanistic analysis of the
hepatocarcinogenic potential or mode of action detection. The gene fingerprint of the query compound
can be compared to the gene expression profiles observed under the most similar conditions by means of
a heat map.

Figure 3. HTML report of the compound similarity scan for PBO. This figure shows the
results of the similarity search against TG-GATEs and DrugMatrix. Additional information
for each compound can be shown by clicking on the “plus” in the first column of the table.
Additional information on the deregulated genes is available from the “Gene analysis” tab
at the head of the report. The results of the pathway enrichment analysis against the KEGG
database are available from the “Pathway analysis” tab. The “Heat maps” tab shows heat
maps of the gene expression in the most similar compounds.

Additional information on the database compounds (e.g., CAS number and structure) and KEGG
pathways is provided. All reports can be downloaded for further analyses in either tabular format or as a
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PDF. ToxDBScan requires only the deregulated genes observed in an experiment, which can be provided
as either official rat gene symbols (as provided by the Rat Genome Database [23]), Entrez IDs [24],
Ensembl IDs [25] or UniProt IDs [26]. Therefore, no confidential data needs to be uploaded, such as the
chemical structure, name or experimental details.

2.6. Discussion

We have developed a novel approach for similarity scoring of gene expression profiles and applied
it to data from TG-GATEs and DrugMatrix, two large-scale toxicogenomics databases. We evaluated
our similarity score with an independent evaluation set of gene expression profiles from experiments not
included in TG-GATEs and DrugMatrix. The results indicate that our similarity score is able to robustly
identify hepatocarcinogenic compounds with similar modes of action. Furthermore, we demonstrated
that an accurate prediction of the carcinogenicity class of the evaluation chemicals was possible. All
15 compounds in the evaluation dataset were assigned to the correct class. The similarity score can
be used through a web application to identify compounds with a potentially similar mode of action
in TG-GATEs and DrugMatrix. The web application, ToxDBScan, is freely available from the ZBIT
Bioinformatics Toolbox [11].

The evaluation dataset included 15 chemicals belonging into three carcinogenicity classes: NGCs,
GCs and NCs. In our evaluation dataset, three major mechanisms are represented: oxidative stress-mediated
hepatotoxicity (TAA, MP, ET), PPARa-induction (WY, DHEA) and enzyme induction (PB, PBO,
CPR) [13,14,16–18]. Our similarity score robustly identified compounds in TG-GATEs and DrugMatrix
that act through the same modes of action as these NGCs. Furthermore, GCs in the databases were
identified as most similar to the genotoxic evaluation chemicals (CIDB, DMN). This indicates that our
similarity score is a useful tool for the identification of compounds in TG-GATEs and DrugMatrix that
act through similar mechanisms, thus providing leads for further analysis of the mode of action.

To assess if our similarity score can be used for the identification of the hepatocarcinogenicity of new
drug candidates, we evaluated different intensity-ratio cutoffs and relative similarity thresholds. The
best results were obtained with a 1.5-fold deregulation threshold for genes and a 0.8 relative similarity
threshold. With these parameters, we observed that 88% of the compounds that were identified as similar
have equal hepatocarcinogenic potential. Using these optimal parameters, we performed a classification
of the independent evaluation compounds based on the TG-GATEs and DrugMatrix databases. We
were able to correctly predict all 15 evaluation chemicals as NGC, GC or NC. This indicates that our
similarity score allows the hepatocarcinogenicity evaluation of new compounds based on large databases
of compounds with known hepatocarcinogenic potential.

ToxDBScan, a web application that is freely available, was created to allow other researchers to
use our similarity score for the identification of similar compounds in TG-GATEs and DrugMatrix.
To our knowledge, no other web application is available that offers a similarity search in both
TG-GATEs and DrugMatrix. In addition, ToxDBScan is independent of the platform used to identify the
deregulated genes, as only the list of up- and down-regulated genes is required to run ToxDBScan. New
data can easily be integrated into ToxDBScan to extend the database of expression profiles available for
the similarity search. The use of ToxDBScan is not limited to new drug candidates, as demonstrated by
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the compound, CIDB, in our evaluation set, which is a genotoxic dye. In summary, ToxDBScan offers
a unique similarity scoring method for the two largest toxicogenomics databases and may contribute to
the implementation of new approaches for the evaluation of the carcinogenic potential of chemicals.

3. Experimental Section

3.1. Data Resources

The data sources for ToxDBScan are the two largest publicly available toxicogenomics databases:
DrugMatrix [9,27] and the Toxicogenomics Project-Genome Assisted Toxicity Evaluation System
(TG-GATEs) [8,28]. Hepatocarcinogenicity and genotoxicity annotation was performed using the
Carcinogenic Potency Database (CPDB) [29,30].

3.1.1. Carcinogenic Potency Database

The Carcinogenic Potency Database (CPDB) is a publicly available database, which records the
outcome of long-term in vivo cancer bioassays performed in several organisms. Currently, it contains
the outcome of 6540 studies on 1547 chemicals. The carcinogenic potential is listed by the observed
cancer site. In addition, the outcome of an auxotroph-based Ames test is contained for many chemicals.
For this study, we considered a chemical hepatocarcinogenic if the CPDB contained a positive outcome
that was observed in the liver of male rat and genotoxic if a positive outcome of the Ames test was
recorded. Compounds that were not tested in the CPDB or that have no distinct associated outcome are
annotated as unclassified. Chemicals were classified as genotoxic carcinogens (GC) if they were both
hepatocarcinogenic and genotoxic, non-genotoxic carcinogens (NGC) if they were hepatocarcinogenic
and not genotoxic or non-hepatocarcinogenic (NC) if no positive carcinogenicity test in male rat liver
was recorded in the CPDB (see Table S1).

3.1.2. Toxicogenomics Project-Genome Assisted Toxicity Evaluation System

TG-GATEs is a publicly available toxicogenomics database, which was established by the
Japanese government and several Japanese pharmaceutical companies [8,31]. It is available
from ArrayExpress through the accession number, E-MTAB-800. TG-GATEs contains gene
expression profiles from male Sprague-Dawley rat liver and kidney, as well as cultured human
and rat hepatocytes treated with 160 chemicals in either single or repeated dosage settings.
For ToxDBScan, all expression profiles from the rat liver were used. Each chemical was
administered at three doses and for eight durations, i.e., 3 to 24 h in the single dosage setting
and 4, 8, 19 and 29 days in repeated dosage setting. In total, 3528 combinations of chemical,
dosage and duration were performed with three replicates each. Three matched controls were
profiled for each condition, leading to 14,143 available gene expression profiles. Through CPDB and
Uehara et al. [16], genotoxicity annotations are available for 123 of the 160 compounds profiled in male
rat liver, which translates to 2768 conditions with known hepatocarcinogenic and genotoxic potential
(see Table S2).
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3.1.3. DrugMatrix

The DrugMatrix is a toxicogenomics database, which was obtained and made publicly available
by the National Toxicology Program (NTP) from the Gene Expression Omnibus (GEO) [32] with the
accession number, GSE57822. It contains gene expression profiles sampled from male Sprague-Dawley
rat tissue (liver, kidney, heart and thigh muscle) and cultured rat hepatocytes after single and repeated
dosage treatment with 376 chemicals, with control samples from male rats kept in equal conditions.
Chemicals were administered in different doses and for different durations (ranging from 6 h to 7 days),
and each combination of tissue, chemical, dosage and duration was replicated with three animals, leading
to 5587 gene expression profiles. In male rat liver, only 200 of 376 chemicals were profiled, resulting
in 654 different combinations of chemical, dosage and duration and 1939 expression profiles. The gene
expression profiles were profiled using the Affymetrix Rat Genome 230 2.0 Array. Through CPDB,
hepatocarcinogenicity and genotoxicity annotations are available for 132 of the 200 compounds profiled
in male rat liver, which translates to 440 conditions with known hepatocarcinogenic and genotoxic
potential (see Table S3).

3.1.4. Comparison of TG-GATEs and DrugMatrix

Fifty-one chemicals were profiled by both TG-GATEs and DrugMatrix. For the overlapping
chemicals, the dose levels used in DrugMatrix were generally higher than the ones used in TG-GATEs.
The dose levels selected for the TG-GATEs repeat dosage experiments were considered to be acceptable
for 1-month repeated dosing [8]. The DrugMatrix doses were selected based on estimates of the
maximum tolerated dose and fully effective dose generated from literature research and preliminary
dose finding studies [33].

3.2. Data Preprocessing

TG-GATEs data were normalized with robust multi-array average (RMA) normalization
using the R Bioconductor package affy [34]. RMA normalized data from DrugMatrix were
downloaded from the DrugMatrix FTP server [35]. For all conditions in the two datasets,
log2 intensity ratios were calculated for each probe set as the difference in the average log2

intensity observed in treated samples and controls. Affymetrix probe set identifiers were
mapped to official gene symbols using the Bioconductor package biomaRt for R [36]. The
expression values of probe sets mapping to the same gene symbol were averaged. Differentially
expressed genes were identified for two commonly used intensity ratio cutoffs, 1.5-fold and 2-fold
up- or down-regulation. These gene fingerprints were stored for each condition.

3.3. Pathway Enrichment

Gene symbols were mapped to corresponding Rattus norvegicus pathways obtained from the KEGG
database [10]. For each pathway in the KEGG database, a hypergeometric test was performed to check
for significant pathway perturbation. The p-value is computed as:
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P (X ≥ m) =
M∑

i=m

(
M
m

)(
N−M
n−m

)(
N
n

) (1)

where N is the number of all genes for which gene expression was measured, M is the number of
genes in the pathway of interest, n is the number of differentially expressed genes and m is the number
of differentially expressed genes that are part of the pathway of interest. The resulting p-values were
corrected for multiple hypothesis testing with Benjamini–Hochberg correction [37].

3.4. Similarity Scoring

The most commonly used similarity measures for gene expression profiles are the Pearson correlation
and the Euclidean distance [32]. However, the number of differentially expressed genes is small
compared to the total number of genes that were profiled. This leads to sparse gene fingerprints.
Therefore, both methods were deemed not applicable for measuring the similarity of gene fingerprints.

In chemoinformatics, fingerprints are used to score the similarity of chemical substances, e.g., the
extended connectivity fingerprints (ECFP) [38]. Similarity based on ECFP is computed using the
Tanimoto similarity coefficient, which was derived from the Jaccard index (also called the Jaccard
similarity coefficient) [39].

The Jaccard index is a similarity measure that is used to define the Jaccard distance, a metric for
computing the distance of arbitrary sets. The Jaccard index J is defined as the ratio of the number of
elements in the overlap of two sets A and B and the number of elements in the union of the two sets:

J =
|A ∩B|
|A ∪B|

(2)

This is equivalent to computing:

J =
|A ∩B|

|A|+ |B| − |A ∩B|
(3)

which does not require the union of the sets A and B. The Tanimoto coefficient T is the equivalent to
the Jaccard index defined on binary vectors X, Y ∈ {0, 1}n:

T =

n∑
i=1

Xi ∧ Yi
n∑

i=1

Xi ∨ Yi
(4)

The gene fingerprints used for the similarity scoring are not binary vectors, as they present information
on upregulated genes (represented as 1), downregulated genes (represented as −1) and non-regulated
genes (represented as 0). We defined a modified Tanimoto coefficient S, which accounts for the ternary
representation. For two gene fingerprintsX, Y ∈ {−1, 0, 1}n, where n is the number of measured genes,
the similarity score S is defined as:
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S =

n∑
g=1

δ(Xg, Yg)

n∑
g=1

|Xg|+ |Yg| − δ(Xg, Yg)
(5)

where δ(x, y) is the Kronecker delta:

δ(x, y) =

1, x = y

0, else
(6)

The modified similarity score S allows the scoring of gene fingerprints similarly to the scoring of
ECFP fingerprints with the Tanimoto coefficient T . If X and Y are binary vectors, the similarity score
S and Tanimoto coefficient T will be equal.

During the analysis of the scoring schemes, we found that many genes provide little information.
This is due to common up- or down-regulation in response to drug administration, regardless of
the toxicological outcome. To account for these genes, we further modified the similarity score
by introducing a weight vector w. Each gene is assigned a weight depending on its frequency in
the database:

wg = −log10

∑
c∈C
|cg|

N
(7)

where N is the number of compounds in the database and C is the set of gene fingerprints of the
database compounds, i.e., cg is 1 if gene g is upregulated in compound c, −1 if g is downregulated,
and 0 if g is not deregulated. The weight wg corresponds to the negative decadic logarithm of the
probability of observing deregulation of gene g, when randomly choosing a compound from the database.
This concept is commonly used in information theory, where it is known as the information content or
self-information [40]. The final similarity coefficient for scoring the similarity of two gene fingerprints
is then defined as:

S =

n∑
g=1

wgδ(Xg, Yg)

n∑
g=1

wg (|Xg|+ |Yg| − δ(Xg, Yg))
(8)

3.5. Performance Evaluation

To assess the performance of the similarity scoring, we extracted gene fingerprints from a
dataset of gene expression profiles not included in either DrugMatrix or TG-GATEs. The evaluation
dataset is publicly available from GEO under the accession number GSE53082 [12]. It contains
gene expression profiles for two genotoxic carcinogens, 11 non-genotoxic carcinogens and two
non-hepatocarcinogens (see Table 1). Ten of the 15 chemicals are included in one or both of TG-GATEs
and DrugMatrix. RMA normalized data were obtained from GEO, and gene fingerprint extraction was
performed for each chemical as previously described for TG-GATEs and DrugMatrix. We used our
similarity score to extract the most similar conditions in TG-GATEs and DrugMatrix and compared



Int. J. Mol. Sci. 2014, 15 19052

them based on hepatocarcinogenic and genotoxic potential. Enriched KEGG pathways were computed
for each chemical.

4. Conclusions

We present a new tool for the hepatocarcinogenicity evaluation of drug candidates in rodents.
We developed a new similarity scoring method for gene expression profiles that allows robust
identification of chemicals with similar hepatocarcinogenic and genotoxic potential. We provide a
web application, ToxDBScan, which allows us to perform a similarity search against the two largest
publicly available databases in toxicogenomics, TG-GATEs and DrugMatrix, using a newly developed
similarity score. ToxDBScan is easy to use and allows a very fast identification of chemicals similar
to the query. Since only the deregulated genes are required as input, the tool is independent of the
specific microarray or sequencing platform used for transcriptomic profiling. We evaluated the newly
developed similarity score with 15 compounds from an experiment not contained in either TG-GATEs or
DrugMatrix. We found our scoring system to be capable of robustly identifying compounds with similar
hepatocarcinogenic and genotoxic potential. To assess the viability of the similarity score, we performed
a classification of the chemicals in the evaluation dataset. All 15 chemicals were assigned to their correct
carcinogenicity class. ToxDBScan is publicly available from the ZBIT Bioinformatics Toolbox [11].
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Supplementary materials can be found at http://www.mdpi.com/1422-0067/15/10/19037/s1.
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