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Abstract: Extracellular acidification occurs under physiologic and pathologic conditions, 

such as exercise, ischemia, and inflammation. It has been shown that acidosis has various 

adverse effects on bone. In recent years there has been increasing evidence which indicates 

that ovarian cancer G protein-coupled receptor 1 (OGR1) is a pH-sensing receptor and 

mediates a variety of extracellular acidification-induced actions on bone cells and other 

cell types. Recent studies have shown that OGR1 is involved in the regulation of osteoclast 

differentiation, survival, and function, as well as osteoblast differentiation and bone 

formation. Moreover, OGR1 also regulates acid-induced apoptosis of endplate chondrocytes  

in intervertebral discs. These observations demonstrate the importance of OGR1 in skeletal 

development and metabolism. Here, we provide an overview of OGR1 regulation 

ofosteoclasts, osteoblasts, and chondrocytes, and the molecular actions of OGR1 induced 

by extracellular acidification in the maintenance of bone health. 
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1. Introduction 

Bone and cartilage are the two primary components that form the skeleton in vertebrates [1].  

These two tissues consist of three specific cell types scattered within the extracellular matrix (ECM): 

Bone-forming osteoblasts, bone-resorbing osteoclasts in bone, and cartilage-forming chondrocytes  

in cartilage [2]. The macroscopic and microscopic structural changes in bone are influenced by 

physiologic and pathologic conditions, such as mechanical stress, hypoxia, and acidosis [2–5]. Because of 

fractures, hypoxia, inflammation, and tumors, the bone microenvironment has long been known to be 

acidic [6,7]. Acidic pH can also result from hormonal, growth factor, or cytokine stimulation of bone 

cell metabolism [8]. It has been shown that parathyroid hormone and insulin-like growth factor-1 

(IGF-1) lead to a rapid acid efflux from osteoblasts [9]. The cartilage exists in an extracellular 

environment where the pH of the interstitial fluid is much more acidic than most other tissues. The 

avascular nature of cartilage causes hypoxia within the ECM which may lead to acidosis in the 

cartilage microenvironment [10]. 

Although the sensing mechanism of extracellular acid remains largely unknown, great breakthroughs 

have also been made toward understanding the cellular sensory mechanisms by which cells detect 

changes in the extracellular pH in such a sensitive manner. It has been shown that transient receptor 

potential V1 (TRPV1) is a calcium-permeable channel which is modulated or activated by extracellular 

protons [11]. Another family of molecular acid sensors is the acid-sensing ion channels (ASICs), 

which encode at least six different ASIC subunits, including ASIC1a, ASIC1b, ASIC2a, ASIC2b, 

ASIC3, and ASIC4 [12]. Proton-sensing G protein-coupled receptors (GPCRs) are emerging as  

a new class of acid sensors on a wide range of cell types that transduce signals through heterotrimeric 

G proteins [13]. The family of GPCRs is involved in cancer cell proliferation, apoptosis, metastasis, 

angiogenesis, osteoclast differentiation and survival, dendritic cell (DC) activities, alteration of DC 

functions, and insulin secretion; some of these GPCRs have turned out to be sensors for extracellular 

acidosis [14]. The transcripts of proton-sensing GPCRs, particularly ovarian cancer G protein-coupled 

receptor 1 (OGR1), are widely distributed and expressed on bone cells that are involved in the 

regulation of osteoclast differentiation, survival, and function, osteoblast differentiation and bone 

formation, as well as apoptosis of endplate chondrocytes in intervertebral discs [13,15,16]. This review 

will summarize our current knowledge regarding OGR1 in bone, and will highlight recent advances in 

bone metabolism. It has been showed that in bone cells metabolic acidosis increased [Ca2+]i from 

intracellular stores through activation of OGR1. 

2. Proton-Sensing GPCRs 

There are four members in the GPCR family (OGR1, G protein-coupled receptor 4 (GPR4), T cell 

death-associated gene 8 (TDAG8), and G2 accumulation protein (G2A)), which have previously been 

identified as receptors for lysolipids (sphingosylphosphorylcholine (SPC), lysophosphatidylcholine 

(LPC), and psychosine (galactosylsphingosine)) [17–20]. Recent studies, however, have shown that 

these GPCRs also sense extracellular protons through histidine residues of receptors and are coupled to 

G-proteins to stimulate intracellular signaling pathways. Ludwig et al. [17] first reported that OGR1 

and GPR4 are proton-sensing receptors and coupled to Gq/11 and Gs proteins by regulating activation 
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of the phospholipase C (PLC)/Ca2+ and adenylyl cyclase/Cyclic Adenosine monophosphate (cAMP) 

signaling pathways, respectively. OGR1 is inactive at pH 7.8, but fully activates inositol phosphate 

(IP) formation at pH 6.8. Moreover, Ludwig et al. [17] showed that GPR4 senses extracellular protons, 

but GPR4 activates the Gs-adenylyl cyclase-cAMP signaling pathway; however, they were not able to 

find any effect of SPC and LPC, which were previously reported to activate OGR1 and GPR4. In 2004, 

Murakami et al. [21] reported that G2A functions as a proton-sensing GPCR, like OGR1 and GPR4,  

by regulating multiple classes of G-proteins, including G13 and Gi/Go in signaling. Wang et al. [22] 

reported that TDAG8 senses extracellular protons and have recently been identified as proton-sensing 

or extracellular pH-responsive GPCRs, leading to activation of the cAMP signaling pathway. Among these 

receptors, OGR1is widely distributed and expressed on bone cells that take part in bone metabolism. 

OGR1, also named as GPR68 (G protein-coupled receptor 68), is a 365 amino acid multi-pass membrane 

protein that is expressed in testis, spleen, bone, lung, brain and placenta [17,23]. OGR1 selectively 

binds both protons and bioactive lipids and acts through Gi and Gq proteins-mediated processes [24,25]. 

Under the acidic conditions, pH-sensing activity of OGR1depends on several His residues that reside 

in the extracellular domains of this seven-pass transmembrane protein, resulting in the activation of 

intracellular signaling pathways (Figure 1). 

Figure 1. Activation of ovarian cancer G protein-coupled receptor 1 (OGR1) by extracellular 

acidification. (A) Proton has been suggested as an agonists of OGR1. Cu2+ and Zn2+ inhibit 

pH-dependent OGR1 activation; and (B) His residues that have been reported to be 

involved in proton-sensing process are bolded and underlined in OGR1. The interaction 

between protons and His residues of OGR1 leads to the activation of Gq/11/PLC/Ca2+ 

pathway. PLC: phospholipase C; Gq/11: Gq/11 protein; IP3: inositol 1,4,5-trisphosphate. 

 

3. OGR1 and Bone 

3.1. Causes of Acidosis 

Tissue acidosis can result from a number of systemic and local causes. Systemic acidosis, which is 

caused by pathologic conditions, such as renal and respiratory disease, anemias, and diabetes, leads to 

abnormal cell function throughout the body [26]. Systemic acidosis can also be caused by high levels 
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of protein intake (or acid feeding), aging, or the menopause [27]. Localized extracellular acidosis 

occurs due to ischemia and hypoxia caused by diabetes, wounds, inflammation, infection, and tumors [6]. 

Extracellular acidosis can also result from hormonal, growth factor, or cytokine stimulation of cell 

metabolism [8]. The deleterious effect of acidosis on the bone has long been known. In particular, 

proton-sensing GPCRs, such as OGR1, respond to low pH and play a critical role in the regulation of 

osteoclast function, osteoblast differentiation, and apoptosis of endplate chondrocytes in intervertebral 

discs [8,13,16,27,28]. 

3.2. OGR1 and Osteoclasts 

In 2005, Komarova et al. [29] first showed that OGR1 is expressed in osteoclast-like cells 

differentiated in vitro from RAW 264.7 cells induced by receptor activator of NF-κB ligand (RANKL). 

In addition, RANKL increases the levels of expression of OGR1 mRNA in RAW 264.7 pre-osteoclast-like 

cells. Pereverzev et al. [28] also showed that reduction of extracellular pH in osteoclasts resulted in 

nuclear translocation of NFATc1, a downstream mediator of RANKL differentiation effects, although 

no specific physiologic role for OGR1 in that process was demonstrated. Localization of OGR1 in the 

plasma membrane area suggests that OGR1 may act as a functional receptor on these cells. Consistent 

with the differences in transcript levels, the immunofluorescence staining of OGR1 in differentiated 

osteoclast-like cells is more intense than undifferentiated RAW 264.7 cells. Yang et al. [16] reported 

that OGR1 is also significantly up-regulated in tibias and femurs after 2 days of colony stimulating 

factor-1 (CSF-1) injections based on the ability of CSF-1 to restore osteoclast populations in the  

CSF-1-null toothless (csf1tl/csf1tl) osteoporotic rat. The expression of OGR1 mRNA and protein was 

also observed by microarray, real-time RT-PCR, and immunoblotting when mouse bone marrow 

mononuclear cells (BMMs) were treated with RANKL to induce osteoclast differentiation.  

Specific inhibition of OGR1 by anti-OGR1 antibody and OGR1-specific RNA interference (RNAi) 

suppressed RANKL-induced differentiation of both BMMs and RAW 264.7 cells in vitro. It has  

been proposed that OGR1 is expressed during osteoclastogenesis in vivo and in vitro and is crucial  

for osteoclast differentiation; however, the molecular mechanism of OGR1 in regulating osteoclast 

differentiation and function remains unclear. 

Pereverzev et al. [28] recently detected extracellular acidification enhances osteoclast survival.  

This study directly supports the potential activation of OGR1 in mediating osteoclast survival during 

extracellular acidification. Ca2+ signaling in osteoclasts is crucial for cellular functions, including motility, 

differentiation, and bone-resorbing activity [16,28,30]. Recent findings suggest that OGR1 is essential 

for the extracellular acidification-induced increase in [Ca2+]i levels in osteoclasts [28]. More interestingly, 

OGR1-mediated calcium signaling occurs in osteoclasts during extracellular acidosis, which contributes  

to acidosis-induced osteoclast survival. OGR1 activation in osteoclast enhances survival by inducing 

the activation of protein kinase C (PKC) that may affect the phosphorylation status of pro- or  

anti-apoptotic proteins, or stimulate extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling, 

which is critical for osteoclast survival [28]. Similar observations were reported in a more recent study 

in OGR1 deficient mice which were generated by homologous recombination [31]. OGR1 deficiency 

led to a decrease in osteoclast numbers, suggesting that OGR1 may play an important role in 

osteoclastogenesis. A pH-dependent survival effect of osteoclasts was also detected. However, overall 
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abnormality in the bones of OGR1 deficient mice was not observed. It is possible that the defect in 

osteoclast numbers and/or their response to pH changes will affect some biological functions under 

certain pathological conditions. 

3.3. OGR1 and Osteoblasts 

Ludwig et al. [17] reported that the expression of OGR1 protein is detected in active osteoblasts, 

lining cells on the bone surface, and matrix-embedded osteocytes by immunohistochemistry. 

Moreover, Tomura et al. [32] reported OGR1 is predominantly expressed in human osteoblastic cells 

(NHOst). Several groups have investigated how acidosis works via OGR1 in osteoblasts [15,17,32,33]. 

Acidosis activates OGR1 to elevate [Ca2+]i levels via Gq stimulation, inducing cyclooxygenase 2 

(COX-2) mRNA and protein expression in human osteoblastic cells. This leads to the production  

of prostaglandin E2 (PGE2), which is reported to activate osteoblasts to RANKL expression, a key 

cytokine involved in osteoclast differentiation [32]. Moreover, knocking down OGR1 with siRNA 

inhibits acidosis-induced COX-2 expression in a human osteoblastic cell line [32]. Tomura et al. [32] 

used YM-254890, a Gq antagonist that specifically inhibits Gq activation, and PLC inhibitors that 

significantly inhibit acid-induced COX-2 expression and subsequent PGE2 production, suggesting that 

the OGR1/Gq/11/PLC pathway is involved in COX-2 expression and PGE2 production in osteoblasts. 

This cascade from OGR1 to COX-2 and RANKL in osteoblasts might be an event in the induction 

process by acidic circumstances. 

Frick et al. [15] previously reported that acidosis also leads to an increase in net Ca2+ efflux from 

bone. Recent studies have demonstrated that the OGR1 antagonist, Cu2+, significantly decreases  

acid-induced bone net Ca2+ efflux, a marker of bone resorption, in cultured neonatal mouse calvariae [33]. 

To further support OGR1 as a prime candidate as an osteoblastic H+ sensor, Frick et al. [33] perfused 

Chinese hamster ovary (CHO) cells transfected with mouse OGR1 cDNA. Eventually, a rapid increase 

in the intracellular calcium ([Ca2+]i) levels were also detected in OGR1-transfected CHO cells in 

response to an acidic medium, which acts as a second messenger to mediate the effects of acidosis on 

osteoblasts and results in increased osteoclastic bone resorption by inducing increased COX-2 and 

RANKL expression. 

3.4. OGR1 and Chondrocytes 

In 2003, Ludwig et al. [17] first reported that the expression of OGR1 is also specifically expressed 

in chondrocytes of hypertrophic cartilage. Experiments in our laboratory using rat lumbar endplate 

chondrocytes have been shown that high levels of OGR1 mRNA and low levels of G2A and TDAG8 

mRNA in rat endplate chondrocytes were detected by RT-PCR analysis [13]. Interesting results were 

noted when cultures of rat lumbar endplate chondrocytes were exposed to acidosis; the mRNA levels 

of OGR1 increased in response to acidosis, whereas the mRNA levels of the other receptors were 

unchanged. Our data suggest that OGR1 is responsive to pH in endplate chondrocytes [13]. 

Additionally, we demonstrated that OGR1 is involved in apoptosis of endplate chondrocytes 

induced by extracellular acid in the rat intervertebral disc. Acid-induced [Ca2+]i increase via OGR1 is 

responsible for endplate chondrocytes apoptosis. A mechanism for OGR1 in endplate chondrocytes  

in an acidic environment has been proposed wherein cell apoptosis is related to OGR1-mediated 
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apoptosis via down-regulation of calcium-activated signaling pathways, such as Bid and Bad,  

and inhibition of caspase-3 and poly(ADP-ribose) polymerase (PARP) activity (Figure 2). 

Figure 2. Schematic diagram of the potential mechanism of proton-sensing receptor OGR1 

involved in acid-induced apoptosis of endplate chondrocytes. 

 

4. Conclusions 

In the present review, we have discussed extracellular acidification regulating a wide range of 

cellular functions and their mechanisms, especially focusing on proton-sensing OGR1 in bone cells. 

Increasing evidence supports a central role for the OGR1 in bone biology and disease; however,  

there were several limitations to the study that will require further exploration. The role of OGR1 in 

bone biology and disease should be confirmed in several animal models. It will also be important to 

determine whether or not there are any developmental changes during bone disease in OGR1-deficient 

mice. Interestingly, by observing the development of knockout (KO) mice, Li et al. [31] has elucidated 

essential roles for OGR1 in regulating osteoclastogenesis. TDAG8 gene mutation in ovariectomized 

miceresulted in an increase in osteoclastic activity, suggesting an inhibitory role of TDAG8 in 

osteoclastic bone resorption in osteoporosis [34]. Further investigation into the regulatory mechanisms 

of OGR1 is necessary for developing effective therapeutic strategies for the treatment of bone diseases. 
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