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Abstract: Homoserine dehydrogenase (HSD) from Mycobacterium leprae TN is an 

antifungal target for antifungal properties including efficacy against the human pathogen. 

The 3D structure of HSD has been firmly established by homology modeling methods. 

Using the template, homoserine dehydrogenase from Thiobacillus denitrificans  

(PDB Id 3MTJ), a sequence identity of 40% was found and molecular dynamics 

simulation was used to optimize a reliable structure. The substrate and co-factor-binding 

regions in HSD were identified. In order to determine the important residues of the 

substrate (L-aspartate semialdehyde (L-ASA)) binding, the ASA was docked to the protein; 

Thr163, Asp198, and Glu192 may be important because they form a hydrogen bond with 

HSD through AutoDock 4.2 software. After use of a virtual screening technique of HSD, 

the four top-scoring docking hits all seemed to cation–π ion pair with the key recognition 

residue Lys107, and Lys207. These ligands therefore seemed to be new chemotypes for 

HSD. Our results may be helpful for further experimental investigations. 
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1. Introduction 

Fungal infections have escalated dramatically in recent years [1]. This escalation can be attributed 

to three factors. Firstly, the number of immunocompromised individuals such as AIDS patients, organ 

transplant recipients and those undergoing chemotherapy has steadily increased [2]. Secondly, drug 

resistance against many existing antifungal therapies has arisen in fungi. Finally, previously benign 

fungi have now become the cause of systemic mycoses, thus increasing the list of pathogenic fungi. As 

a consequence of the developing threat of fungal infections, attention has been focused on the 

identification and exploration of novel fungal targets. 

Homoserine dehydrogenase (HSD) was identified as an antifungal target when it was shown that a 

natural amino acid second metabolite (S)-2-amino-4-oxo-5-hydroxypentanoic acid, had antifungal 

properties including efficacy against the human pathogen Candida Albicans [3,4]. The target for this 

natural compound proved to be HSD, an enzyme that is required for the biosynthesis of the three 

essential amino acids, methionine, isoleucine and threonine [4,5]. HSD is found within the animal 

kingdom, making HSD an ideal target for the structure-based design of antimycotic drugs. 

Homoserine dehydrogenase belongs to the expansive and diverse class of oxidoreductases. HSD 

shares certain similarities with other dehydrogenases, such as malate, lactate and glyceraldehyde  

3-phosphate dehydrogenase [6,7]. For instance, the cofactor NAD(P)H binds to a nucleotide-binding 

domain that conforms to the Rossmann fold [8,9]. However, HSD displays several crucial differences 

from all other dehydrogenases. First, the overall fold of the catalytic region is unique among all known 

protein structures; Second, residues that have been implicated in catalysis in other oxidoreductase 

enzymes are not present in the active site of HSD. As such, HSD represents a novel enzyme within the 

oxidoreductase class [10–13].  

Until now, there were eight structures determined by experiment [4,14,15]. The rate of the 3D 

structure of HSD determined is lower than that of the need of development of antimycotic drugs. Thus, 

a homology model was used to build a 3D structure of HSD. The present study is aimed at elucidating 

the 3D structural features of homoserine dehydrogenase (HSD) from Mycobacterium leprae TN and 

selective prediction of interaction sites for substrates and inhibitors. In this study, we report that the 3D 

model of HSD was derived using comparative modeling analysis [16,17] and that the generated 3D 

models would give insight into the influence of various interactive fields on the activity and thus, can 

help in designing and forecasting the translation inhibition activity of novel molecules. Further, 

refinement of the generated 3D model was done by subjecting it to molecular dynamics (MD) 

simulations. Molecular docking studies were also performed to analyze the interactions amongst HSD 

and its ligands, which are found to be helpful in the design of a novel antimycotic drug. 

2. Results and Discussion 

2.1. Sequence Alignments and Molecular Modeling 

Among the BLASTp results, the structure was selected as templates: homoserine dehydrogenase 

from Thiobacillus denitrificans (PDB code 3MJT). The sequence identities between HSD and 

templates 3MJT was 40%. It well known that above 50% sequence identity, models tend to be reliable, 

with only minor errors in side chain packing and rotameric state. In the 30%–50% identity range, 
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errors can be more severe and are often located in loops. Below 30% identity, serious errors occur, 

sometimes resulting in the basic fold being mis-predicted [18]. Thus, 40% identity is sufficient 

homology to construct a believable model [19]. The sequence alignment performed using  

the MolsoftICM for homology modeling is shown in Figure 1a. Although the sequence identities 

between HSD and templates: Putative Homoserine Dehydrogenase (NP_069768.1) from 

Archaeoglobus Fulgidus (PDB ID 3DO5) (41%) is higher than that of HSD and 3MJT’s, 3MJT 

was chosen as template. The reasons are as follows: firstly, 3MJT contains 496 residues, and 3DO5 

contains 327 residues. As a template, the length of 3MJT is more appropriate than that of 3DO5’s. 

Secondly, phylogenetic analysis (seen from Figure 1b) showed that 3MJT and HSD are the same 

subfamily, and thus their spatial structure should be more similar. The most significant step in 

homology modeling process is to obtain the correct sequence alignment of the target sequence with the 

homologues, and it reveals that the residues involved in binding of substrate in templates (Lys217 

(Proton donor)), Arg117 (NADH binding) and Glu196 (substrate binding site) were conserved  

(the corresponding residue: Lys207, Arg107 and Glu192) in HSD.  

Figure 1. (a) Sequence alignment of HSD homologs. 3MTJ (40%); 3DO5 (41%);  

(b) Phylogenetic tree of HSD, 3MTJ, and 3DO5. 

 

The coordinates of the crystal structures of homoserine dehydrogenase from Thiobacillus denitrificans 

(PDB code 3MJT) was used as templates to build the structure of HSD. The 3D model of the HSD  

was built by Swiss model [16,17]. Further, refinement was performed in order to obtain the best 

conformation of the developed model of HSD. Analysis of 20 ns dynamics shows that the HSD 

structure is stable and indicated that the system is stable.  
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The superposition of the average structure of the HSD with the initial model Figure 2. Figure 2  

does not show major structure conformational changes in comparison to the initial model, which is 

consistent with the relatively low RMSD values. We selected the average structure of the HSD through 

the further study. 

Figure 2. The superposition of the average structure of the HSD (pink) with the initial 

model (green). 

 

2.2. Validation of Homology Model 

The first validation was carried out using Ramachandran plot calculations computed with 

Molprobity program by checking the detailed residue-by-residue stereo-chemical quality of a protein 

structure [20–22]. The results are shown in Figure 3. Altogether, 95.0% of all residues were in favored 

regions, and 98.4% of all residues were in allowed regions. In comparison with the homology model, 

the template, 3MJT, had a similar Ramachandran plot 98.35% in the allowed regions.  

Figure 3. Ramachandran plot. 
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Seen from Figure 3, it can be concluded that Glu263, Leu62, Tyr340, and Gln264 are in the 

disallowed regions. So we fixed them by hand. ERRAT is a so-called “overall quality factor” for 

nonbonded atomic interactions, and higher scores mean higher quality [23]. The normally accepted 

range is >50 for a high quality model [23]. In the current case, the ERRAT score for HSD model  

is 87.50, well within the range of a high quality model, in the mean time the ERRAT score for the 

templates 3MTJ is 96.95. Thus, the above analysis suggests that the backbone conformation and  

non-bonded interactions of HSD homology model is all reasonable within a normal range. The final 

evaluation of the built HSD structure was checked by Verify 3D [24,25]. 

Figure 4 represents the Verify 3D graph of the predicted HSD model. It is to be noted that 

compatibility scores above zero correspond to acceptable side chain environment. From Figure 4,  

we can see that almost all residues are reasonable. In brief, the geometric quality of the backbone 

conformation, the residue interaction, the residue contact and the energy profile of the structure is all 

well within the limits established for reliable structures. All evaluations suggest that a reasonable 

homology model for HSD has been obtained that can be exposed for examination of protein-substrate 

and protein inhibitor interactions. 

Figure 4. Verify-3D score of HSD. 

 

2.3. Identification of Substrate-Binding Region and Co-Factor-Binding Region in HSD 

HSDs have a common co-factor, NADH. It was reported that the NADH is bound to the Rossmann 

fold in the conventional mode, that is, the cofactor–enzyme interactions are predominantly mediated 

through hydrogen bonds between cofactor phosphate moieties and sugar hydroxyl groups with enzyme 

amide backbone groups [4]. However, the orientation of NAD+ of the nicotinamide ring is consistent 

with the experimentally observed stereospecificity of hydride transfer, that is to say that NADH 

hydride is facing the substrate-binding region. 

The cavity volume estimated by CASTp [26] is dependent on the radius of the probe sphere; a probe 

radius of 1.4 Å outlines a cavity of 1124.2 Å3 for HSD of substrate binding, while a probe radius of  

1.4 Å outlines a cavity of 1367.2 Å3 for 3MJT of substrate binding. From this result, we can conjecture 

that the active site of HSD is almost the same size of 3MJT. 
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Compared with the residues in the NADH binding site of the other HSDs’, the residues of HSD 

participating in the NADH binding site are listed in Table 1. In order to confirm whether the binding 

site determination for NADH is correct, the residues in the NADH-binding site of homoserine 

dehydrogenase (PDB ID 1EBF) [4] were coordinated with NADH that have been determined by X-ray. 

Seen from Table 1, we can conclude that the corresponding residues in HSD are Thr313, Val18, 

Gly19, Gly45, Gly47, Ile13, Ile46, Gly16, Gly14, Asn17, Ala105, Asn106, and Arg111. Half of these 

residues are conserved, and the reason may lie in the low sequence identity (27%). Hence the different 

NAD+-binding site residue between 1EBF and HSD may affect the catalytic efficiency of the substrate 

of these two enzymes. 

Table 1. The different binding residues between 1EBF and HSD. 

1EBF HSD 

Thr344 Thr313 
Val16 Val18 
Asn92  
Gly17  
Ala39 Gly45 
Ile98  
Ala41 Gly47 
Ile11 Leu43 
Glu40 Ile46 
Gly12 Gly14 
Gly14 Gly16 
Val15 Asn17 
Thr93  
Pro115 Ala105 
Asn116 Asn106 
Arg117 Arg107 

2.4. Docking Study 

The substrate, Aspartate-4-semialdehyde (ASA), and NADH are docked to HSD with  

Autodock 4.2 [27,28] and AutoDock vina [29,30], respectively. The grid size for Autodock 4.2 is  

56 × 56 × 56 Å, and grid size for AutoDock vina is 24 × 24 × 24 Å. The results are listed in Table 2. 

Table 2. The docking score between ASA and HSD with Autodock 4.2 and Autodock vina. 

ASA Docking score (Kcal·mol−1) RMSD 

Autodock vina −4.50 27.10 
Autodock 4.2 −5.24 25.20 

Seen from Table 2, the docking score is −5.24 Kcal·mol−1 for Autodock 4.2, while for AutoDock 

vina the docking score is 4.50 Kcal·mol−1. The RMSD between the original and the docked of the 3D 

structure of ASA are also shown in Table 2 (27.10 Å for AutoDock vina, 25.20 Å for Autodock 4.2). 
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These results showed the binding mode generated by Autodock 4.2 is more reasonable than that of 

AutoDock vina, and thus chosen for further study. 

Figure 5 shows the substrate, ASA, and NADH docking in the HSD. We can see that ASA and 

NADH are in the groove. ASA is located near NADH, and so it is useful to transfer action.  

Figure 5. ASA and NADH bind in the HSD. They are located in different sites.  

 

Hydrogen bonds may be important in substrate binding. There are four hydrogen bonds between 

ASA and HSD (seen from Figure 6 and Table 3). Thr163 make two hydrogen bonds with the ASA 

(1.97 and 1.70 Å). Asp198 forms a strong hydrogen bon with the NH group with ASA. There is a 

weak hydrogen bond (2.26 Å) between the NH group of Glu192 and O8 atom of ASA. From Figure 6, 

it can be seen that Ala191 and Ala308 have electronic contact with ASA, whereas Tyr190, Glu192, 

Asp198, Gly162, Thr163, and Asn161 have strong van der Waals (VDW) contact with ASA. So the 

binding pocked of ASA to HSD may contain Ala191 and Ala308, Tyr190, Glu192, Asp198, Gly162, 

Thr163, and Asn161. In particular, Thr163, Asp198, and Glu192 may be important for ASA binding 

for they make hydrogen bonds with HSD. Glu192 is substrate binding residue, and this result is 

completely consistent with experimental data [15].  

Figure 6. Active residues in the ASA binding pocket. The color purple represents strong  

van der Waals (VDW) contact with ASA, and the color green represents electronic contact 

with ASA. 

 

Table 3. The hydrogen bonds between ASA and HSD. 

Name Distance (Å) Donor atom Acceptor atom Angle 

THR163:HN-ASA:O5 1.97 HN O5 138.44 
ASA:H9-THR163:OG1 1.70 H9 OG1 113.34 
ASA:H10-ASP198:OD1 1.95 H10 OD1 116.55 
GLU192:HN-ASA:O8 2.26 HN O8 135.69 
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2.5. High Throughput Virtual Screening Procedure and Docking the Inhibitor to the Protein 

It was reported that the receiving operating characteristic (ROC) evaluation is described as the ratio 

of the true positive rate to the false positive rate when a given proportion of known decoys have been 

observed [31,32]. Moreover, the receiving operating characteristic (ROC) curve, a graphical plot of the 

sensitivity (true positive rate, sensitivity) VS specificity (false positive rate), was calculated to avoid 

the sensitivity for small changes in ranking, where T score represents the number of correctly 

identified actives, and F score (false positives) represents the number of decoys incorrectly predicted 

as actives. The area under the ROC curve (AUC plot) gives the probability of ranking a randomly 

selected active higher than a randomly chosen decoy [33]. It ranges from 0 to 1, where 1 indicates a 

perfect ranking, where in all actives ranked above the decoys. A traditional academic point system for 

classifying the accuracy of a virtual screening test is known as follows: AUC < 0.5 is fail; 0.5 ≤ AUC 

< 0.70 is poor; 0.7 ≤ AUC < 0.8 is fair; 0.8 ≤ AUC < 0.9 is good; and 0.9 ≤ AUC ≤ 1 is excellent [34]. 

Essentially independent of the actual number of positive and negative instances, the AUC of an ROC 

plot gives an objective measure of query performance. In this study, 32 inhibitors [14,15,35,36] were 

used to generate the decoys using DUD-E on line [31]. Autodock 4.2 [27,29], Autodock vina [29,30] 

and Dock 3.6 [37] are used for docking. The ROC curve is shown in Figure 7. From Figure 7, AUC 

plot with Autodock 4.2 is 0.64, which is larger than that of AutoDock vina and Dock 3.6. And so 

Autodock 4.2 is used to further virtual screening. 

Figure 7. Receiving operating characteristic (ROC) curve. 

 

Virtual screening of compound libraries has become a standard technology in modern drug 

discovery pipelines. The “2008/5” version of a Natural Products Database (NPD) contains almost 

90,000 commercially available compounds. The target used in our study was the 3D structure of HSD 

mentioned above. In this simulation, it was also been screened that the potent inhibitor of HSD,  

4-(4-HYDROXY-3-ISOPROPYLPHENYLTHIO)-2-ISOPROPYLPHENOL (178), which is found  

to be competitive with ASA (IC50 5.1 μm) [15], as the leader drugs searching in Zinc data for  

50% similarity.  

After the screening, 164 compounds have been found. AutoDock 4.2 is used for virtual screening. 

AutoDock 4.2 uses a semi-empirical free energy force field to evaluate conformations during docking 
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simulations. The force field was parameterized using a large number of protein-inhibitor complexes for 

which both structure and inhibition constants, or Ki are known. Table 4 listed the discovered inhibitors 

from the docking screen against the known crystal structure [14,15]. Two inhibitors showed good 

inhibition with the substrate ASA [14,15]. This result was consistent with our docking results (the free 

energy of binding and the calculated Ki) (Table 4).  

Table 4. Discovered ligands from the docking screen against the known crystal structure. 

Structure Enzyme Ki (μM) 
Autodock 4.2 

(Kcal·mol−1) 

Estimated inhibition 

constant, Ki (μM) 

 

HSD  

(PDB ID 1TVE) 

[15] 

10 ± 2 −8.15 9.92 

 

HSD  

(PDB ID 1Q7G) 

[14] 

3.3 ± 0.9 −6.96 4.78 

Figure 8 shows the binding pose of the inhibitor 178 in the HSD. In particular, Lys107 has a cation–π 

interaction with the inhibitor 178. The flat face of an aromatic ring has a partial negative charge owing 

to the pi electrons. Cations such as the sidechains of Lys or Arg, cationic ligands, or metal cations 

often align themselves centered over the faces of aromatic rings. It was reported that cation–π 

interactions should be considered alongside the more conventional hydrogen bonds, salt bridges, and 

hydrophobic effects in any analysis of protein structure, and they can also contribute significantly to 

intermolecular contacts and interactions with ligands [38–40]. As discussed before, the cation–π 

interaction makes the inhibitor-enzyme stable and cannot be removed.  

Figure 8. Predicted binding modes of ligands found from the homology model screen.  

(a–d) Predicted binding poses for four ligands discovered in the docking screen against the 

HSD homology model. 
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As shown in the Figure 9, in the HSD-178 complex, Ala105, Lys107, Glu192, Thr163, Asp198, and 

Tyr191 have electronic contact with inhibitor 178, and Asn161, Gly162, K207, and Asp203 have 

strong VDW contacts with inhibitor 178. In particularly, Lys107 forms a cation–π interaction with the 

inhibitor 178, and this result indicates Lys107 is an important residue for inhibitor 178. These  

results can serve as a guide to the selection of candidate sites for further experimental studies of site 

directed mutagenesis. 

Figure 9. Active residues in the inhibitor 178 binding pocket. The color purple represents 

strong van der Waals (VDW) contact with178, and the color green represents electronic 

contact with178. 

 

Table 5 lists four compounds. The binding energies and calculated Ki between four compounds and 

HSD are all lower than that of 178-HSD’s (−6.07 Kcal·mol−1, 17.56 μM). The similarity of the new 

compounds versus 178 was assessed by calculating the Tanimoto coefficient (Tc) with Discovery 

studio 3.5 client to the 164 HSD inhibitors annotations. Tc value ranges from 0 to 1, where 0 represents 

no detection of the same bits; however, 1 does not mean that the two molecules are totally identical. 

The atom pair similarities (SimAB) will be determined by the number of atom pair types shared by the 

two molecules, where 0 indicates no similarity and 1 indicates identity [32]. The four top-scoring 

docking hits (Tc < 0.6) is selected. The four top-scoring docking hits all seemed to cation–π ion pair 

with the key recognition residue Lys107, and Lys207 (from Figure 9). These ligands therefore seemed 

to be new chemotypes for HSD. 

Table 5. The free binding energy among the inhibitors and HSD. 

Compound Structure 
Autodock 4.2 

(Kcal·mol−1) 
Tc 

a Ki (μM) 

ZINC88161319 −7.28 0.52 9.63 
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Table 5. Cont. 

Compound Structure 
Autodock 4.2 

(Kcal·mol−1) 
Tc 

a Ki (μM) 

Zinc41229093 −7.09 0.55 13.07 

Zinc54918273 −6.66 0.40 13.10 

Zinc87096659 −6.48 0.38 15.68 

a The tanimoto similarity (Tc) to the most similar HSD inhibitor 178. 

3. Experimental Section  

3.1. Molecular Modeling 

The amino acid sequence of the target protein, HSD, was obtained from UniProtKB/Swiss-Prot 

(No. P46806.1) and 441 residues were involved [18]. The template protein was homoserine 

dehydrogenase from Thiobacillus denitrificans (PDB Id 3MTJ sequence identifies 40%). The 

BLAST search algorithm was used for the online search [41]. Swiss Model [16,17] was employed to 

build the 3D structure. The modeling was then carried out using the Gromacs 4.3.5 software [42] with 

AMBER-03 all-atom force field. The temperatures were kept constantly at T = 300 K by coupling to a 

Berendsen thermostat with a coupling time of T = 0.1 ps. The protein was solvated using a box of 

TIP3P [43] water molecules extending at least 8 Å away from the boundary of any protein atoms.  

An integration step of 2 fs was used. Non-bonded interactions were calculated by using a cutoff of 8 Å. 

Long-range electrostatic interactions were calculated by Particle–Mesh Ewald summation with grid 

spacing of 1.2 Å and cubic interpolation. After 1000 steps of steepest descent energy minimization,  

the solvent and ions were equilibrated by 0.5 ns MD simulation with the protein heavy atoms  

subjected to harmonically constraints under a force constant of k = 1000 Kcal mol−1.nm−2. Finally, the 

production run was carried out for 20 ns, storing the coordinates of all the atoms each picosecond for 

further analysis. 
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3.2. Assessment of the Homology Model 

To obtain an accurate homology model, it is very important that appropriate steps are built into the 

process to assess the quality of the model. Therefore, in the modeling phase, the model quality was 

assessed by the geometric quality of the backbone conformation, the residue interaction, the residue 

contact and the energy profile of the structure using different methods, including ERRAT [23]  

Verify 3D [24,25], and Molprobity [20–22]. 

3.3. Binding Pocket Analyses 

The volume of the binding pocket is computed using the CASTp server [26,44] with default settings. 

3.4. Validation of the Model by Docking Analysis 

A docking study was conducted to evaluate the predictive ability of the HSD homology model and 

its suitability for use in the structure-based drug design studies. The structures of ASA, substrates of 

HSD were built using Chemdraw (Cambridge softInc, Cambridge, MA, USA). After a preliminary 

energy minimization to discard high-energy intramolecular interactions, the overall geometry and the 

atomic charges were optimized using Gaussian03 [30,45] software with 6-311G* set. In the validation 

phase, AutoDock 4.2 [29,30], AutoDock vina [31,32], and Dock 3.6 [33] were used for performing 

docking. In the process of new drug discovery, the application of virtual screening can enrich active 

compounds, reduce the cost of drug screening, and increase the feasibility of drug screening. Therefore 

virtual screening technology has become an important approach for new drug discovery. As virtual 

screening and bioactivity screening possess different advantages, their combination can effectively 

promote new drug discovery. In the present study the application and the trend of removal of non-drug 

compounds, removal of false positive compounds, molecular docking, and molecular similarity in the 

process of drug discovery are introduced in order to obtain more benefit from virtual screening strategy 

for new drug discovery. 

3.4.1. AutoDock 4.2 

AutoDock combines a rapid energy evaluation through precalculated grids of affinity potentials 

with a variety of search algorithms to find suitable binding positions for a ligand on a given  

protein [29,30]. When docking was performed, HSD was kept rigid, but all the torsional bonds in 

ligands were set free to perform flexible docking. Polar hydrogens were added using the hydrogens 

module in AutoDockTools (ADT) for HSD; after that Kollman united atom partial charges were 

assigned [30]. Docking of ligands to HSD was carried out using the empirical free energy function and 

the Lamarckian genetic algorithm, applying a standard protocol with an initial population of  

300 randomly placed individuals. Results were clustered according to the 1.0 Å root-mean square 

deviation (RMSD) criterions. All torsion angles for each compound were considered flexible. The grid 

maps representing the proteins in the actual docking process were calculated with AutoGrid. The grids 

(one for each atom types in the ligand plus one for electrostatic interactions) were chosen to be 

sufficiently large to include not only active site but also significant portions of the surrounding surface.  
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The software AutoDock 4.2 [29,30] was then applied in the virtual screening. A Natural Products 

Databse (NPD) [46] of Zinc database was employed. The target used in our study was the 3D structure 

of HSD mentioned above. Modification and format conversion of compounds which were downloaded 

from NPD used Open Babel toolbox [47] and Raccoon [48] graphical user interface for AutoDock [29,30] 

with a special focus on large-scale virtual screening. 

There are 22 atom types in the docking course. The Parameters are listed as follow: ga_num_evals = 

25,000,000, ga_run = 2 and ga_run = 50. 

3.4.2. AutoDock Vina  

AutoDock Vina is a new open-source program for drug discovery, molecular docking and virtual 

screening, offering multi-core capability, high performance and enhanced accuracy and ease of  

use [31,32]. For its input and output, Vina uses the same PDBQT molecular structure file format  

used by AutoDock. PDBQT files can be generated (interactively or in batch mode) and viewed  

using MGLTools.  

3.4.3. Dock 3.6 

DOCK improves the algorithm’s ability to predict binding poses by adding new features like  

force-field scoring enhanced by solvation and receptor flexibility [33]. 

4. Conclusions 

This paper describes how a reliable and reasonable 3D structure of HSD was built with homology 

modeling techniques, and molecular dynamics methods. In order to determine the important residues 

of the substrate (ASA) binding, we docked the ASA to the protein. Thr163, Asp198, and Glu192 may 

be important residues for ASA binding. By means of virtual screening technique, 164 novel 

compounds were found. The four top-scoring docking hits all seemed to cation–π ion pair with the key 

recognition residue Lys107, and Lys207. We hope that our results are helpful for the future research of 

inhibitor design of HSD. 
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