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Abstract: High atrazine (2-chloro-4-ethytlamino-6-isopropylamine-1,3,5-triazine; ATR) 

contents in the environment threaten the health conditions of organisms. We examined the 

effects of ATR exposure on Sprague-Dawley rats during gestation and on the dopaminergic 

neurons of offspring during lactation. Pregnant dams were orally treated with 0 mg/kg/day to 

50 mg/kg/day of ATR from gestational day 5 to postnatal day 22. Afterward, neither 

offspring nor dams received ATR. Dopamine (DA) content was examined in striatum 

samples by HPLC-FL; the mRNA expressions of tyrosine hydroxylase (TH), orphan nuclear 

hormone (Nurr1), dopamine transporter (DAT), and vesicular monoamine transporter 2 

(VMAT2) in the ventral midbrain samples were examined by fluorescence PCR when the 

offspring reached one year of age. After the pregnant rats were exposed to ATR, the DA 

concentrations and mRNA levels of Nurr1 were decreased in their offspring. Decreased 

Nurr1 levels were also accompanied by changes in the mRNA levels of VMAT2, which 

controls the transport and reuptake of DA. 
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DAT, dopamine transporter; VMAT2, vesicular monoaminetransporter 2; PD, Parkinson’s disease;  

SN, substantia nigra; GD, pregnancy day; PND, postnatal day; Ct, cycle number; ADD, absorbed daily 

dose; L-DOPA, levodopa; AAAD, aromatic amino acid decarboxylase; DR, dopamine receptors;  

DAT, dopamine transporter; HVA, homovanillic acid; COMT, catechol-O-methyl transferase;  

MAO, monoamine oxidase; DOPAC, 3, 4-dihydroxyphenylacetic acid; ROS, reactive oxygen species. 

1. Introduction 

Parkinson’s disease (PD) is a neurodegenerative disease characterized by the progressive 

degeneration of dopaminergic neurons in the substantia nigra pars compacta region of the midbrain [1]. 

The etiology of PD possibly involves environmental and genetic factors. However, <5% of the total 

cases of PD have been attributed to genetic factors [2]. 

Among the risk factors of PD, pesticide exposure has been associated with an increased incidence of 

PD among agricultural workers in rural environments [3]. Specific pesticides, such as paraquat [4], and 

maneb [5] have been associated with PD and another pesticide rotenone [6] can produce 

neurodegeneration when presented in conjunction with another toxicant. As a widely used 

broad-spectrum herbicide in many regions worldwide, atrazine (ATR) can persist in ground and surface 

water for long periods because this substance is moderately volatile and water-soluble [7]. 

Toxicological studies have focused primarily on the effects of ATR on the endocrine and 

reproductive systems [8–10]. Studies on the potential neurotoxicity of ATR have also been conducted, 

showing that ATR exposure can alter striatal neurochemistry; as a result, striatal dopamine (DA) levels 

are decreased and a loss in tyrosine hydroxylase (TH)-positive dopaminergic neurons is observed in the 

substantia nigra of rats [11] and mice [12]. Animal studies have also indicated that male offspring elicit 

anti-androgenic effects after their mothers have been exposed to ATR during pregnancy [13]. 

Although many PD cases are observed later in life, the pathological mechanism begins at early stages 

before this disease has progressed to the point at which it is diagnosed [14]. The presence of a long 

preclinical phase and the association of environmental exposures with an increased risk of PD  

have indicated that early life exposure to environmental toxicants may enhance dopaminergic 

neurodegeneration; for this reason, the risk of PD increases. Therefore, we considered the following 

questions: whether or not the toxic effect of ATR is observed on dopaminergic neurons; whether or not 

such toxic effects occur during the early formation and development of dopaminergic neurons; and 

whether or not the dopaminergic neurons of progeny are damaged if their mothers are exposed to ATR 

during pregnancy or lactation. 

Studies on twins and relatives have shown that the susceptibility to PD may be a result of prenatal 

predisposition [15]. This finding suggests that genes may be involved in controlling the development 

and differentiation of DA neurons. Among these genes, orphan nuclear hormone (Nurr1) is considered 

as the most important. Studies have further indicated that Nurrl is essential for the developmental 

differentiation and survival of dopaminergic neurons [16]. Defects or altered expression of Nurrl in the 

substantia nigra (SN) is possibly associated with PD [17,18]. Hence, Nurrl is considered as a candidate 

gene in the etiology of PD. Therefore, we aimed to determine whether or not the appearance of PD-like 

symptoms is influenced by Nurr1 in rats exposed to ATR during developmental growth. We also aimed 

to investigate whether or not this gene functions in the neurotoxicity of ATR. 
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2. Results 

2.1. General Status of Rats 

All of the animals survived until the end of the study. No statistically significant differences  

were observed in body weight or food consumption at any point during the course of ATR exposure 

(data not shown). 

2.2. Changes in DA Levels 

Figure 1 show the effects on striatal DA levels in the offspring exposed to ATR during gestation and 

lactation. In the control rats, striatal DA levels were 6.85 ± 0.37 ng/mg tissues (mean ± SD) in males. 

These levels decreased to 5.49 ± 0.35 and 3.85 ± 0.67 ng/mg tissues after the rats were exposed to 25 and 

50 mg/kg of ATR, respectively. The striatal DA level was 8.43 ± 0.24 ng/mg tissue in the control female 

rats and this level decreased to 6.53 ± 0.12 and 5.23 ± 0.13 ng/mg tissue after the rats were exposed to  

25 and 50 mg/kg of ATR, respectively. Striatal DA levels were decreased as the dosage of ATR was 

increased. Hence, a dose-dependent relationship was observed between DA levels and ATR dosage 

(Spearman’s Rho (rs) = −0.943, p < 0.05 in males; rs = −0.943, p < 0.05 in females). 

Figure 1. Effects of ATR on the level of DA in the striatum. Values are expressed as the 

mean ± SD of 10 animals per group. Mean values of DA were, respectively, 6.85, 5.49 and 

3.85 ng/mg tissue in males (A); 8.43, 6.53, and 5.23 ng/mg tissues in females (B). * on top of 

bars indicates p < 0.05 (compared with the control group). 

 

2.3. Effects of Developmental ATR Exposure on Nurr1 mRNA Levels 

In the rat offspring exposed to ATR during gestation and lactation, Nurr1 mRNA levels decreased 

from 1.08 to 0.71 and 0.47 in the group of 25 and 50 mg/kg respectively in males. In females Nurr1 

mRNA levels decreased from 1.01 to 0.85 and 0.65 in the group of 25 and 50 mg/kg respectively  

(p < 0.05; Figure 2). A dose-dependent relationship was also observed between the mRNA levels of 

Nurr1 and the dosage of ATR (rs = −0.934, p < 0.05 in males; rs = −0.920, p < 0.05 in females). 
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Figure 2. Offspring’s Nurr1 mRNA relative expression levels in the ventral midbrain  

in males (A) and females (B) exposed to ATR during gestation and lactation. (n = 10)  

* p < 0.05. 

 

2.4. Effects of Developmental ATR Exposure on the mRNA Levels of TH 

TH is the rate-limiting enzyme in DA synthesis. To determine whether or not the decrease in DA 

content in the tissues is due to ATR-induced changes in TH levels, we performed real-time PCR and 

analyzed the mRNA levels of TH in the ventral midbrain. The results showed no significant differences 

between the control rats and the ATR-treated rats (Figure 3). 

Figure 3. Offspring’s TH mRNA relative expression levels in the ventral midbrain in males 

(A) and females (B) exposed to ATR during gestation and lactation. (n = 10). 

 

2.5. Effects of Developmental ATR Exposure on the mRNA Levels of DAT and VMAT2 

We assessed the mRNA levels of DAT and VMAT2 in male and female offspring of rats exposed to 

ATR during gestation and lactation after one year. 
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The mRNA levels of VMAT2 decreased from 1.07 to 0.97 and 0.56 in the ventral midbrain  

of 25 and 50 mg/kg group respectively in males. In females VMAT2 mRNA levels from 1.01 decreased 

to 0.98 and 0.78 in the group of 25 and 50 mg/kg respectively (p < 0.05; Figure 4). Hence, a 

dose-dependent relationship was observed between the mRNA levels of VMAT2 and the dosage of ATR 

(rs = −0.823, p < 0.05 in males; rs = −0.658, p < 0.05 in females). 

Figure 4. Offspring’s VMAT2 mRNA relative expression levels in the ventral midbrain  

in males (A) and females (B) exposed to ATR during gestation and lactation. (n = 10)  

* p < 0.05. 

 

An increase in the mRNA level of DAT was also observed in males (from 1.02 to 1.10 and 1.10 in  

25 and 50 mg/kg group respectively) and females (from 1.00 to 1.10 and 1.11 in 25 and 50 mg/kg group 

respectively), but this increase was not significant (Figure 5). 

Figure 5. Offspring’s DAT mRNA relative expression levels in the ventral midbrain  

in males (A) and females (B) exposed to ATR during gestation and lactation. (n = 10). 
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3. Discussion 

ATR is frequently detected in ground and surface water in agricultural regions because this substance 

exhibits limited solubility in water [19]. ATR is also one of the most frequently detected pesticides in 

fresh water sources in the US [20,21]. Furthermore, this herbicide has been frequently detected in rain 

water [22,23], fog, arctic ice, and seawater at great distances from agricultural areas [24] In living 

organisms, ATR is not completely removed from the body within 24 h; for instance, the major 

metabolites of ATR can be detected in the urine of mice at 48 h after administration [25]. Therefore, the 

toxic effects of ATR may be manifested only after organisms have been repeatedly exposed because this 

chemical has accumulated and exceeded the critical threshold. 

For a short-term exposure (15 to 21 days) of a mixer-loader-tender applicator in California, the 

absorbed daily dose (ADD) of ATR ranges from 1.8 to 6.1 μg/kg/day [26,27]. By comparison, a higher 

ADD of ATR is predicted for farmers and commercial applicators in developing countries because of 

inappropriate personal protective equipment and unintentional excessive application. The families of 

ATR applicators are also at risk of high-level ATR exposure [28]. Our experimental doses administered 

to rats ranged from 25 to 50 mg/kg. These doses were based on the concentrations used in previous 

studies [13,29] and similar to 70 mg/kg/day, which is used to calculate the lowest observed adverse 

effect level [30]. 

Our study focused on the effects of ATR exposure on the development of Mesencephalic 

dopaminergic (MesDA) neurons. MesDA neurons control voluntary movement; as such, PD occurs 

when these neurons are degenerated. MesDA neurons begin to develop at embryonic day 10 (E10); at 

E10.5, Nurr1 expression begins shortly before TH is formed (E11.5). At E12.5, numerous MesDA 

neurons are formed, and development of the MesDA system continues until the postnatal period [31,32]. 

Ross et al. reported that ATR could cross the blood brain barrier and enter the brain through an unknown 

mechanism [25]. Rayner et al. [33] reported that administration of atrazine to lactating dams resulted in 

delayed vaginal opening in nursing litters. This study suggested that milk-derived factors might have 

effect on the offspring. Similar studies (Stoker et al., 1999; Rayner et al., 2007) [29,34] reported that 

exposure of pregnant and early postpartum dams to atrazine at 100 mg/kg/d resulted in preputial 

separation delays in the male offspring and resulted in increased prostate inflammation in the adult 

males. Stoker et al. also found that 14C-atrazine can be detected in the anterior and posterior 

hypothalamus and striatum of nursing rat when administration of 14C-atrazine a single dose of 2 or  

4 mg/kg by gavage to lactating dams [35]. The above studies indicated that ATR could enter the infant 

brain through breast milk. In our study, the offspring were not directly treated with ATR; instead, these 

offspring were exposed to ATR by maternal gavage from GD5 to PND22. Neither the offspring nor the 

dams were treated with ATR after PND22. Hence, the duration of exposure began at the critical period 

of MesDA neuron development. 

The present study is based on the following hypotheses: (1) exposure to ATR at early stages of life 

may lead to disease and dysfunction in later years [36] and (2) exposure to environmental factors during 

the critical periods of development can lead to adult expression of the disease [37]. 

DA is one of the primary neurotransmitters in the central nervous system. As such, a remarkable 

decrease in DA in the striatum is a sign of PD. In vivo [11,12] and in vitro [38–40] studies have shown 

that exposure to ATR can induce dopaminergic neurotoxicity manifested by decreased DA levels. We 
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assessed the DA levels in the striatum of the offspring after one year of exposure of their mothers to ATR 

during gestation and lactation. Our studies showed that ATR can decrease the DA content in the 

striatum. This suggests that exposure to ATR during development can induce dopaminergic neurotoxicity. 

The metabolism of DA in the brain is a complicated process involving synthesis, release, degradation, 

and reuptake. Dopaminergic cells in the brain use TH to convert tyrosine to levodopa (L-DOPA). 

L-DOPA is then converted to DA by aromatic amino acid decarboxylase (AAAD). TH is the 

rate-limiting enzyme for DA synthesis. Intra-neuronal DA is then transported and stored in synaptic 

vesicles by VMAT-2. Under normal circumstances, neuronal activation promotes the vesicular release 

of DA into the synaptic cleft and elicits a physiological effect via the combination of DA and DA 

receptors (DR). When released, DA undergoes rapid reuptake to terminate activity and maintain DA 

homeostasis. Reuptake is accomplished in two ways: (1) synaptosomal uptake via a DA transporter 

(DAT), which transports DA from the extracellular space into the cytosol; and (2) vesicular uptake by 

VMAT-2, which stores DA in synaptic vesicles. Free DA in the synaptic cleft is converted to 

homovanillic acid (HVA) by catechol-O-methyl transferase (COMT) and monoamine oxidase (MAO). 

DA in the cytosol is converted to 3,4-dihydroxyphenylacetic acid (DOPAC) by MAO [41]. If any stage 

of DA metabolism is disrupted, the quantity of DA is decreased, causing PD. In addition, other 

transcription factors, including Pitx3, Lmx1b, Nurr1, and Wnt (Figure 7), possibly affect the synthesis 

and metabolism of DA. Among these factors, Nurr1 was investigated in this study. 

The possible reason for the decrease in striatum DA levels reported in the present studies could be an 

inhibition of expression of the rate-limiting enzyme for DA synthesis TH [41]. We assessed the mRNA 

and protein levels of TH in the ventral midbrain of the offspring after one year of exposure of their 

mothers to ATR during gestation and lactation. However, our studies showed that TH was not significantly 

affected by ATR, This is consistent with the findings of previous studies done by Filipov et al. [40]. 

Similarly, the expression of TH was not significantly affected by ATR in PC12 cells [39]. Also,  

TH protein levels in the striatum of mice exposed to ATR were not different among treatments at a time 

when DA levels were decreased [12]. This result suggested that TH was not a major target of ATR. 

Another possible reason for the decrease in striatum DA levels could be the effect on transportation 

and storage of DA by ATR. Thus we assessed the mRNA and protein levels of DAT, and VMAT2 in the 

ventral midbrain of the offspring after one year of exposure of their mothers to ATR during gestation and 

lactation. The major finding in the present study indicated that exposure to ATR during a critical period 

of dopaminergic neuron development decreased VMAT2 expression in the ventral midbrain. This is 

similar to previous studies [14,42] that showed exposure of pregnant mice to the organochlorine 

pesticide heptachlor can increase the vulnerability to developing PD by influencing the expression of 

VMAT2 and DAT. However the difference is that the organochlorine pesticide heptachlor can 

upregulate the dopamine transporter (DAT) and the vesicular monoamine transporter 2 (VMAT2) in 

their offspring at 12 weeks of age. The possible reason is that exposure of pregnant mice to heptachlor 

may effect VMAT2 and DAT, and increase their compensatory expression in the adult stage, thus 

increasing the susceptibility to later stimulation. Results of this study showed that, with the increase of 

age, the aging caused the loss of expression compensatory capacity and expression downregulation, 

leading to DA neuron injury. The effect of ATR on the offspring in adulthood was not examined in  

this study. 
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We hypothesize that the decrease of neuronal activity in dopamine neurons by ATR may be 

responsible for alterations in transcription, so we determined mRNA and protein levels of the nuclear 

transcription factor Nurr1, known to regulate DAT and VMAT2 [43,44]. We found dose-dependent 

decreases in mRNA levels of Nurr1 transcription in the offspring. This indicated that, ATR could 

damage the DA neurons in senile rats through its early effect on Nurr1, thus changing the DAT and 

VMAT2 expression. 

The low mRNA expression of VMAT2 reduced transport capacity and inhibited DA uptake into 

striatal synaptic vesicles. ATR did not exhibit a significant influence on the mRNA expression of DAT, 

although this expression possibly increased by 10%. Such inhibition could decrease vesicular DA levels 

and increase cytosolic DA levels; as a result, free DA excessively accumulates in the cytosol. Increased 

cytosolic DA then induces oxidative stress by producing free radicals and reactive metabolites [45,46]. 

Therefore, ROS-mediated toxicity occurs in DA neurons [47]. In addition, high concentrations of 

cytosolic DA inhibit mitochondrial respiration and can cause cytotoxicity [48]. 

To further confirm the effect of Nurr1, TH, DAT and VMAT2 on DA neurons, their protein 

expressions were also observed (Figure 6). Western blots showed that, the expression of Nurr1 and 

VMAT2 were down regulated with the increasing concentrations of ATR (0, 25 and 50 mg/kg), which 

had the same tendency with mRNA expression. VMAT2 mRNA decrease is only significant at 50 mg/kg 

while VMAT2 protein decreased significantly at 25 and 50 mg/kg. The expression of DAT was 

upregulated with the increasing concentrations of ATR (0, 25 and 50 mg/kg). This change tendency was 

also the same with mRNA, but DAT protein increased significantly at 50 mg/kg. It is possible that 

VMAT2 protein is lost at 25 mg/kg before a mRNA decrease is measurable. The expression of DAT 

protein is increased before mRNA increase is measurable. 

Figure 6. Western blot gel (A) and histogram (B) showing relative expression of Nurr1, TH, 

DAT and VMAT2 proteins in the midbrain. The results were expressed as the ratio of target 

protein/β-actin in each group. β-actin was used as the internal control. (n = 10) * p < 0.05. 
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4. Experimental Section 

4.1. Chemicals and Reagents 

Atrazine (CAS Registry Number: 1912-24-9; 2-chloro-4-ethylamino-6-isopropylamino-S-triazine, 

ATR, 98% purity) was obtained from Chem Services (West Chester, PA, USA). ATR solutions  

(25 and 50 mg/mL) were prepared by dissolving ATR in 3% starch solution. 

The monoamine standards of DA were purchased from Sigma (St. Louis, MO, USA). 

4.2. Animals and Treatment 

Thirty virgin female (220 to 250 g) and thirty male (300 to 320 g) Sprague-Dawley rats were 

purchased from Vital River Laboratories (Beijing, China). The animals were treated in accordance with 

the criteria outlined in the Guide for the Care and Use of Laboratory Animals prepared by National 

Institutes of Health. All efforts were made to minimize the number of animals used in the experiments 

and their suffering. 

The rats were acclimatized for one week and allowed to mate in standard stainless steel cages with 

one male and one female per cage. The next morning, the rats were examined for vaginal plugs.  

The monitoring was performed for 5 continuous days. The day on which vaginal plugs were observed 

was designated as day 0 of pregnancy. The pregnant rats were housed alone in standard polyethylene 

cages with wood shavings as bedding. 

Fifteen pregnant dams were selected and randomly divided into three groups according to body 

weight (five rats per group). The pregnant dams received a daily dose of 10 μL/g body weight of ATR or 

vehicle drug by oral gavage starting on GD 5 until the offspring were weaned on postnatal day (PND) 22. 

The day on which the offspring were born was referred to as PND 0. Approximately 0, 25, and  

50 mg/kg/day of ATR were administered (3% starch solution, vehicle control). Oral gavage was 

performed at approximately the same time in the morning each day. 

Two female and two male weaning offspring were randomly selected from each litter. These 

offspring were distributed according to group and gender and then placed in separate cages until they 

reached one year of age. 

The animals were provided purified water and food ad libitum. The animal cages were maintained at 

a constant light/dark cycle (on at 06:00 h; off at 18:00 h), temperature of 22 ± 2 °C, and relative humidity 

of 50% ± 15%. 

After one year, the male and female offspring in the control and ART-treated groups were euthanized 

by administering chloral hydrate (30 mg/kg). The brains were rapidly removed and then rinsed with 

ice-cold saline. The midbrain and the whole corpus striatum of the bilateral side of the brain were 

dissected according to their different shape and location. The tissues were immediately frozen and stored 

at −80 °C until further processing. 

4.3. Body Weight and Food Consumption 

We recorded the body weight and food consumption of the rats once a week during the  

entire experiment. 
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4.4. HPLC-FL Determination of DA 

The DA concentrations in the striatum were assessed using a high-pressure liquid chromatography 

(HPLC) system with a fluorescence detector. 

The corpus striatum of the rats in each group were homogenized in 0.1 M perchloric acid and 

centrifuged at 10,000 rpm for 20 min at 4 °C. The homogenized samples were then filtered using a  

0.2 μm cellulose membrane. The supernatants were then analyzed to determine DA contents. Afterward, 

the samples were injected into an Agilent chromatograph equipped with a fluorescence detector 

(Agilent, Santa Clara, CA, USA) and a COSMOSIL C18 Column (5 μm, 4.6 mm × 250 mm; Nacalai, 

Kyoto, Japan). 

The mobile phase consisted of trisodium citrate (20 mM) and EDTA (0.1 mM); this pH of mobile 

phase was adjusted to 5.1 by adding glacial acetic acid. 

Samples were separated at room temperature and a flow rate of 1.0 mL/min. The HPLC detector was 

set at an excitation wavelength of 285 nm and an emission wavelength of 333 nm. Data were quantified 

using the area under the peaks and external standards. Quantification was verified using calibration 

curves obtained from individual monoamine standards as reference. 

4.5. Total RNA Extraction and Real-Time PCR 

Total RNA was extracted from the ventral midbrain by using RNAiso Plus (TakaRa Biotechnology 

Co., Ltd., Dalian, China) according to the manufacturer’s instructions. Concentration and purity were 

determined by determining the absorbance at 260 and 280 nm. Approximately 1 μg of total RNA was 

used to synthesize cDNA (PrimeScript® RT reagent kit and gDNA Eraser; TakaRa Biotechnology Co., 

Ltd., Dalian, China) according to the manufacturer’s protocol. 

The primers of rat beta-actin, TH, DAT, VMAT2, and Nurr1 were designed using the Primer Select 

software program (Laser-gene, Whitehead Institute, Cambridge, MA, USA) and synthesized by TakaRa 

Biotechnology Co., Ltd. The primer sequences are listed in Table 1. 

Table 1. Primer nucleotide sequences used for real-time PCR. 

Genes Primers Length (bp) Annealing temperature (°C)

Nurr1 
F: 5'-TGATGATCTCCATAGAGCCAGTCAG-3' 

129 57.4 
R: 5'-CCAATCCGGCAATGACCAG-3' 

TH 
F: 5'-AGCTGTGCAGCCCTACCAAGA-3' 

140 57.4 
R: 5'-GTGTGTACGGGTCAAACTTCACAGA-3'

DAT 
F: 5'-GTACTGGCGGCTATGCTGGAA-3' 

82 57.4 
R: 5'-GGGTCTGAAGGTCACAATGCTG-3' 

VAMT 
F: 5'-CCTTCGAAGTCCACCTGCTAA-3' 

116 57.4 
R: 5'-CATCACCGATGGGATATGACTG-3' 

β-actin 
F: 5'-GGAAATCGTGCGTGACATTAAAG-3' 

85 57.4 
R: 5'-CGGCAGTGGCCATCTCTT-3' 

Target mRNA was quantified by real-time PCR (SYBR® Premix Ex Taq™ II TakaRa Biotechnology 

Co., Ltd., Dalian, China) using an ABI 7500 Sequence Detection System (Applied Biosystems, Foster 

City, CA, USA). The reactions were performed in a total volume of 20 μL with 2 μL of cDNA used as a 
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template and 10 μM of forward and reverse primers. The target sequence and beta-actin were amplified 

and this procedure was conducted in triplicate. 

The following thermal cycling conditions were used: 30 s at 94 °C; 40 cycles of 94 °C for 5 s; 57.4 °C 

for 20 s and 72 °C for 20 s; and incubation at 72 °C for 1 min. 

The results are expressed as relative expression ratio. The relative expression ratio of a target gene is 

computed, based on its real-time PCR efficiencies (E) and the crossing point (CP) difference (∆) of one 

treated sample versus one control (∆CP control − treatment). The formula is as follows: 

 

All of the primer sets yielded a single PCR product with the expected size by agarose gel 

electrophoresis. Specificity was routinely monitored by checking the product melting curves 

(dissociation curves) in each reaction well. Standard curves were constructed using 0.5 to 100 ng of total 

RNA in triplicate. 

4.6. Western Blotting 

Midbrain tissues were lysed on ice for 30 min in lysis buffer containing a protease inhibitor cocktail 

(Roche, Baltimore, MD, USA). After centrifugation at 10,000 g 4 °C for 15 min, the supernatant was 

collected. Protein concentration was determined using a BCA protein assay kit (Applygen, Beijing, 

China). Equal amounts of protein (40–50 μg) were separated by 12% sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS-PAGE), electrotransferred and immobilised on a 

nitrocellulose membrane. The membrane was blocked with 5% non-fat milk in phosphate-buffered 

saline containing 0.1% Tween 20 (PBS-T) and incubated for one h at room temperature. Membranes 

were incubated over night at 4 °C with an appropriately diluted primary antibodies in PBS.  

The membranes were washed three times and incubated with horseradish peroxidase conjugated 

secondary antibodies for one hour at room temperature and then washed again. The targeted protein was 

visualized with enhanced chemiluminescent (ECL) system (GE Healthcare, Amersham Place, Little 

Chalfont, Buckinghamshire HP7 9NA, England, UK) according to the manufacturer’s instructions.  

The membranes were then exposed to CL-Xposure film (Perbio Science, Cramlington, UK). β-actin was 

used to normalize the samples. The densities of the specific protein bands were quantified using SIM Gel 

Imaging Analysis System (Bio-pro, Ashbourne, UK). 

4.7. Statistical Analysis 

We analyzed body weight and food consumption by repeated-measures ANOVA (RMANOVA; 

treatment × time). Dunnett’s t test was used to compare the body weight and food consumption of the 

control rats with those of the treated groups. Other data were analyzed using ANOVA. Dunnett’s t test 

was used to identify significant differences between the control group and the treatment groups. 

Dose-dependent relationships between groups were analyzed using Spearman correlation analysis. Data 

were expressed as mean ± SD. Significant effects were observed at p < 0.05. Statistical analyses were 

performed using SPSS (Chicago, IL, USA). 
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5. Conclusions 

Our findings suggested a vulnerability to developing PD, in which exposure to ATR during  

the critical period of dopaminergic neuron development subsequently altered the dopamine system.  

As a result, DA levels in the striatum decreased. 

A possible reason for this decrease in striatal DA levels was attributed to the decreased mRNA 

expression of Nurr1. This decrease may result in reduced Nurr1 activity and downregulate the mRNA 

expression of VMAT2. ATR would then function by interfering with the vesicular storage or reuptake of DA. 

Thus, our findings suggested that early life exposure to ATR leads to persistent changes in the 

developing dopaminergic system by regulatory Nurr1 expression. This condition may increase the 

susceptibility to PD. Other possible ATR targets, particularly AAAD, MAO, and Pixt3, should be 

further investigated (Figure 7). 

Figure 7. Schematic illustrating the proposed mechanism of developmental ATR exposure 

on dopaminergic neurons. ATR does not alter the function of TH substantially but can 

decrease Nurr1 transcription, which can target downstream genes, such as DAT and 

VMAT2, resulting in the inhibition of vesicular uptake followed by increased cytosolic  

DA (present study). The effects of ATR on AAAD, MAO, DR, COMT, and Pitx3  

remain unknown. (A: Normal condition; B: After developmental ATR exposure.) 

 

Acknowledgments 

This study was supported by the National Nature Science Foundation of China (Grant No. 81072332). 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Tanner, C.M.; Chen, B.; Wang, W.; Peng, M.; Liu, Z.; Liang, X.; Kao, L.C.; Gilley, D.W.;  

Goetz, C.G.; Schoenberg, B.S. Environmental factors and Parkinson’s disease: A case-control 

study in China. Neurology 1989, 39, 660–664. 



Int. J. Mol. Sci. 2014, 15 2823 

 

 

2. Cory-Slechta, D.A.; Thiruchelvam, M.; Barlow, B.K.; Richfield, E.K. Developmental pesticide 

models of the Parkinson disease phenotype. Environ. Health Perspect. 2005, 113, 1263–1270. 

3. Brown, T.P.; Rumsby, P.C.; Capleton, A.C.; Rushton, L.; Levy, L.S. Pesticides and Parkinson’s 

disease-is there a Link? Environ. Health Perspect. 2006, 114, 156–164. 

4. McCormack, A.L.; Thiruchelvam, M.; Manning-Bog, A.B.; Thiffault, C.; Langston, J.W.; 

Cory-Slechta, D.A.; di Monte, D.A. Environmental risk factors and Parkinson’s disease: Selective 

degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol. Dis. 

2002, 10, 119–127. 

5. Drechsel, D.A.; Patel, M. Role of reactive oxygen species in the neurotoxicity of environmental 

agents implicated in Parkinson’s disease. Free Radic. Biol. Med. 2008, 44, 1873–1886. 

6. Gao, H.M.; Hong, J.S.; Zhang, W.; Liu, B. Synergistic dopaminergic neurotoxicity of the pesticide 

rotenone and inflammogen lipopolysaccharide: Relevance to the etiology of Parkinson’s disease.  

J. Neurosci. 2003, 23, 1228–1236. 

7. Hines, C.J.; Deddens, J.A.; Lu, C.; Fenske, R.; Striley, C.A. Mixed-effect models for evaluating multiple 

measures of atrazine exposure among custom applicators. J. Occup. Environ Hyg. 2006, 3, 274–283. 

8. Cooper, R.L.; Stoker, T.E.; Tyrey, L.; Goldman, J.M.; McElroy, W.K. Atrazine disrupts the 

hypothalamic control of pituitary-ovarian function. Toxicol. Sci. 2000, 53, 297–307. 

9. Narotsky, M.G.; Best, D.S.; Guidici, D.L.; Cooper, R.L. Strain comparisons of atrazine-induced 

pregnancy loss in the rat. Reprod. Toxicol. 2001, 15, 61–69. 

10. Stoker, T.E.; Guidici, D.L.; Laws, S.C.; Cooper, R.L. The effects of atrazine metabolites on puberty 

and thyroid function in the male Wistar rat. Toxicol. Sci. 2002, 67, 198–206. 

11. Rodriguez, V.M.; Thiruchelvam, M.; Cory-Slechta, D.A. Sustained exposure to the widely  

used herbicide atrazine: Altered function and loss of neurons in brain monoamine systems.  

Environ. Health Perspect. 2005, 113, 708–715. 

12. Coban, A.; Filipov, N.M. Dopaminergic toxicity associated with oral exposure to the herbicide 

atrazine in juvenile male C57BL/6 mice. J. Neurochem. 2007, 100, 1177–1187. 

13. Rosenberg, B.G.; Chen, H.; Folmer, J.; Liu, J.; Papadopoulos, V.; Zirkin, B.R. Gestational exposure 

to atrazine: Effects on the postnatal development of male offspring. J. Androl. 2008, 29, 304–311. 

14. Richardson, J.R.; Caudle, W.M.; Wang, M.Z.; Dean, E.D.; Pennell, K.D.; Miller, G.W. 

Developmental heptachlor exposure increases susceptibility of dopamine neurons to 

N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in a gender-specific manner. Neurotoxicology 

2008, 29, 855–863. 

15. Tanner, C.M.; Ottman, R.; Goldman, S.M.; Ellenberg, J.; Chan, P.; Mayeux, R.; Langston, J.W. 

Parkinson disease in twins: An etiologic study. JAMA 1999, 281, 341–346. 

16. Federoff, H.J. Nur(R1) turing a notion on the etiopathogenesis of Parkinson’s disease.  

Neurotox. Res. 2009, 16, 261–270. 

17. Katunar, M.R.; Saez, T.; Brusco, A.; Antonelli, M.C. Immunocytochemical expression of 

dopamine-related transcription factors Pitx3 and Nurr1 in prenatally stressed adult rats.  

J. Neurosci. Res. 2009, 87, 1014–1022. 

18. Decressac, M.; Kadkhodaei, B.; Mattsson, B.; Laguna, A.; Perlmann, T.; Björklund, A. 

Alpha-synuclein-induced down-regulation of nurr1 disrupts GDNF signaling in nigral dopamine 

neurons. Sci. Transl. Med. 2012, 4, 163ra156. 



Int. J. Mol. Sci. 2014, 15 2824 

 

 

19. Short, P.; Colborn, T. Pesticide use in the U.S. and policy implications: A focus on herbicides. 

Toxicol. Ind. Health 1999, 15, 240–275. 

20. Gilliom, R.J.; Barbash, J.E.; Crawford, C.G.; Hamilton, P.A.; Martin, J.D.; Nakagaki, N.;  

Nowell, L.H.; Scott, J.C. Pesticides in the Nation’s Streams and Groundwater, 1992–2001;  

U.S. Geological Survey: Reston, VA, USA, 2006; pp. 2006–3028. 

21. Benotti, M.J.; Trenholm, R.A.; Vanderford, B.J.; Holady, J.C.; Stanford, B.D.; Snyder, S.A. 

Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environ. Sci. Technol. 

2009, 43, 597–603. 

22. Bossi, R.; Vejrup, K.V.; Mogensen, B.B.; Asman, W.A. Analysis of polar pesticides in rainwater in 

Denmark by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2002, 957, 

27–36. 

23. Brun, G.L.; MacDonald, R.M.; Verge, J.; Aubé, J. Long-term atmospheric deposition of current-use 

and banned pesticides in Atlantic Canada; 1980–2000. Chemosphere 2008, 71, 314–327. 

24. Jablonowski, N.D.; Schaffer, A.; Burauel, P. Still present after all these years: Persistence plus 

potential toxicity raise questions about the use of atrazine. Environ. Sci. Pollut. Res. Int. 2011, 18, 

328–331. 

25. Ross, M.K.; Jones, T.L.; Filipov, N.M. Disposition of the herbicide 

2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine (Atrazine) and its major metabolites in 

mice: A liquid chromatography/mass spectrometry analysis of urine, plasma, and tissue levels. 

Drug Metab. Dispos. 2009, 37, 776–786. 

26. US Environmental Protection Agency (EPA). Atrazine, Simazine, and Cyanazine: Notice of 

Initiation of Special Review; EPA: Washington, DC, USA, 1994. 

27. Gammon, D.W.; Aldous, C.N.; Carr, W.C., Jr.; Sanborn, J.R.; Pfeifer, K.F. A risk assessment of 

atrazine use in California: Human health and ecological aspects. Pest Manag. Sci. 2005, 61, 

331–355. 

28. Curwin, B.D.; Hein, M.J.; Sanderson, W.T.; Striley, C.; Heederik, D.; Kromhout, H.; Reynolds, S.J.; 

Alavanja, M.C. Urinary pesticide concentrations among children, mothers and fathers living in 

farm and non-farm households in iowa. Ann. Occup. Hyg. 2007, 51, 53–65. 

29. Rayner, J.L.; Enoch, R.R.; Wolf, D.C.; Fenton, S.E. Atrazine-induced reproductive tract alterations 

after transplacental and/or lactational exposure in male Long-Evans rats. Toxicol. Appl. Pharmacol. 

2007, 218, 238–248. 

30. US Environmental Protection Agency (EPA). Interim Registration Eligibility Decision for 

Atrazine; EPA: Washington, DC, USA, 2003. 

31. Bayer, S.A.; Wills, K.V.; Triarhou, L.C.; Verina, T.; Thomas, J.D.; Ghetti, B. Selective 

vulnerability of late-generated dopaminergic neurons of the substantia nigra in weaver mutant 

mice. Proc. Natl. Acad. Sci. USA 1995, 92, 9137–9140. 

32. Van den Munckhof, P.; Luk, K.C.; Ste-Marie, L.; Montgomery, J.; Blanchet, P.J.; Sadikot, A.F.; 

Drouin, J. Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic 

neurons. Development 2003, 130, 2535–2542. 

33. Rayner, J.L.; Wood, C.; Fenton, S.E. Exposure parameters necessary for delayed puberty  

and mammary gland development in Long-Evans rats exposed in utero to atrazine.  

Toxicol. Appl. Pharmacol. 2004, 195, 23–34. 



Int. J. Mol. Sci. 2014, 15 2825 

 

 

34. Stoker, T.E.; Robinette, C.L.; Cooper, R.L. Maternal exposure to atrazine during lactation 

suppresses suckling-induced prolactin release and results in prostatitis in the adult offspring. 

Toxicol. Sci. 1999, 52, 68–79. 

35. Cooper, R.L.; Laws, S.C.; Das, P.C.; Narotsky, M.G.; Goldman, J.M.; Lee Tyrey, E.; Stoker, T.E. 

Atrazine and reproductive function: Mode and mechanism of action studies. Birth Defects Res. B 

Dev. Reprod. Toxicol. 2007, 80, 98–112. 

36. Heindel, J.J. Role of exposure to environmental chemicals in the developmental basis of disease 

and dysfunction. Reprod. Toxicol. 2007, 23, 257–259. 

37. Barker, D.J.; Osmond, C.; Law, C.M. The intrauterine and early postnatal origins of cardiovascular 

disease and chronic bronchitis. J. Epidemiol. Community Health 1989, 43, 237–240. 

38. Das, P.C.; McElroy, W.K.; Cooper, R.L. Differential modulation of catecholamines by chlorotriazine 

herbicides in pheochromocytoma (PC12) cells in vitro. Toxicol. Sci. 2000, 56, 324–331. 

39. Das, P.C.; McElroy, W.K.; Cooper, R.L. Potential mechanisms responsible for chlorotriazine-induced 

alterations in catecholamines in pheochromocytoma (PC12) cells. Life Sci. 2003, 73, 3123–3138. 

40. Filipov, N.M.; Stewart, M.A.; Carr, R.L.; Sistrunk, S.C. Dopaminergic toxicity of the herbicide 

atrazine in rat striatal slices. Toxicology 2007, 232, 68–78. 

41. Cooper, J.R.; Bloom, F.E.; Roth, R.H. The Biochemical Basis of Neuropharmacology;  

Oxford University Press: New York, NY, USA, 2003. 

42. Caudle, W.M.; Richardson, J.R.; Wang, M.; Miller, G.W. Perinatal heptachlor exposure increases 

expression of presynaptic dopaminergic markers in mouse striatum. Neurotoxicology 2005, 26, 

721–728. 

43. Hermanson, E.; Joseph, B.; Castro, D.; Lindqvist, E.; Aarnisalo, P.; Wallen, A.; Benoit, G.; 

Hengerer, B.; Olson, L.; Perlmann, T. Nurr1 regulates dopamine synthesis and storage in MN9D 

dopamine cells. Exp. Cell Res. 2003, 288, 324–334. 

44. Smits, S.M.; Ponnio, T.; Conneely, O.M.; Burbach, J.P.; Smidt, M.P. Involvement of Nurr1 in 

specifying the neurotransmitter identity of ventral midbrain dopaminergic neurons. Eur. J. Neurosci. 

2003, 18, 1731–1738. 

45. LaVoie, M.J.; Hastings, T.G. Dopamine quinone formation and protein modification associated 

with the striatal neurotoxicity of methamphetamine: Evidence against a role for extracellular 

dopamine. J. Neurosci. 1999, 19, 1484–1491. 

46. Miller, G.W.; Gainetdinov, R.R.; Levey, A.I.; Caron, M.G. Dopamine transporters and neuronal 

injury. Trends Pharmacol. Sci. 1999, 20, 424–429. 

47. Chiueh, C.C.; Andoh, T.; Lai, A.R.; Lai, E.; Krishna, G. Neuroprotective strategies in Parkinson’s 

disease: Protection against progressive nigral damage induced by free radicals. Neurotox. Res. 

2000, 2, 293–310. 

48. Berman, S.B.; Hastings, T.G. Dopamine oxidation alters mitochondrial respiration and induces 

permeability transition in brain mitochondria: Implications for Parkinson’s disease. J. Neurochem. 

1999, 73, 1127–1137. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


