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Abstract: G Protein Coupled Receptors (GPCRs) are the largest family of receptors whose 
ligands constitute nearly a third of prescription drugs in the market. They are widely 
involved in diverse physiological functions including learning and memory. NMDA 
receptors (NMDARs), which belong to the ionotropic glutamate receptor family, are 
likewise ubiquitously expressed in the central nervous system (CNS) and play a pivotal  
role in learning and memory. Despite its critical contribution to physiological and 
pathophysiological processes, few pharmacological interventions aimed directly at 
regulating NMDAR function have been developed to date. However, it is well established 
that NMDAR function is precisely regulated by cellular signalling cascades recruited 
downstream of G protein coupled receptor (GPCR) stimulation. Accordingly, the 
downstream regulation of NMDARs likely represents an important determinant of outcome 
following treatment with neuropsychiatric agents that target selected GPCRs. Importantly, 
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the functional consequence of such regulation on NMDAR function varies, based not only 
on the identity of the GPCR, but also on the cell type in which relevant receptors are 
expressed. Indeed, the mechanisms responsible for regulating NMDARs by GPCRs 
involve numerous intracellular signalling molecules and regulatory proteins that vary from 
one cell type to another. In the present article, we highlight recent findings from studies 
that have uncovered novel mechanisms by which selected GPCRs regulate NMDAR 
function and consequently NMDAR-dependent plasticity. 

Keywords: NMDA receptor; G protein coupled receptor; protein kinase A; protein kinase C; 
cyclic AMP 

 

1. The Introduction of G Protein Coupled Receptors (GPCRs) 

GPCRs (G protein coupled receptors) are the largest family of transmembrane receptors and their 
clinical importance is evident by the fact that nearly a third of prescription drugs target these receptors [1]. 
GPCRs have a common structural motif that consists of seven transmembrane helices, in which the  
N-terminus is extracellular and the C-terminus is intracellular. When a GPCR is activated, its 
conformation changes and allows the receptor to interact with G proteins. The exchange of GDP for 
GTP dissociates Gα from Gβγ subunits, subsequently activating various intracellular effectors [2]. The 
activation of G proteins can be terminated by regulators of G protein signalling (RGS) proteins, 
resulting in the cessation of signalling pathways induced by GPCRs [3]. Of note, the ability of some 
GPCRs to signal independently of G proteins is being increasingly recognized [4]. 

GPCRs include three distinct families: A, B and C, based on their different amino acid sequences. 
Family A is the largest group including muscarinic acetycholine receptor, dopamine receptor and 
sphingosine 1-phosphate receptor. Family B has only 25 members, including PAC1 (pituitary 
adenylate cyclase activating peptide) receptor and VIP (vasoactive intestinal peptide) receptor. Family C 
is also relatively small and contains the metabotropic glutamate receptors (mGluRs) as well as some 
taste receptors and all family members have very large extracellular domain that mediate ligand 
binding and activation [5].The Gα subunit that couples with these receptors is also used to classify 
receptors. Four families are identified namely, Gαq, Gαs, Gαi/o and Gα12/13. The Gαq pathway 
activates phospholipase C beta (PLCβ) to produce inositol trisphosphate (IP3) and diacylglycerol 
(DAG). The Gαs pathway usually stimulates adenylate cyclase (AC) activity whereas the Gαi/o family 
inhibits it. In contrast, Gα12/13 stimulates Rho activity and induces cytoskeleton remodelling [6]. 

Collectively, GPCRs are widely involved in diverse physiological functions. They have an 
important influence on learning and memory as evidenced by impaired memory associated with the 
dysfunction of GPCRs. For example, genetic ablation of the muscarinic M1 receptor is associated with 
cognitive dysfunction [7]. In this capacity, GPCRs likely influence learning and memory by regulating 
excitatory synaptic transmission and plasticity. Specifically, NMDA receptors (NMDARs), which 
belong to the family of ionotropic glutamate receptors, are ubiquitously expressed in the CNS and play 
a pivotal role in learning and memory. Accordingly, their function is tightly regulated by cellular 
signalling cascades that converge upon constituent subunits to alter NMDAR function through  



Int. J. Mol. Sci. 2014, 15 3005 
 

 

post-translational modifications. In keeping with this, signalling cascades recruited downstream of 
GPCRs can readily influence NMDAR function and in this way alter learning and memory. In addition 
to influencing learning and memory, GPCRs are also an important target in treating myriad psychiatric 
disorders, for example the serotonin and dopamine receptors represent important targets for 
antipsychotic drugs [8,9]. Likewise, dysregulated NMDAR function contributes to psychiatric illnesses 
as illustrated by the schizophrenic-like symptoms observed in humans upon administration of 
NMDAR antagonists, such as ketamine and phencyclidine (PCP). These and other findings have 
contributed to the development of the NMDAR hypofunction theory of schizophrenia, which has 
found increasing support in recent years [10]. To date, the development of therapeutically effective 
agents capable of directly modulating NMDAR function has met with limited success at best. 
However, as discussed in the following sections, the NMDAR likely represents an important downstream 
effector of GPCRs that have been targeted by established and emerging neuropsychiatric agents. 

2. Introduction to NMDARs (NMDA Receptors) 

NMDARs are tetramers composed of two GluN1 subunits and two GluN2 subunits or in some 
cases, a GluN2 and a GluN3 subunit [11]. Structurally, NMDAR subunits are composed of: (1) two 
flexible extracellular lobes; the N-terminal domain (NTD) and agonist-binding domain (ABD);  
(2) three transmembrane segments and a re-entrant loop; and (3) a C-terminal tail that interacts with 
various intracellular proteins [12]. The NTD of NMDAR subunits plays an important role in subunit 
assembly [13]. In GluN2A and GluN2B subunits, this region represents the binding site for allosteric 
inhibitors such as Zn2+ and Ro25-6981 respectively [14,15]. Of note, opening of the NMDAR channel 
requires binding of not only glutamate, but also glycine (co-agonist) to GluN2 and GluN1 subunits, 
respectively. When the agonists bind, they stabilize a closed-cleft conformation of the two extracellular 
lobes (NBD and ABD) which causes the receptor channel to open. In contrast, competitive antagonists 
bind the same domains but impede cleft closure and prevent channel activation [16]. 

2.1. GluN1 Subunits 

GluN1 is expressed ubiquitously in the brain. Its gene (Grin1) consists of 22 exons and alternative 
splicing of three of these (exons 5, 21 and 22) generates eight different isoforms [17]. Exon 5 encodes 
a splice cassette within the extracellular N-terminus (termed N1), whereas exons 21 and 22 encode  
two splice cassettes within the intracellular C-terminus of the GluN1 subunit (termed C1 and C2 
respectively) [17]. The splicing of the C2 cassette removes the first stop codon and encodes a different 
cassette (termed C2') [17]. GluN1 subunits do not form functional receptors alone. When expressed in 
the absence of GluN2 subunits, GluN1 isoforms containing N1, C1 and C2 cassettes are retained in the 
ER [18], due to the presence within the C1 cassette of a ER retention motif [19]. In contrast, when  
co-expressed with GluN2 subunits the ER retention motif is masked allowing for the release of 
GluN1/GluN2 receptors from ER and trafficking to the cell surface [19]. In addition, the splice status 
of GluN1 can influence the functional modulation of NMDARs by protein kinase A (PKA) and  
protein kinase C (PKC). Consensus serine residues within the C1 cassette of GluN1 subunit are 
phosphorylated by PKA and PKC [20,21]. Interestingly, PKC phosphorylation within C1 relieves ER 
retention and enhances GluN1 surface expression [22]. 
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2.2. GluN2 Subunits 

The family of GluN2 subunits consists of GluN2A, GluN2B, GluN2C and GluN2D. GluN2A and 
GluN2B subunits are the predominant subunit in higher brain structures [23]. GluN2C subunits is 
highly expressed in the cerebellum while the expression of GluN2D subunits is mainly restricted to the 
brainstem [24]. During development, the expression of GluN2B and GluN2D subunits is abundant and 
then decreases during maturation. Conversely, expression of GluN2A and GluN2C subunits is low 
during development and then increases during maturation [11]. At mature synapses in the 
hippocampus, GluN2A subunits predominate at the synapse whereas GluN2B subunits predominate  
at extrasynaptic sites [23]. This differential subcellular distribution has important functional 
consequences as will be discussed in the following sections. 

2.2.1. Intracellular Association of GluN2 Subunits 

At synaptic sites, PDZ-binding motifs (conserved amino acid sequence ESDV) within the distal  
C-terminus of both GluN2A and GluN2B subunits contribute to subunit retention by interacting with 
the membrane-associated guanylate kinase (MAGUK) family of synaptic scaffolding proteins.  
These include postsynaptic density protein 95 (PSD-95), postsynaptic density 93 (PSD-93),  
synapse-associated protein 97 (SAP97) and synapse-associated protein 102 (SAP102) [25]. Although it 
was initially suggested that GluN2A subunits selectively bound to PSD95 while GluN2B subunits 
preferentially interacted with SAP102 [26], more recently di-heteromeric GluN1/GluN2A receptors 
and GluN1/GluN2B receptors have been shown to interact with both PSD95 and SAP102 at 
comparable levels [27]. However, the interaction between GluN2 subunits (GluN2A and GluN2B) and 
MAGUK proteins can be differentially regulated through posttranslational modifications. Indeed, 
phosphorylation of GluN2B by casein kinase II (CK2) at S1480 of its PDZ binding motif disrupts the 
association of GluN2B with PSD-95 [28]. Moreover, CK2 phosphorylation of GluN2B, but not 
GluN2A, reduces the synaptic localization of GluN2B through increased endocytosis [29]. In the case 
of GluN2A, CaMKII phosphorylation of PSD-95 at Ser73, rather than of GluN2A itself, has been 
shown to disrupt the interaction between these two proteins [30]. 

In addition to regulation by serine/threonine kinases, phosphorylation by tyrosine kinases can 
influence the synaptic localization of GluN2 subunits by altering intracellular protein associations. For 
example, tyrosine phosphorylation of GluN2B regulates its interaction with the AP-2 adaptor, a protein 
complex mediating clathrin-mediated endocytosis. Specifically, tyrosine phosphorylation of GluN2B 
at Y1472 by Fyn disrupted its interaction with AP-2, thereby inhibiting endocytosis of GluN2B [31]. 
Conversely, tyrosine phosphorylation may prevent GluN2A removal from synaptic membranes by 
increasing their association with PSD-95 and thus protecting the subunits against degradation from 
calpain at a preferred cleavage site (residues 1278–1279) [32,33]. 

The differential association of NMDAR subunits with intracellular signalling proteins can also 
direct the contribution of GluN2A and GluN2B to different forms of synaptic plasticity. For example, 
CaMKII binds to GluN2B subunits with high affinity whereas the interaction with GluN2A is weak [34]. 
This is reflected in the finding that when CaMKII is activated by CaM, it relocates to the synapses 
where it strongly associates with GluN2B [34]. Importantly, the interaction with GluN2B can lock 
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CaMKII in an autonomous, constitutively active state that functions independently of Ca2+/CaM [35]. 
Another interesting protein interaction at the synapses occurs between GluN2B subunits and Ras 
protein-specific guanine nucleotide-releasing factor 1 (RasGRF1), a CaM dependent Ras guanine 
nucleotide releasing factor. This interaction has been proposed to facilitate ERK activation [36]. 

2.2.2. Distinct Functional Roles of GluN2 Subunits in Synaptic Plasticity 

Collectively, the findings from studies summarized here and many others have firmly established 
that the various GluN2 subunits have distinct regional expression profiles that vary with 
developmental stage, differ in their biophysical and pharmacological profiles, generate distinct  
Ca2+ signals and are differentially regulated by biochemical pathways contributed via distinct 
interactions with signalling partners. More difficult to reconcile is the specific physiological functions 
contributed by each of the heterogeneous GluN2-containing NMDAR subpopulations. This question is 
especially significant when considering GluN2A and GluN2B, the two major GluN2 subunits with 
overlapping expression in the CNS. More recently, a resolution to this apparent conundrum appeared 
at hand when it was suggested that GluN2ARs are required for the induction of LTP (long term 
potentiation) while GluN2BRs are responsible for LTD (long term depression) induction [37,38].  
This proposal immediately raised considerable controversy; three research groups subsequently 
demonstrated that blocking GluN1/GluN2BRs did not prevent the induction of LTD [39]. Another 
study even suggested that the GluN2BR antagonist ifenprodil enhanced the induction of LTD in the 
CA1 region of the hippocampus [40], suggesting that GluN2BRs are functionally opposed to the 
induction of this form of plasticity. Conversely, other electrophysiological studies have shown that 
GluN2BR activation can in fact promote the induction of LTP induced by a variety of stimulation 
protocols [41]. For example, as discussed earlier, GluN2B can mediate LTP by directly associating 
with CaMKII [42]. In addition, studies in transgenic animals have shown that LTP can still be induced 
in GluN2A subunit knockout mice. Similarly, mice overexpressing GluN2B have enhanced  
LTP [43,44]. Accordingly, a clear functional segregation between LTD/LTP induction based on 
NMDAR subunit composition alone is difficult to reconcile with accumulated evidence. 

More likely, as GluN2ARs and GluN2BRs are activated in concert when synaptic plasticity is 
induced experimentally, each receptor subpopulation contributes uniquely to the resulting rise in 
postsynaptic Ca2+. Moreover, their distinct biophysical properties dictate that the contribution of each 
receptor subtype will vary according to the stimulation patterns that promote their activation. For 
example, it is well recognized that GluN1/GluN2A receptor-mediated currents exhibit faster rise, 
desensitize more extensively and deactivate more rapidly than GluN2BRs [38]. On this basis, a kinetic 
model constructed from empirically derived GluN2AR and GluN2BR single-channel kinetics, predicts 
that GluN2BR signalling should predominate during low-frequency repetitive stimulation and 
conversely that charge transfer through GluN2ARs would exceed that of GluN2BRs during  
high-frequency long term potentiation (LTP) inducing stimulation [40]. In light of this, it is perhaps 
not surprising that the balance between GluN2AR and GluN2BR activation, and the consequent 
signalling cascades recruited, is increasingly viewed as a critical determinant governing the direction 
of synaptic plasticity. 
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2.2.3. GluN2 Subunits in Metaplasticity 

It is well known that the threshold for the induction of LTP and LTD can be influenced by prior 
activity. This plasticity of plasticity has been termed metaplasticity [45–47]. Conceptually, 
metaplasticity is best understood by considering the relation between neuronal activity and the 
induction of bidirectional synaptic plasticity as originally modelled by Bienenstock, Cooper and 
Munro (BCM model) [48]. Based upon observations of experience-dependent plasticity in the kitten 
visual cortex these authors proposed a modification threshold (θM) for the induction of plasticity;  
LTP is induced when postsynaptic activity lies above this threshold and conversely, LTD is induced 
when the level falls below it. For example, in dark-reared kittens θM is reduced at excitatory synapse of 
the visual cortex reflecting a decrease in the threshold for LTP induction [49]. Metaplasticity has also 
been demonstrated in the hippocampus and the mechanisms responsible for setting the modification 
threshold for synaptic plasticity are emerging [50,51]. 

Most experimental protocols developed to investigate mechanisms of metaplasticity involve 
induced changes in neuronal activity prior to the induction of synaptic plasticity. Changes in neuronal 
activity have typically been induced in response to electrical, pharmacological or behavioral stimuli 
and the resulting metaplasticity is contingent upon the activation of NMDARs [45]. Moreover, 
metaplasticity has been shown to be associated with changes in NMDAR signalling, specifically the 
relative contribution of GluN2ARs and GluN2BRs to synaptic transmission [46–48]. Indeed, light 
deprivation decreases the ratio of GluN2AR/GluN2BR, as reflected by more slowly deactivating 
NMDAR currentsin layer 2/3 of visual cortex. In contrast, exposure to visual stimulation increased the 
ratio and induced more rapid NMDAR currents [46]. These changes in the ratio of GluN2AR/GluN2BR 
were accompanied by corresponding changes in the threshold for LTP/LTD induction [52]. In 
addition, in GluN2A−/− mice metaplasticity in the visual cortex was lost [48]. Metaplasticity can also 
be induced by mild sleep deprivation (4–6 h), shown to selectively increase GluN2AR surface 
expression in adult mouse CA1 synapses and facilitate LTD induction at these synapses. Furthermore 
in the GluN2A−/− mice, this form of metaplasticity is absent [53]. 

In addition to its regulation by behavioral stimuli, the ratio of GluN2AR/GluN2BR is also 
modulated by priming electrical stimulation. Priming stimulations across a wide range of frequencies 
(1–100 Hz) can alter the ratio of GluN2AR/GluN2BR, resulting in changes to LTP/LTD induction [50]. 
One mechanism to explain metaplasticity by priming stimulation is through altered tyrosine 
phosphorylation of NMDARs through SFKs (Src family kinases). Consequently, even if prior activity 
does not itself cause substantial NMDAR activation, such activity can nevertheless cause the activation 
of several GPCRs, which in turn regulate NMDAR function and thus the ability to subsequently induce 
plasticity [45]. Several GPCRs can regulate the function of NMDARs through SFKs [54,55] and in 
this way modify the threshold for the induction of LTD/LTP. Specifically, we recently reported that 
stimulation of selected GPCRs that enhance the function of GluN2ARs favors LTP over LTD, whereas 
the converse occurs with stimulation of distinct GPCRs that enhance the function of GluN2BRs [51]. 
Importantly, this does not exclude the possibility that both subtypes of receptors contribute to both 
forms of synaptic plasticity but rather, is consistent with evidence that dynamic changes in the ratio of 
GluN2ARs and GluN2BRs signalling provides a mechanism for metaplasticity. 
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2.2.4. Tri-heteromeric GluN1/GluN2A/GluN2B Receptors in Synaptic Plasticity 

Several studies have suggested that in addition to di-heteromeric NMDARs (GluN1, GluN1, 
GluN2x, GluN2x), tri-heteromeric NMDARs (GluN1, GluN1, GluN2x, GluN2y (or GluN3x)) may 
exist in some brain areas. Although the physiological role and pharmacological properties of  
di-heteromeric NMDAR are well studied, relatively little is known about tri-heteromeric NMDARs. 
Recent studies have suggested that tri-heteromeric NMDARs are predominantly expressed at synapses 
in adult hippocampus [56]. Tri-heteromeric NMDARs are reported to possess distinct pharmacological 
properties when compared to di-heteromeric NMDARs. Evidence suggests that tri-heteromeric 
GluN1/GluN2A/GluN2B receptors have an “intermediate” sensitivity to both GluN2AR and GluN2BR 
antagonists [15,57,58]. The hybrid nature of tri-heteromeric NMDARs raises intriguing possibilities 
regarding their role in synaptic plasticity. Indeed, LTP induction at mature synapses was suggested to 
require both di-heteromeric GluN1/GluN2A and tri-heteromeric GluN1/GluN2A/GluN2B receptors [59]. 

3. The Regulation of NMDARs by G Protein Coupled Receptor (GPCR) 

All NMDAR subunits have large intracellular C-terminal tails that contain serine, threonine and 
tyrosine residues representing potential sites of phosphorylation, for example by protein kinase A 
(PKA), protein kinase C (PKC) and Src family kinases (SFKs) [60–62]. Phosphorylation at these sites 
regulates NMDAR channel activity through a variety of means including changes in single channel 
conductance, surface expression and receptor trafficking [60–62]. Accordingly, by recruiting these 
kinases to phosphorylate NMDAR subunits, GPCRs can regulate NMDAR expression and channel 
function at synaptic and extrasynaptic sites [63]. In the following sections we summarize recent work 
examining the regulation of NMDARs downstream of GPCRs. The intent is not to provide an exhaustive 
overview of all GPCRs shown to influence NMDAR function. Rather we focus on selected GPCRs 
that couple to each of the major classes of Gα subunits with an aim towards highlighting the rich 
variety of mechanisms through which NMDARs are regulated. A particular focus is on studies of the 
hippocampus where NMDARs and their contribution to synaptic plasticity have been extensively 
characterized. Nevertheless, in many instances the findings discussed are likely relevant to the function 
of NMDARs in other regions, at least conceptually. Notably, we highlight several instances where 
regionally divergent mechanisms have been reported for a given GPCR. 

3.1. The Regulation of NMDARs by Gαq Containing GPCRs 

Characteristically, the activation of Gαq containing GPCRs increases the activity of PKC. PKC is 
divided into three groups that include the conventional, novel and atypical PKC isoforms. The 
conventional PKCs are activated by Ca2+ and DAG while the novel PKCs, which lack a Ca2+ binding 
domain, are only stimulated by DAG. In contrast, the atypical PKCs are only sensitive to phospholipids; 
both Ca2+ and DAG fail to activate them. When PKC is activated, it will translocate to the membrane 
from the cytosol [64]. 

PKC activation can increase NMDAR mediated currents in both isolated and cultured hippocampal 
neurons [55]. Biochemical studies have shown that GluN1, GluN2A, GluN2B and GluN2C subunits 
can be phosphorylated by PKC in vivo and in vitro [21,65–67]. However, when the PKC 
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phosphorylation sites of NMDAR are mutated to Ala, PKC still potentiates NMDAR currents, 
indicating that PKC signals through another molecule to regulate NMDAR currents [68]. Our 
laboratory demonstrated that this signalling molecule is Src. When Src inhibitory peptide (Src (40–58)) 
is applied in the patch pipette, PKC fails to increase NMDAR currents [55]. In addition, cell adhesion 
kinase β (CAKβ), which is a member of the focal adhesion kinase (FAK) family, was shown to work 
as an intermediary between PKC and Src to regulate NMDAR [69]. Via Src activation, PKC 
modulates channel activity, not only by changing physical properties of receptors, but also by 
regulating receptor trafficking via synaptosome-associated-protein receptor (SNARE) dependent 
exocytosis [70–72]. Furthermore, the interaction of NMDARs with PSD95 and SAP102 enhances the 
surface expression of NMDARs and occludes PKC potentiation of channel activity [70,73]. 

Not surprisingly, many Gαq coupled GPCRs can modulate NMDAR activity via PKC dependent 
pathway. In this regard, activation of the PAC1 receptors, which is coupled to Gαq proteins [74], 
increases NMDAR mediated currents via the PKC/CAKβ/Src signalling pathway [75] (Figure 1). 
Other Gαq coupled GPCRs including muscarinic M1, lysophosphatidic acid (LPA) and metabotropic 
glutamate receptor subtype 5 (mGluR5) have been shown to enhance NMDAR currents through this 
signalling pathway [54,55,76] (Figure 1). In addition, at hippocampal mossy fiber synapses, activation 
of postsynaptic adenosine A2A receptor (a Gαq coupled receptor) enhances NMDAR-mediated 
excitatory postsynaptic currents (EPSCNMDA) via G protein/Src pathway. Similarly, this pathway is 
proposed to be involved in the LTP of EPSCNMDA induced by HFS [77]. At Schaffer collateral 
synapses acetylcholine (ACh) induces a long-lasting synaptic enhancement of EPSCNMDA. This action 
was mediated by M1 receptors and the activation of these receptors stimulated the PKC/Src signalling 
pathway to increase EPSCNMDA [78]. 

Figure 1. The activation of Gαq coupled receptors induces PLC/PKC/Pyk2/Src signalling 
to enhance GluN2A containing NMDAR function. 

 

A notable feature of the regulation of NMDARs by GPCRs acting through Gαq recruited pathways 
is that peak currents are enhanced to a greater extent than the steady-state of NMDA-evoked currents. 
In part, this can be attributed to a PKC-dependent increase in Ca2+-dependent inactivation and  
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glycine-insensitive desensitization [79,80]. However, the preferential enhancement of peak NMDAR 
currents can also be attributed to the differential augmentation of GluN2AR vs. GluN2BR function by 
Gαq GPCRs. Indeed, due to kinetic differences between the activation rates of GluN2ARs and 
GluN2BRs, NMDA peak currents are more likely to be contributed by GluN2ARs, while GluN2BRs 
contribute more strongly to the sustained or steady-state component of the currents [81]. This led us to 
propose that PAC1 receptor activation, and more broadly signalling via PKC/Src, specifically targets 
GluN2A-containing NMDAR to increase NMDA-evoked currents (Figure 1). Three lines of evidence 
suggested that the activation of the PAC1 receptors preferentially increases the activity of GluN2ARs. 
Firstly, a GluN2AR preferring antagonist, NVP-AAM077, blocks NMDAR potentiation by the PAC1 
receptors, whereas a GluN2BR selective antagonist, Ro25-6981, does not [51]. Secondly, Zn2+,  
a selective inhibitor of GluN2ARs at nanomolar concentrations [15,82], blocks the potentiation of 
NMDARs by the PAC1 receptors [51]. Finally, in GluN2A−/− mice, the activation of the PAC1 
receptors fails to increase NMDAR mediated currents [51]. More, recent evidence suggests that other 
Gαq-coupled GPCRs also selectively augment the function of GluN2A-containing NMDARs. Indeed, 
the application of orexin increased surface expression of GluN2ARs but not GluN2BRs in the VTA 
via OXR1 receptors/Gαq/PKC signalling [83]. Note however, that these studies did not demonstrate 
whether the differential regulation of GluN2ARs and GluN2BRs by these GPCRs requires SFK. 

3.2. The Regulation of NMDAR by Gαs Containing GPCRs 

Stimulation of Gαs containing GPCRs increases the concentration of cAMP and activates PKA, 
which consists of two catalytic subunits and two regulatory subunits. When cAMP binds to the 
regulatory subunits, PKA activity is increased. Pathways involving PKA are known to regulate 
NMDAR function, presumably via phosphorylation at sites identified on GluN1, GluN2A and GluN2B 
subunits [84]. For example, the Ca2+ permeability of NMDARs is under the control of the cAMP/PKA 
signalling cascade and PKA inhibitors can reduce the relative fraction of Ca2+ influx through 
NMDARs [85]. Moreover, by phosphorylating inhibitor-1, the activation of PKA inhibits protein 
phosphatase-1 and consequently enhances NMDAR channel activity through increased receptor 
phosphorylation [86]. Additionally, acting in concert with PKC, PKA phosphorylation within an ER 
retention motif located at the C-terminus of the GluN1 subunit releases GluN1 from the ER and 
increases the surface expression of NMDARs [87]. 

The regulation of NMDARs by dopamine D1 receptor (D1R), a Gαs coupled receptor, has been 
extensively studied in different brain regions [88–90]. The most prominent mechanism through which 
D1R activation enhances NMDAR activities is via PKA-dependent mechanisms [91]. In the hippocampus, 
activation of D1Rs potentiates NMDAR-mediated responses through cAMP/PKA-dependent 
recruitment of a non-receptor tyrosine kinase of the Src family, specifically Fyn [51] (Figure 2). 
Indeed, the activation of D1Rs stimulates Fyn kinase activity in hippocampal slices [51] (Figure 2). 
More importantly, NMDAR potentiation by D1R stimulation is prevented by a selective Fyn inhibitory 
peptide. This potentiation is selective for GluN2B-containing NMDARs given that it can be inhibited 
by Ro 25-6981 but not by the GluN2A-preferring inhibitors, NVP-AAM077 or Zn2+. Additionally, 
genetic deletion of GluN2A subunits does not prevent the enhancement of NMDAR mediated currents 
downstream of D1Rs, confirming that GluN2A subunits are not required for this enhancement [51] 
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(Figure 2). Potentiation of NMDAR function via cAMP/PKA/Fyn is also observed following the 
activation of VIP receptors, another Gαs coupled GPCR [51] (Figure 2). 

Figure 2. In the hippocampus, the regulation of NMDARs by Gαs coupled receptors 
involves multiple mechanisms. (a) Dopamine D1 receptors and NMDAR can communicate 
through direct physical interactions, which inhibits NMDAR activity; (b) in addition, 
dopamine D1 receptor activation can enhance NMDAR mediated currents through a PKA 
dependent signalling pathway. 

 

The Fyn/GluN2BR dependence of potentiation by D1R is consistent with other studies [88,89,92]. 
For example, D1R activation increases surface expression of NMDARs in the striatum. Increased 
NMDAR surface expression in this context is contingent on Fyn kinase as it is not observed following 
D1R stimulation in Fyn−/− mice [88,89]. Similarly, in cultured PFC neurons the activation of D1Rs 
increases the surface expression of GluN2B containing NMDARs [92]. More broadly, the dopamine 
D5 receptor, which is also coupled to Gαs and cAMP/PKA signalling, has been shown to recruit 
GluN2BRs from the cytosol to synaptic sites and thereby potentiate NMDAR currents [93]. However, 
whether the differential regulation of GluN2ARs and GluN2BRs by the D5 receptor also requires Fyn 
kinase was not tested in this study. Additionally, dopamine D1/5 receptor stimulation has been shown 
to enhance LTP through PKA-dependent enhancement of SFK activity and GluN2BR function [94]. 

Importantly, D1R are also capable of regulating NMDAR function independently of PKA-dependent 
signalling through direct physical coupling. Direct protein-protein interactions were identified between 
the C-terminal tails of the dopamine D1R and either the GluN1 subunit or GluN2A subunit of 
NMDAR [84]. The interaction of dopamine D1R with the GluN2A subunit suppresses NMDAR 
currents by decreasing the surface expression of NMDARs. This effect is entirely independent of PKA 
and PKC signalling cascades [84]. Functionally, the interaction between D1R and the GluN1 subunit 
protects neurons from NMDA-mediated cell death [84]. In addition, a peptide that disrupts the 
interaction of the D1R-NMDAR complex inhibits NMDAR dependent LTP and induces working 
memory deficits [85]. 
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As highlighted by these numerous studies, D1Rs can regulate NMDAR function through multiple 
molecular mechanisms. Functionally, the regulation of NMDARs by D1Rs through second messenger 
systems may be countered by the effects mediated through the direct physical interaction between 
these two receptors. Thus, direct D1R-NMDAR interactions may serve as a molecular brake on the 
augmentation of NMDARs via the D1R mediated PKA pathway. Importantly, it remains unclear the 
degree to which these distinct mechanisms overlap and if so, the mechanisms that govern the resulting 
functional outcomes. 

3.3. The Regulation of NMDAR by Gαi Containing GPCRs 

In contrast to Gαs coupled GPCRs, the activation of Gαi coupled receptors characteristically 
reduces the concentration of cAMP and inhibits PKA activity. But their activation also induces other 
signalling pathways which are independent of PKA. Accordingly, they may potentiate or depress 
NMDAR function depending on the signalling pathways recruited [54,95] (Figure 3). 

Figure 3. Gαi coupled receptors increase or decrease NMDAR function depending on the 
signalling pathways recruited. The activation of dopamine D4 receptor depresses NMDAR 
mediated currents by transactivating PDGF receptors. The resulting increased PLC activity 
hydrolyzes PIP2 leading to the generation of IP3 and DAG. The release of Ca2+ from 
internal stores following IP3 receptor stimulation activates CaM, which then promotes 
calcium dependent inactivation of NMDARs. In contrast, activation of group II mGluRs 
enhance NMDAR mediated currents via PKA/Csk/Src dependent pathway. 

 

In the hippocampus, the activation of dopamine D4 receptor (D4R), which couples to Gαi, 
depresses NMDAR mediated currents (Figure 3). Surprisingly, this response is not mediated by the 
inhibition of PKA [96]. Rather, platelet-derived growth factor receptors (PDGF-Rs) are involved as 
shown by evidence demonstrating that the depression of NMDAR currents following D4R activation is 
prevented by PDGF-R inhibitors and can be occluded following PDGF-R activation by application of 
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PDGF [97]. Mechanistically, D4 receptors transactivate PDGF-Rs and depress NMDAR function in  
a PLC, but not PKC, dependent manner (Figure 3). Moreover, the depression of NMDAR currents is 
blocked by calmodulin (CaM) binding-peptides and occluded when cells are treated with CaM [96], 
consistent with increased Ca2+-dependent inactivation as a result of D4R-PDGF-R signalling. Indeed, 
Ca2+-CaM is known to compete with actin for binding to the C0 domain of the NR1 subunit, 
promoting calcium dependent inactivation of NMDARs [98,99]. Accordingly, it is proposed that 
PDGF receptors are transactivated by D4Rs, as a result of which PLC activity is increased, resulting in 
increased levels of IP3 and DAG. IP3 binds to IP3 receptor and stimulates Ca2+ released from ER 
(Figure 3), which ultimately causes increased Ca2+-dependent inactivation of NMDARs. Interestingly, 
a previous study has shown that PDGF can depress NMDAR currents in a PKA dependent manner via 
the PDGF-R [100]. In contrast, D4R-PDGFR-mediated depression does not require PKA [96]. These 
findings suggest that signalling downstream of PDGFRs in the hippocampus is contingent on the 
manner in which these receptors become active. 

Dopamine receptor regulation of NMDARs has been investigated in other regions of the CNS 
where diverse signalling mechanisms have been reported. For example, in pyramidal neurons from the 
prefrontal cortex (PFC), transactivation of PDGF-Rs in response to the application of quipirole, a  
D2-class dopamine receptor agonist, has also been shown to regulate NMDAR function. However, in 
this instance, the D2R rather than the D4R has been implicated [101]. The resulting inhibition may 
involve reduced NMDAR surface expression [102] through inhibition of PKA and subsequent protein 
phosphatase 1 (PP1)-mediated inhibition of CaMKII [102]. In the striatum, physical coupling with 
dopamine receptors has been implicated in the regulation of NMDARs. Indeed, dopamine stimulation 
by cocaine enhances the physical association between D2 receptors (D2Rs) and GluN2B containing 
NMDARs in striatum [103]. Increased D2R-GluN2B interaction stimulated by cocaine interferes with 
the binding of CaMKII to GluN2B, which reduces GluN2B phosphorylation at Ser1303, leading to 
inhibition of NMDAR function [103]. 

In contrast to the depression of NMDAR function by D4R and D2R, the activation of distinct Gαi 
coupled GPCRs have been reported to potentiate NMDAR function in the hippocampus (Figure 3). For 
example, the activation of group II mGluRs (Gαi/o protein coupled receptors) enhances NMDAR 
mediated currents via a PKA-and Src-dependent pathway that selectively targets GluN2A-containing 
NMDARs [95] (Figure 3). This Gαi/o-mediated activation of Src differed from that of Gαq-coupled 
receptors that signal through PKC and CAKβ [54,55,75]. Rather, Group II mGluRs receptors activate 
Src kinase by inhibiting cAMP/PKA signalling and consequently the activity of C-terminal Src kinase 
(Csk), a negative regulator of Src activity [95] (Figure 3). The ability of PKA to negatively regulate 
NMDAR function through Csk-mediated inhibition of Src activity was established in a previous study 
where the catalytic fragment of PKA was shown to inhibit Src-mediated potentiation of NMDARs in 
inside-out patches from cultured hippocampal neurons [100]. As with dopamine receptors, the 
mechanisms underlying the regulation of NMDARs by group II mGluRs varies regionally. In 
prefrontal cortex, group II mGluRs signal through PKC to enhance NMDAR activities [104]. Both 
SNARE (Soluble N-ethylmaleimide-sensitive factor activating protein receptor) and Rab4 have been 
reported to contribute to the group II mGluR-induced enhancement of NMDAR currents [97]. Given 
that the function of Rab4 and SNARE proteins can be regulated by PKC [72], group II mGluRs may 
enhance the SNARE-mediated NMDAR exocytosis through PKC signalling. 
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3.4. The Regulation of NMDAR by Gα12/13 Containing GPCRs 

It is well established that Gα12 and Gα13 regulate the activity of small GTPase Rho through guanine 
nucleotide exchange factor (RhoGEF) and modulate various cellular responses [105]. In addition to 
RhoGEF, Gα12 and Gα13 can also regulate the actin cytoskeleton and myosin activity [105]. NMDARs 
are known to associate with the cytoskeleton via protein–protein interactions [98,99,106]. 
Accordingly, actin cytoskeleton dynamics are an important determinant of NMDAR function. GluN1 
and GluN2 subunits of NMDARs couple to the actin cytoskeleton via the actin binding proteins 
actinin2 and spectrin respectively [99]. Through these interactions with the cytoskeleton, NMDAR 
function is influenced by changes in actin cytoskeleton integrity (Figure 4). This is exemplified by 
experiments showing that actin depolymerization reduces NMDAR function. Moreover, the influx of 
Ca2+ associated with strong NMDAR activation has been shown to disrupt the interaction of NMDARs 
with the cytoskeleton, through a Ca2+-dependent mechanism, causing an irreversible downregulation 
of NMDAR activity [107]. 

Figure 4. Gα12/13 coupled GPCRs can modulate NMDARs indirectly via their effects on 
actin cytoskeleton dynamics. 

 

Myosin is also associated with NMDARs. Constitutively active myosin light chain kinase (MLCK) 
enhances NMDAR-mediated currents in both acutely isolated CA1 pyramidal and cultured 
hippocampal neurons, whereas inhibitors of MLCK depress these currents [108]. These effects of 
MLCK require an intact cytoskeleton as both MLCK inhibitors and constitutively active MLCK are 
ineffective when applied to neurons pretreated with latrunculin B, a drug that induces actin filament 
depolymerization [108]. It is proposed that MLCK might activate myosin and cause physical tension to 
be transmitted via actin to the NMDARs. Alternatively, it may alter the physical relation between the 
actin cytoskeleton and NMDARs, resulting in the modification of NMDAR activity. 

An increasing number of GPCRs are reported to couple through Gα12/13 proteins, including 
purinergic receptors (P2Y1, P2Y2), muscarinic acetylcholine receptor (M1 and M3), serotonin (5-HT2C 
and 5-HT4), and many more are likely and waiting for identification [109]. The activation of 5-HT1A 
selectively inhibits GluN2B containing NMDARs via a microtubule-dependent mechanism [110]. 
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Drugs that interfere with microtubules assembly blocked this inhibition. In addition, knock-down  
of the kinesin motor protein KIF 17 (kinesin superfamily member 17), which transports  
GluN2B-containing vesicles along microtubule in neuronal dendrites, also prevents 5-HT1A induced 
inhibition of NMDAR [110]. But whether Gα12/13 proteins are involved was not investigated. 

4. Conclusions 

As discussed, the regulation of NMDARs by GPCRs involves numerous intracellular signalling 
molecules and regulatory proteins. Moreover, increasing evidence suggests that specific assemblies of 
NMDAR subunits are selectively targeted downstream of a given GPCR. The complexity of processes 
regulating NMDARs is increased by regional variations in the mechanisms and functional outcomes 
observed following the activation of a given GPCR. Recognizing that the NMDAR is an important 
downstream effector of GPCRs has implications for understanding processes that modulate learning 
and memory, contribute to neurological disorders in which GPCR signalling is altered and influence 
treatment outcome for therapeutic agents that act upon these same receptors. The pathology and 
treatment of schizophrenia represents a notable example. Schizophrenia is a complex psychiatric 
disorder with a strong genetic component. The clinical phenomena associated with schizophrenia can 
be grouped into positive symptoms (delusions, hallucinations, thought disorder), negative symptoms 
(anhedonia, blunted affect, social withdrawal), and cognitive deficits (inattention, executive function, 
and working memory) [111]. The long standing hyperdopaminergic hypothesis of schizophrenia 
remains a leading theory explaining the neurochemical basis of disease and current therapies for the 
treatment of psychosis (positive symptoms) focus on blockade of the dopamine D2 receptors [112,113]. 
However, numerous clinical and preclinical studies have led to the hypothesis that hypofunctional 
NMDARs may also play an important role in the pathophysiology underlying schizophrenia [114,115]. 
Importantly, these two theories may not be opposed in light of studies highlighted herein, showing  
that D2/D4R receptor stimulation provokes reduced NMDAR function in the hippocampus and  
cortex [96,101,102]. Accordingly, restoration of NMDAR function may represent a beneficial 
consequence of treatment with antipsychotic D2R blockers. As enhancing NMDAR function reduces 
the symptoms associated with schizophrenia [116], additional opportunities to provide beneficial 
outcomes in schizophrenia via stimulation of GPCRs that modulate NMDAR function are being 
sought. For example, selective mGlu5 receptor activation reduces both psychotic as well as negative 
symptoms and provides beneficial pro-cognitive activity [114]. Beyond schizophrenia, aberrant 
NMDAR function has been implicated in numerous neurological and neuropsychiatric disorders 
including Alzheimer’s disease [23,72], drug addiction [23,72], major depressive disorder [117] and 
anxiety disorders [118], to name but a few. Accordingly, adjusting the activity of NMDARs by 
targeting selected GPCRs may represent an attractive strategy in treating several neurological diseases. 
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