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Abstract: Glial cell line-derived neurotrophic factor (GDNF) was encapsulated into 

liposomes in order to protect it from enzyme degradation in vivo and promote its 

permeability across the blood-brain barrier (BBB). In this study, GDNF conventional 

liposomes (GDNF-L) and GDNF target sterically stabilized liposomes (GDNF-SSL-T) were 

prepared. The average size of liposomes was below 90 nm. A primary model of BBB was 

established and evaluated by transendothelial electrical resistance (TEER) and permeability. 

This BBB model was employed to study the permeability of GDNF liposomes in vitro. The 

results indicated that the liposomes could enhance transport of GDNF across the BBB and 

GDNF-SSL-T had achieved the best transport efficacy. The distribution of GDNF liposomes 

was studied in vivo. Free GDNF and GDNF-L were eliminated rapidly in the circulation. 

GDNF-SSL-T has a prolonged circulation time in the blood and favorable brain delivery. 

The values of the area under the curve (AUC(0–1 h)) in the brain of GDNF-SSL-T was  

8.1 times and 6.8 times more than that of free GDNF and GDNF-L, respectively. These 

results showed that GDNF-SSL-T realized the aim of targeted delivery of therapeutic 

proteins to central nervous system. 
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1. Introduction 

Neurodegenerative diseases represent a major socioeconomic burden and unimaginable misery for 

millions of sufferers and their families around the world. Glial cell line-derived neurotrophic factor 

(GDNF), neurotrophin nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are 

three important trophic factors that regulate neural ontogeny to maintain optimum function [1].  

A reduction in level of one or more of these proteins may lead to at least some of the symptoms of 

Parkinson’s, Alzheimer’s and Huntington’s diseases. Replacement strategies are often considered as 

potential therapeutics for these neurodegenerative diseases. 

GDNF is a distant member of the transforming growth factor β superfamily that was originally 

isolated from the rat B49 glial cell line [2]. It is expressed throughout the central nervous system (CNS) 

during development [3], and is mainly expressed and detected in neurons of adult brain [4]. GNDF is 

considered to be one of the strongest neuroprotectants for dopaminergic neurons. Studies had shown that 

GDNF is critical for the maintenance and survival of adult dopamine neurons [5] that it can promote 

survival of mesencephalic dopamine neurons in culture [2], as well as improve survival and re-growth of 

dopaminergic neurons in adult brain after injury [6,7]. Besides, GDNF is essential in the development 

and survival of motor neurons, the development of sympathetic and sensory neurons, and in 

hippocampal synaptogenesis [8,9].  

Parkinson’s disease (PD) is one of the major neurodegenerative disorders in middle and old age. This 

disease arises from a progressive degeneration of dopaminergic neurons in the substantia nigra and is 

characterized by resting tremor, bradykinesia, rigidity, and postural instability [10]. Many studies, 

carried out in a wide variety of rodent and primate models of Parkinson’s disease, have demonstrated the 

efficacy of GDNF [11–13], with clinical trials currently in progress [14]. A number of strategies for 

GDNF delivery to the brain have been investigated in animal models of PD, including intracerebral 

injections of recombinant GDNF protein [11], implantation of encapsulated GDNF-secreting cells [15] 

and intrastriatal delivery of GDNF gene [14,16]. However, all the above approaches are invasive and not 

suitable for long-term clinical application.  

As therapeutic proteins with higher molecular weight, GDNF cannot be transported easily across the 

blood-brain barrier (BBB) to produce a significant effect following normal administration such as 

intravascular injection or oral administration. Recently, liposomes have been widely used as delivery 

vehicles to increase uptake into the brain in vivo [17]. To obtain better targeting efficiency, targeted 

liposomes have been proposed [18].  

In this paper, GDNF conventional liposomes (GDNF-L) and GDNF targeted sterically stabilized 

liposomes (GDNF-SSL-T) were prepared at first, and the permeability of these two GDNF liposomes  

in vitro BBB model and the uptake in brain in vivo were then studied.  
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2. Results 

2.1. Characterization of Liposomes 

The average size, encapsulation efficiency (ee%) and recovery efficiency (re%) of GDNF liposomes 

were shown in Table 1. 

Table 1. Characterization of GDNF Liposomes (n = 6). 

 Mean size (nm) Encapsulation efficiency (%) Recovery efficiency (%) 

GDNF-L  85.65 ± 0.75 33.25 ± 0.92 99.15 ± 5.81 
GDNF-SSL-T 81.50 ± 0.66 37.46 ± 1.75 97.38 ± 4.09 

2.2. Evaluation of the BBB Model 

The BBB model was developed by the coculture of rat brain capillary endothelial cells (BCECs) and 

astrocytes (ACs), and its transendothelial electrical resistance (TEER) and permeability were measured. 

In our study, TEER value of the coculture BCECs/ACs was 360 ± 35 Ωcm2 while the maximum TEER 

of BCECs alone was only about 40 Ωcm2, much lower than that of in vitro BBB model. On the contrary, 

the permeability of Horseradish peroxidase (HRP) showed that it was 3.70% on the coculture BCECs, 

and only 0.53% on the coculture BCECs/ACs. All the data indicated the primary BBB model had main 

characterizations of the BBB. 

2.3. Transport Measurements of GDNF Liposomes on the in Vitro BBB Model 

When the BCECs/ACs was confluent, which was judged by TEER primarily, they were employed as 

in vitro BBB model to evaluate the permeability of GDNF liposomes. The permeability of GDNF 

liposomes was shown in Figure 1. We can see from the chart that the order of permeability on the in vitro 

BBB model was GDNF-SSL-T > GDNF-L > GDNF. 

Figure 1. The permeability of GDNF, GDNF-L and GDNF-SSL-T on the BBB model  

in vitro n = 3. 
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2.4. Distribution of GDNF Liposomes in Serum and Brain 

Figure 2 represents serum GDNF concentration at given intervals after intravenous administration  

in three groups in vivo studies. Free GDNF and GDNF-L were eliminated rapidly in the circulation, 

while the clearance of GDNF-SSL-T in the blood was significantly slower (p < 0.01). The contents of 

GDNF of each group in the brain at 0.25, 0.5, 1 h were listed in Figure 3. The content of brain GDNF was 

significantly higher in GDNF-SSL-T group than those of the other two groups at all the three time point 

(p < 0.01). The values of the area under the curve (AUC(0–1 h)) in the brain of GDNF, GDNF-L and 

GDNF-SSL-T groups were 3.30 ± 0.69, 3.94 ± 0.67 and 26.8 ± 2.27 ng/g.h, respectively. 

Figure 2. GDNF concentration in serum 0.25, 0.5 and 1 h after intravenous injection of three 

GDNF liposomes. The results were represented as means ± S.D. (n = 6) and compared by 

Student’s t-test. a: p < 0.01 versus GDNF; b: p < 0.01 versus GDNF-L. 

 

Figure 3. GDNF content in brain 0.25, 0.5 and 1 h after intravenous injection of three GDNF 

liposomes The results were represented as means ± S.D. (n = 6) and compared by Student’s 

t-test. a, p < 0.01 versus GDNF; b, p < 0.01 versus GDNF-L. 
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3. Discussion 

The BBB is a unique structure which is formed by the brain endothelial cells lined with cerebral 

capillaries, together closely with perivascular astrocytic end-foot, neurons, and pericytes [19]. Tight 

junction (TJ) between cerebral microvascular endothelial cells is the important structure and functional 

base of BBB, which allows BBB to maintain a constant and optimal microenvironment for neurons and 

protects CNS from exogenous toxicants [20]. But on the other hand, this structure also constitutes the 

most redoubtable obstacle for drug delivery for the treatment of brain disorders. All large-molecule 

agents and more than 98% of pharmaceutical and small-molecule drugs are blocked by BBB [21]. 

Besides size, charge, chemical structure and lipophilicity are also main characteristic influencing the 

permeability through the BBB. In order to facilitate drugs entry to CNS, many noninvasive techniques 

have been developed. Among these approaches, liposomes seem to be one of the most promising ones. 

The modified liposomes can enhance drug delivery to the brain with documented advantages, including 

lipophilic properties, increased drug-loading capacity, biocompatibility, biodegradability, minimal 

toxicity and versatile structural characteristics that permit easy surface decoration [22]. 

As strong neuroprotectant for dopaminergic neurons, GDNF is proven to be effective for PD, with 

clinical trials currently in progress [1]. Although a randomized controlled trial published resulted in 

negative outcomes, and controversy about the efficacy and safety of the treatment still remains, several 

pilot studies revealed the validity of continuous intraputaminal GDNF infusion to patients with PD. 

According to a few clinical trials on transplantation therapy in PD cases, the transplanted potential of 

implanting microparticles or transfected cells in the human brain is limited by their size, which is 

substantially larger than the effective pore size of the extracellular spaces of the brain. Consequently, 

this is likely to restrict their therapeutic potential [1]. In this study, GDNF liposomes were prepared at 

first; its permeability in vitro BBB model and the uptake in brain in vivo were then studied. Though the 

accumulation of GDNF liposomes in brain is low, GDNF-SSL-T realized the aim of targeted delivery to 

CNS. We will further explore better methods to increase brain delivery of GDNF liposomes in vivo by 

modified prescription.  

The particle size is an important factor that affects the liposome endocytosis in the brain capillary 

cells [23]. In our study, the size of the prepared GDNF-L and GDNF-SSL-T were all below 90 nm, 

which indicated a favorable condition for brain transport. In additions, the stability of GDNF liposomes 

in the plasma has been evaluated by centrifuging method in the preliminary experiment. The leakage 

percent of GDNF liposomes were no more than 8% at 4 h, which showed a good stability for the 

following permeability studies. 

A primary in vitro BBB model is a useful technique for the study of CNS drug transport across the 

BBB. Studies have shown that the BBB model, established by co-culturing of BCECs and ACs of rat, 

possessed similar morphology, TEER and permeability characterizations of the BBB [24,25]. The TEER 

values of the coculture of BCECs/ACs in the study were 360 ± 35 Ωcm2, which were close to those 

reported previously [24,26]. Meanwhile, the permeability of HRP was 0.53% on the coculture 

BCECs/ACs, verified the validity of the in vitro BBB model. There was correlation between the TEER 

and BBB permeability: the TEER increases while permeability decreases. The nonlinear relationship 

between BBB permeability and TEER was described in a literature [27]. So, TEER was an essential and 

simple indicator to estimate the formation of the in vitro BBB model. After the BBB model was formed, 
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they were employed to evaluate the permeability of GDNF liposomes. As illustrated in Figure 1, the 

order of permeability on the in vitro model of BBB was GDNF-SSL-T > GDNF-L > GDNF. The results 

indicated that the permeability of GDNF was increased after it was incorporated into liposomes and 

could be increased significantly after it was loaded by SSL-T. 

To investigate the brain delivery of GDNF, GDNF-L and GDNF-SSL-T, in vivo uptake was  

studied in mouse after intravenous injection at a dosage of 10 µg/100 g. As showed in Figures 2 and 3, 

the concentrations of GDNF in the serum and brain of the GDNF-SSL-T group were significantly  

higher than those of the GDNF group and GDNF-L group at all time points, respectively (p < 0.01).  

But there was no distinct difference between the GDNF-L group and the GDNF group. The AUC(0–1 h)  

of brain GDNF-SSL-T was 8.1 times and 6.8 times more than that of free GDNF and GDNF-L, 

respectively. The favorable brain delivery of GDNF-SSL-T is probably due to its modification  

with PEGylated polymer and chemical conjugation with RMP-7. The conventional liposomes are easy 

to be trapped by the Reticuroendothelial systems (RES) in the blood [28]. With PEGylated polymer, 

however, sterically stabilized liposomes (SSL) can avoid the identification and clearance by RES  

that its life time in blood was thus prolonged [29,30] Besides, by combining RMP-7 with 

1,2-Dioleoyl-sn-glycerol-3-phosphor-ethanolamine-n-[poly(ethyle-neglycol)]-hydroxy succinamide 

(DSPE-PEG-NHS), DSPE-PEG-RMP-7 was obtained and incorporated into the liposomes surface to 

form the active targeted sterically stabilized liposomes (SSL-T). RMP-7 has a longer circulation time in 

the blood and better selectivity to the B2 receptor on the BBB [31]. The mechanism of RMP-7 

promoting the uptake of drugs in the brain has been demonstrated in literatures [27,32]. Experiments 

have confirmed that this chemically conjugation would make the drug and RMP-7 arrive BBB at the 

same time. RMP-7 could induce the efflux of Ca2+ in cells, causing brain capillary endothelial cells to be 

shrunk, the TJ would then be “open” temporarily, and the drug is transported across the “open” TJ into 

the brain immediately [27,32]. The study also showed that this TJ opening was effective and less toxic 

when RMP-7 was combined with SSL [27].  

4. Materials and Methods 

4.1. Materials and Animals 

GDNF was purchased from Peprotech Inc. (Rocky Hill, NJ, USA). Soybean phospholipids (SPC)  

and cholesterol (CHOL) were obtained from Beijing Chemical Agent Co. (Beijing, China). 

1,2-Dioleoyl-sn-glycerol-3-phosphor-ethanolamine-n-[poly(ethyle-neglycol)]-hydroxy succinamide 

(DSPE-PEG-NHS) was from Nanocs Inc. (New York, NY, USA). RMP-7 was provided by Alkermes 

Inc. (Cambridge, MA, USA), and fluorescein isothiocyanate (FITC) was provided by Amresco (Solon, 

OH, USA). Horseradish peroxidase (HRP) was from Baobanbio Co. (Shanghai, China). Glial cell 

line-derived neurotrophic factor sandwich ELISA kit (GDNF ELISA kit) was obtained from RayBiotech 

Inc. (Norcross, GA, USA). Adult male Sprague-Dawley rats were provided by Sun Yat-sen University’s 

Animal Experiment Center (Guangzhou, China). 
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4.2. Preparation and Properties of GDNF Liposomes 

4.2.1. FITC-Labeled GDNF (F-GDNF) 

FITC was dissolved in 0.5 mol/L Na2CO3 buffers (pH 9.5), the FITC solution reacted with GDNF at 

4 °C for 6 h in molar ratio 50:1. After that, FITC-labeled GDNF (F-GDNF) was separated from FITC 

solution on a Sephadex G-25 column (Santa Clara, CA, USA). 

4.2.2. Preparation of GDNF Conventional Liposomes (GDNF-L) 

Liposomes were prepared by the modified reverse phase evaporation method [27,33]. First, SPC and 

CHOL (2:1, mol/mol) were dissolved in alcohol and dichloromethane (2:1, v/v) in a round-bottom flask. 

The flask was connected to a rotary evaporator(R-201; Shanghai Science and Education Equipment Co., 

Ltd., Shanghai, China). The organic solvents were evaporated under reduced pressure at 45 °C until a 

thin lipid film was formed on the inner wall of the flask. The lipid film was hydrated with a buffer salt 

solution containing HEPES at 45 °C. The hydrating solutions contained 10 µg of GDNF and 1.5 g of 

sucrose. After vortexing, the liposomes were passed through a high-pressure homogenizer at a pressure 

of 1000 bars for 10 cycles, and finally, the GDNF-L was finally obtained. 

4.2.3. Preparation of GDNF Targeted Sterically Stabilized Liposomes (GDNF-SSL-T) 

First, RMP-7 reacted with DSPE-PEG-NHS at a molar ration of 1:6 as described previously [27,34], 

and the reaction product was checked by Matrix-Assisted Laser Desorption Ionization Time of Flight 

Mass Spectrometry. The result demonstrated that RMP-7 was transformed into DSPE-PEG-RMP-7, that 

DSPE-PEG-NHS had combined with RMP-7 at a molar ration of 1:1, and superfluous DSPE-PEG-NHS 

would be hydrolyzed to be DSPE-PEG. Then the mixture of DSPE-PEG and DSPE-PEG-RMP-7  

was incorporated into the membrane of GDNF-L by over-night incubation at 4 °C with gentle stirring to 

form GDNF-SSL-T. 

4.2.4. Properties of GDNF Liposomes 

GDNF liposomes were separated from un-encapsulated GDNF by the Sepharose CL-4B  

column. GDNF was labeled with FITC, then the concentration of GDNF was determined by the 

spectrofluorometer. The encapsulation efficiency (ee%) and recovery efficiency (re%) of GDNF 

liposomes was calculated. The size of liposomes was examined by laser light scattering spectroscopy 

(ALV/DLS/SLS-5022F, Langen, Germany). 

4.3. Establishment and Evaluation of the in Vitro BBB Model 

4.3.1. Primary Culture of Rat Brain Capillary Endothelial Cells (BCECs) and Astrocytes (ACs) 

The BCECs from the brain cortices of SD rats were isolated by a combination steps of mechanical 

disintegration, enzymatic digestion, and centrifugation, and were cultured as described previously [24,35]. 

Briefly, the BCECs were cultured in complete culture medium containing 20% FBS, Gluta MAX-1  

(4 mmol/L), HEPES (20 mmol/L), Heparin (40 U/mL), Pen-Stre (100 U/mL–100 µg/mL), ECGS  
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(100 µg/mL) and bFGF (10 ng/mL), and seeded onto 1% gelatin-coated culture flask. The BCECs were 

characterized by immunocytochemistry and morphology under Inverted Phase Contrast Microscope. 

Primary cultures of ACs were initiated from rat brains, as described previously [36]. The ACs were 

culture in medium containing 15% FBS, Gluta MAX-1 (4 mmol/L) and Pen-Stre (100 U/mL–100 µg/mL), 

and seeded on flask. 

4.3.2. The Development of an in Vitro Model of the BBB  

BCECs and ACs were cocultured in a “contact through feet” model. In a 12-well cell culture insert 

with 1 µm-diameter microporous polyethylene terephthalate (PET) membrane (Falcon, 1 µm pore size, 

10.5 mm diameter, 0.9 cm2 surface area), astrocytes were transferred at second passage on the bottom 

side at a density of 5.0 × 105 cells/mL by placing theinsert upside down. After the astrocytes attached 

firmly 4 h later, and then the membrane was turned over and placed in 12-well culture plate.  

The complete medium for ACs culture containing 15% FBS was added and changed every other day. 

Five days later, BCECs at the second passage were seeded on the upper side of the inserts at a density of 

2.5 × 105 cells/mL. Complete medium for BCEC culture containing 20% FBS was placed on and 

changed every other day [24]. After 5–7 days coculture, the tightness of the monolayer was assessed  

by measuring the transendothelial electrical resistance (TEER) using a TEER instrument (Word 

Precision Instruments, Inc., Sarasota, FL, USA) and viewed with scan electron microscope (SEM, 

JSM-5600 LV, JEOL, Tokyo, Japan) at instrumental magnification of 10,000 folds. HRP (RZ = 3.0–3.5, 

enzyme activity > 265 U/mg, Mw = 44 kDa) was selected as an indicator to evaluate the permeability of 

the BBB model, as reported by Xie et al. [27]. 

4.4. The Permeability of GDNF Liposomes on the BBB Model 

To study the influence of different liposomes on GDNF permeability of the BBB model, three groups 

were set: GDNF, GDNF-L and GDNF-SSL-T. GDNF was labeled with FITC to facilitate the 

measurement of content by a spectrometer. In each group, GDNF content was 1.0 µg in the donor 

chamber. GDNF, GDNF-L or GDNF-SSL-T were dissolved into the experimental culture medium 

(complete endothelial cell culture medium without ECGS), separately. The primary complete medium in 

the donor chamber was substituted by 500 µL experimental culture medium, and another 1500 µL 

experimental culture medium was added into the acceptor chamber so that liquid on both sides of the cell 

insert was at the same level, which can avoid hydrostatic pressure. Samples of 100 µL were taken from 

the acceptor chamber at 0.5, 1.0, 2.0, 4.0, 8.0 h and replaced by 100 µL of fresh experimental culture 

medium each time. Cells were kept under culture conditions (37 °C, 5% CO2, and saturated humidified 

atmosphere) during the whole transporting experiment. In the group of GDNF-L and GDNF-SSL-T, the 

samples taken from the acceptor chamber were treated by Triton X-100 to release F-GDNF from the 

liposomes. The concentration of GDNF was measured by the spectrofluorometer as described above. 

The permeability percent (P%) of GDNF liposomes on the in vitro model was calculated by formula, has 

been described in the references [27].  
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4.5. The Transporting Ability of GDNF Liposomes across the BBB in Vivo 

The in vivo studies were approved by Sun Yat-sen University Animal Ethical Experimentation 

Committee according to the requirement of the National Act on the Use of Experimental  

Animals (Beijing, China). 

Fifty-four adult SD rats (250 ± 10 g) were randomly divided into three groups and administrated 

GDNF, GDNF-L, GDNF-SSL-T, respectively. The drug was administrated through tail vein at a dose of 

10 µg GDNF per 100 g body weight in each group. After injection, the blood was collected at a given 

intervals of 0.25, 0.5, 1.0 h after injection. The rats were then sacrificed and their brains were obtained. 

Washed by cold still water, these brain tissues were then weighted and stored at −20 °C before measurement 

of GDNF concentrations as described later. 

The concentrations of GDNF in the blood samples and brain tissue were measured by a GDNF 

ELISA kit. First, blood samples was centrifuged at 3000× g for 10 min to obtain serum, and treated with 

0.3% Triton X-100 before measurement. While the brain tissues samples (50 µg) were resuspended 

(1:10, w/v) in a buffer consisting of a balanced salt solution of Dulbecco/Tris (pH 7.4) and 0.2% Triton 

X-100 and homogenized at 4 °C (Ultrasonic Processor, 750 Watt Model, St. Louis, MO, USA) for 40 s 

per sample. All the samples were centrifuged at 14,000 g for 10 min before collecting and concentrating 

the liquor supernatant [37]. After that, GDNF ELISA kit was used to measure GDNF content according 

to the manufacturer’s instruction. 

4.6. Statistical Analysis 

Data were expressed as mean ± standard deviation (SD). Student’s t-test was used for group 

comparisons. Values of p < 0.05 were considered significant. 

5. Conclusions 

GDNF-L and GDNF-SSL-T were prepared by modified reverse phase evaporation method, and all 

their sizes were below 90 nm. BBB model was established and evaluated by TEER and permeability to 

study the permeability of GDNF liposomes in vitro. The results in vitro showed that the liposomes, 

especially SSL-T, could facilitate GDNF transportation across BBB. The distribution of GDNF in vivo 

was also studied. Free GDNF and GDNF-L were eliminated rapidly in the circulation. While 

GDNF-SSL-T, which modified with PEGylated polymer and chemically conjugated with RMP-7, has a 

longer circulation time in the blood and favorable brain delivery. We can conclude that GDNF-SSL-T 

realized the aim of targeted delivery of therapeutic proteins to CNS. 
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