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Abstract: Glycoproteins represent the largest group of the growing number of 
biologically-derived medicines. The associated glycan structures and their distribution are 
known to have a large impact on pharmacokinetics. A modelling framework was 
developed to provide a link from the extracellular environment and its effect on 
intracellular metabolites to the distribution of glycans on the constant region of an antibody 
product. The main focus of this work is the mechanistic in silico reconstruction of the 
nucleotide sugar donor (NSD) metabolic network by means of 34 species mass balances 
and the saturation kinetics rates of the 60 metabolic reactions involved. NSDs are the  
co-substrates of the glycosylation process in the Golgi apparatus and their simulated 
dynamic intracellular concentration profiles were linked to an existing model describing 
the distribution of N-linked glycan structures of the antibody constant region. The 
modelling framework also describes the growth dynamics of the cell population by means 
of modified Monod kinetics. Simulation results match well to experimental data from a 
murine hybridoma cell line. The result is a modelling platform which is able to describe the 
product glycoform based on extracellular conditions. It represents a first step towards the 
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in silico prediction of the glycoform of a biotherapeutic and provides a platform for the 
optimisation of bioprocess conditions with respect to product quality. 
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Nomenclature: 

V culture volume L 
XV cell density cells/L 
t time h 
μ cell growth rate h−1 

kd cell death rate h−1 
Fout flow rate out of culture L/h 
Glcext extracellular glucose concentration mM 
Glnext extracellular glutamine concentration mM 
Fin flow rate into culture L/h 
Glcfeed feed glucose concentration mM 
KA activator species saturation coefficient mM 
KM species saturation coefficient mM 
kd,max maximum cell death rate h−1 
Kd species depletion coefficient mM 
q species cellular production mmol/(h-cell) 
Y species yield cell/mmol 
m species cell maintenance term mmol/(h-cell) 
mAb Antibody product titer mM 
Nuc Intracellular nucleotide concentration mM 
KTP Transport protein species saturation coefficient mM 
Vcell cell volume L 
DNAf nucleotide fraction in DNA dimensionless 
mDNA cellular DNA mass mg/cell 
mRNA cellular RNA mass mg/cell 
Mr molecular species mass mg/mmol 
RNAf nucleotide fraction in RNA dimensionless 
kcat enzyme turnover rate h−1 

Ki Species inhibition constant mM 
E0 Initial enzyme concentration mM 
Ngly,cell Number of glycans per cell mmol/cell 
NNSD,gly NSDs consumed per host cell glycan mmol/mmol 
Ngly,mAb Number of glycans per antibody mmol/mmol 
NNSD,mAb NSDs consumed per antibody mmol/mmol 
FmAb Antibody production rate mmol/h 
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1. Introduction 

Biotechnological products, including bioengineered vaccines and recombinant proteins, constitute 
19% of the pharmaceutical market with a total sales value of $142bn as of 2011 and substantial 
anticipated growth [1]. Glycoproteins represent the largest group of biologically-derived medicines, 
constituting 78 out of 212 approved products by the EMA as of May 2012 [2]. N-linked glycans exert 
major influence over the in vivo therapeutic mechanisms of the protein and have attracted much 
industrial interest. For example, with monoclonal antibodies, the largest class of biotherapeutic 
glycoproteins [2], the absence of the core fucose on the conserved Asn297 in the Fc region can 
increase antibody-dependent cell-mediated cytotoxicity (ADCC) up to 50-fold [3,4]. Galactose 
terminating structures are known to have a substantial effect on the affinity towards the C1q complex 
and their removal results in decreased complement lysis activity [5]. Other examples are 2,6-linked 
terminating sialic acid glycan motifs, which enable antibodies to modulate anti-inflammatory immune 
response [6] and high mannose content, which can lead to reduced in vivo half-life [7]. These findings 
have quickly been translated into the development of third generation mAbs [8]. Notable impact of 
glycans and the glycoform on the performance of biotherapeutics is not only limited to antibodies but 
also extends to other industrially relevant glycoproteins such as IFN-β and EPO amongst others [9].  

Current Problems Resulting from Glycans and Causes of Variation 

A well-defined product may have consistent protein backbones but can still display a glycoform 
distribution of more than a hundred detectable isoforms [10]. This is still a small proportion of all the 
potential glycan structures (estimated to be in excess of 20,000 potential structures) [11]. Protein  
N-glycosylation begins when a glycan precursor structure is attached to the protein backbone in the 
endoplasmic reticulum. The glycoprotein is subsequently transported to the Golgi apparatus where the 
high-mannose glycans are enzymatically processed giving rise to large variations in glycoform 
depending on host cell line, enzyme concentrations/availability, various process conditions, and the 
availability of the reaction substrates, i.e., nucleotide sugar donor species (NSDs) (extensively 
discussed in [12]). The nucleotide sugars donors are synthesized in the cell cytoplasm subject to 
process conditions and are then transported into the Golgi. This opens the door for engineering of the 
glycoform by means of feeding strategies, where the addition of specific metabolic intermediates of 
the nucleotide sugar synthesis pathways to the culture will drive metabolic flux towards the desired 
nucleotide sugar and eventually influence the glycoform through increased substrate availability [13,14]. 
Many sugar and/or nucleotide feeding strategies have been successfully pursued in order to manipulate 
the glycoform of glycoproteins (summarized previously [9,15]). However, the predictions of the 
impact of feeding strategies onto the glycoform still remain qualitative, a gap that can most accurately 
be filled through a modeling framework. 

Under the information-driven Quality by Design (QbD) paradigm, upfront experimentation is 
increased to gain a better understanding of the factors effecting critical Quality Attributes (cQAs)  
such as the effect of NSD species availability on the final N-linked glycoform [16]. Based on 
experimentally generated data and available biological knowledge, modelling frameworks can be 
formulated to recreate biological systems such as metabolic networks and their responses to 
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perturbations. This, in turn, can aid the design and optimisation of the biotherapeutic manufacturing 
process with respect to both product titer and quality.  

In this work, the nucleotide sugar donor metabolic synthesis network was recreated in silico. The 
structure was based on available knowledge of the nucleotide and NSD synthesis pathways and 
parameters were estimated from experimentally generated data from a hybridoma cell culture system 
producing an IgG1 monoclonal antibody. Flux-based constraints were also applied to the mechanistic 
model to enable an improved estimation of unknown parameters. The dynamic outputs of the in silico 
metabolic network were subsequently used to estimate the glycoform of the Fc region of the antibody 
using a model for N-linked glycosylation developed by del Val et al. [17]. The results show that the 
model framework is able to describe the behavior of this cell line, its nucleotide and nucleotide sugar 
metabolic network as well as the product glycoform.  

2. Mathematical Model Development 

The aim of the mathematical modelling framework presented herein is the estimation of 
intracellular nucleotide sugar concentrations based on extracellular glucose and glutamine levels, with 
an ultimate goal of predicting the impact of feeding strategies on glycoform distribution. The different 
parts of the framework and their interactions are shown in Figure 1. It comprises an unstructured cell 
growth model, and kinetic models of nucleotide and nucleotide sugar synthesis, which finally link to 
the model describing N-linked glycosylation in monoclonal antibodies [17]. The main focus of this 
work is on a bottom-up modelling approach for the in silico reconstruction of the nucleotide sugar 
donor (NSD) synthesis metabolic network. This approach implies that the system is constructed from 
its individual components to give rise to a complex model, which translates to describing all known 
reactions in full dynamic detail to represent the NSD model. The NSD part of the modelling 
framework uses glucose inlet flux as its sole input and has outputs for glycolysis and the NSD 
transport to the ER and Golgi. 

Figure 1. Structure of the mathematical model and the interactions of the individual model 
parts with a focus on the network for nucleotide sugar synthesis. 
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2.1. Cell Culture Dynamics Model  

The dynamic cell growth model describes cell culture dynamics as a function of extracellular 
glucose and glutamine availability. It is based on Monod kinetics with modifications in order to 
account for non-ideal effects observed in cell culture experiments. Homogeneity with respect to 
species and cell concentrations was assumed at all times. The viable cell density (XV in cells/L) is a 
function of growth rate (µ in h−1), death rate (kd in h−1) and the flow out of the reactor (Fout in L/h): 

𝑑𝑉𝑋𝑉
𝑑𝑡

= 𝜇𝑉𝑋𝑉 − 𝑘𝑑𝑉𝑋𝑉 − 𝐹𝑜𝑢𝑡𝑋𝑉 (1) 

The growth rate is a function of extracellular glucose (Glc), glutamine (Gln), the saturation 
coefficients for glucose (KM,glc) and glutamine (KM,gln) all in units of mMol and the maximum growth 
rate µmax (h−1). 

𝜇 = 𝜇𝑚𝑎𝑥 �
[𝐺𝑙𝑐𝑒𝑥𝑡]

𝐾𝑀,𝑔𝑙𝑐 +  [𝐺𝑙𝑐𝑒𝑥𝑡]
��

[𝐺𝑙𝑛𝑒𝑥𝑡]
𝐾𝑀,𝑔𝑙𝑛 + [𝐺𝑙𝑛𝑒𝑥𝑡]

� (2) 

The death rate is an inverse Monod function of the glucose and glutamine availability, the 
maximum death rates for glucose (kd,max,glc in h−1) and glutamine (kd,max,gln in h−1), the species depletion 
coefficients for glucose (KM,gln in mmol) and glutamine (KM,gln in mmol). Parameter estimation using 
the gPROMS model building environment [18] showed that extracellular ammonia and lactate did  
not contribute significantly towards cell death or growth inhibition for this hybridoma cell line  
(not shown). Therefore, neither species features in other parts of the model.  

𝑘𝑑 = 𝑘𝑑,𝑚𝑎𝑥,𝑔𝑙𝑐 �
𝐾𝑑,𝑔𝑙𝑐

𝐾𝑑,𝑔𝑙𝑐 +  [𝐺𝑙𝑐𝑒𝑥𝑡]
� + 𝑘𝑑,𝑚𝑎𝑥,𝑔𝑙𝑛 �

𝐾𝑑,𝑔𝑙𝑛

𝐾𝑑,𝑔𝑙𝑛 + [𝐺𝑙𝑛𝑒𝑥𝑡]
� (3) 

The cell metabolism of glucose and glutamine were represented by the following equations: 
𝑑𝑉[𝐺𝑙𝑐𝑒𝑥𝑡]

𝑑𝑡
= −𝑞𝑔𝑙𝑐𝑉𝑋𝑉 − 𝐹𝑖𝑛�𝐺𝑙𝑐𝑓𝑒𝑒𝑑� − 𝐹𝑜𝑢𝑡[𝐺𝑙𝑐𝑒𝑥𝑡] (4) 

𝑑𝑉[𝐺𝑙𝑛𝑒𝑥𝑡]
𝑑𝑡

= −𝑞𝑔𝑙𝑛𝑉𝑋𝑉 − 𝐹𝑖𝑛�𝐺𝑙𝑛𝑓𝑒𝑒𝑑� − 𝐹𝑜𝑢𝑡[𝐺𝑙𝑛𝑒𝑥𝑡] (5) 

In the above, qglc and qgln (mmol/(h-cell)) denote the specific glucose and glutamine cell uptake rate, 
respectively, and are defined by the equations shown below: 

𝑞𝑔𝑙𝑐 = �
𝜇

𝑌𝑋𝑣
𝑔𝑙𝑐�
� + 𝑚𝑔𝑙𝑐 (6) 

𝑞𝑔𝑙𝑛 = �
𝜇

𝑌𝑋𝑣
𝑔𝑙𝑛�
� + 𝑚𝑔𝑙𝑛 (7) 

YXv/glc and YXv/gln (cell/mmol) denote the biomass yield coefficient for glucose and glutamine, 
respectively. The mglc and mgln (mmol/(h-cell)) terms are the maintenance coefficients for glucose and 
glutamine, respectively. Lastly the product term and the specific productivity terms are represented by 
the following: 
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𝑑𝑉[𝑚𝐴𝑏]
𝑑𝑡

= 𝑞𝑚𝐴𝑏𝑉𝑋𝑉 − 𝐹𝑜𝑢𝑡[𝑚𝐴𝑏] (8) 

𝑞𝑚𝐴𝑏 = 𝑌𝑚𝐴𝑏
𝑋𝑣�  (9) 

2.2. Nucleotide Model  

A nucleotide model was created based on a simplified purine and pyrimidine synthesis network. 
The carbon source for the synthesis of the nucleotide pentoses is glucose with glutamine acting as the 
nitrogen source [19], while asparagine and glycine are excluded due to lack of experimental data. The 
resulting network contains six mass balances, one each for ADP, AMP, ATP, CTP, GTP and UTP 
connected by a network of eight reactions based on Monod kinetics as displayed in Figure 2. All 
glucose and glutamine co-substrate terms are based on extracellular concentrations of the two species. 
The reactions of ATP to ADP and ADP to AMP are the following: 

𝑟 = 𝑘 �
[𝑁𝑢𝑐]

𝐾𝑀,𝑛𝑢𝑐 +  [𝑁𝑢𝑐]� (10) 

The synthesis of CTP and GTP are represented by the following equation: 

𝑟 = 𝑘 �
[𝑁𝑢𝑐]

𝐾𝑀,𝑛𝑢𝑐 +  [𝑁𝑢𝑐]� × �
[𝐺𝑙𝑛𝑒𝑥𝑡]

𝐾𝑀,𝑔𝑙𝑛 +  [𝐺𝑙𝑛𝑒𝑥𝑡]
� (11) 

The reaction of AMP to ADP and ADP to ATP are of the following form: 

𝑟 = 𝑘 �
[𝑁𝑢𝑐]

𝐾𝑀,𝑛𝑢𝑐 +  [𝑁𝑢𝑐]� × �
[𝐺𝑙𝑐𝑒𝑥𝑡]

𝐾𝑀,𝑔𝑙𝑐 +  [𝐺𝑙𝑐𝑒𝑥𝑡]
� (12) 

Lastly, the synthesis of ATP and UTP are represented by the following: 

𝑟 = 𝑘 �
[𝐺𝑙𝑛𝑒𝑥𝑡]

𝐾𝑀,𝑔𝑙𝑛 +  [𝐺𝑙𝑛𝑒𝑥𝑡]
� × �

[𝐺𝑙𝑐𝑒𝑥𝑡]
𝐾𝑀,𝑔𝑙𝑐 + [𝐺𝑙𝑐𝑒𝑥𝑡]

� (13) 

Extracellular glucose and glutamine are the sole inlets into the nucleotide model. There are a total 
of four flux-constrained outlets, one each for AMP, CTP, GTP and UTP. For the outlets, it was 
assumed that each species is consumed in the formation of NSDs for host cell glycoproteins as well as 
antibody production, DNA synthesis and RNA synthesis. The latter two were taken to be dependent on 
growth rate and are described by the following equation: 

𝐹𝑜𝑢𝑡,𝑛𝑢𝑐 = �
[𝑁𝑢𝑐]

𝐾𝑇𝑃,𝑛𝑢𝑐 + [𝑁𝑢𝑐]� ×
𝜇
𝑉𝑐𝑒𝑙𝑙

× �
𝐷𝑁𝐴𝑓,𝑛𝑢𝑐𝑚𝐷𝑁𝐴

𝑀𝑟𝐷𝑁𝐴
+
𝑅𝑁𝐴𝑓,𝑛𝑢𝑐𝑚𝑅𝑁𝐴

𝑀𝑟𝑅𝑁𝐴
� (14) 

The molecular mass for each DNA monomer (MrDNA) and RNA monomer (MrRNA) as well as the 
fraction of each nucleotide in DNA (DNAf,nuc) and RNA (RNAf,nuc) was based on the data used by 
Nolan and Lee [20]. The mass of DNA (mDNA) and RNA (mRNA) were taken as 7.05 and 28.55 pg/cell, 
respectively [21].  
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Figure 2. Reduced nucleotide synthesis network. 

 

2.3. Nucleotide Sugar Synthesis Model 

The bottom-up reconstruction of the NSD metabolic network is based on the murine metabolic 
network as depicted in the Kyoto Encyclopedia of Genes and Genomes [22] and individual enzyme 
data as found on BRENDA [23]. In total, the network includes 34 sugar and nucleotide sugar species, 
each represented as a separate mass balance connected through a network of 35 reaction steps as 
shown in Figure 3. The rate of each enzymatic reaction is represented by a single equation and is used 
to predict the dynamic behavior of the metabolic network with respect to the system inputs, i.e., 
hexoses and nucleotides.  

Figure 3. Reaction network including all steps considered in the model. 
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equations are based on Michaelis-Menten kinetics, accounting for reported reaction mechanisms  
and inhibitory compounds and the Hill equation is used where data indicating deviation from  
Michaelis-Menten kinetics (i.e., independent binding) was available. Murine (Mus musculus) enzyme 
data was used where available and when lacking preference in data was based on most recent common 
ancestors as described in the molecular tree of mammals of the placental orders [24]. While the 
dissociation constant (Km) is an intrinsic parameter, Vmax is not, and is a function of the turnover rate 
constant, kcat, and the initial enzyme concentration used in a particular experimental condition [E0]. 
The following assumptions were made for the derivation of the rate of reaction expressions: 

• Equilibrium is rapidly reached for all intermediate reactants; 
• Rate-limiting steps are irreversible (Table S1);  
• Where water is required for catalysis, full enzyme saturation is assumed due to the aqueous 

environment of the cytoplasm; 
• Where more than one substrate is required for catalysis, a random order of substrate binding is 

assumed, unless reported otherwise; 
• Rapid dissociation of reaction products from enzyme; 
• Michaelis-Menten kinetics are assumed to hold true, unless reported otherwise; 
• All enzyme and transport protein concentrations throughout the network are constant.  

In total the mechanisms split into 20 single substrate uni-uni reactions, seven random order bi-bi,  
14 ordered bi-bi, 17 Ping-Pong bi-bi and one Ping-Pong ter-ter. The model equations for the most 
simple uninhibited reaction case and the single specific ter-ter mechanism equations are shown below. 
A and B denote substrate concentrations, kcat turnover rate, E0 initial enzyme concentration, and I 
denotes inhibitor concentrations. The derivations of rate of reaction equations for each type of 
mechanism including inhibitory terms are summarized more extensively in the supplementary 
information (Appendix 1). Each individual reaction and its corresponding mechanism are also listed in 
the supplementary information (Table S1). The equations for each type of kinetics are shown below.  

Single substrate uni-uni enzyme kinetics: 

𝑣 =
𝑑[𝑃]
𝑑𝑡

=
𝑘𝑐𝑎𝑡[𝐸0][𝐴]
𝐾𝑚 + [𝐴]  (15) 

Random order bi-bi enzyme kinetics: 

𝑣 =
𝑑[𝑃]
𝑑𝑡

=
𝑘𝑐𝑎𝑡[𝐸0][𝐴][𝐵]

𝐾𝑚,𝐴𝐾𝑚,𝐵 + 𝐾𝑚,𝐴[𝐵] + 𝐾𝑚,𝐵[𝐴] + [𝐴][𝐵] (16) 

Ordered bi-bi enzyme kinetics: 

𝑣 =
𝑑[𝑃]
𝑑𝑡

=
𝑘𝑐𝑎𝑡[𝐸0][𝐴][𝐵]

𝐾𝑚,𝐴𝐾𝑚,𝐵 + 𝐾𝑚,𝐵[𝐴] + [𝐴][𝐵] (17) 

Ping-pong bi-bi enzyme kinetics: 

𝑣 =
𝑑[𝑃]
𝑑𝑡

=
𝑘𝑐𝑎𝑡[𝐸0][𝐴][𝐵]

𝐾𝑚,𝐴[𝐵] + 𝐾𝑚,𝐵[𝐴] + [𝐴][𝐵] (18) 
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Ping-pong ter-ter enzyme kinetics: 

𝑣 =
𝑑[𝑃]
𝑑𝑡

=
𝑘𝑐𝑎𝑡[𝐸0][𝐴][𝐵]2

2𝐾𝑚,𝐴𝐾𝑚,𝐵[𝐵] + 2𝐾𝑚,𝐵[𝐴][𝐵] + 𝐾𝑚,𝐴[𝐵]2 �1 + [𝐼]
𝐾𝐼
� + 𝐾𝑚,𝐵

2[𝐴] + [𝐴][𝐵]2
 (19) 

The reactions of the NSD network include five reactions with allosteric regulation, six species with 
cooperative binding behavior and a total of 76 competitive, non-competitive and un-competitive 
inhibitory terms. For the case of enzyme activation through allosteric regulation, the initial enzyme 
concentration term was replaced as shown below. 

[𝐸0] =
[𝐸0][𝐴𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑜𝑟]
𝐾𝐴,𝐴 + [𝐴𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑜𝑟] (20) 

Additionally, there are nine transport rate equations, each accounting for the transport of a specific 
nucleotide sugar species out of the model, i.e., from the cytoplasm into the Golgi or ER. The transport 
equations contain a Michaelis-Menten kinetics term including the transport protein dissociation 
constants, as summarized by del Val et al. [17], and a second term reflecting the theoretical nucleotide 
sugar consumption rate. An exception to this was the CMP-Neu5Ac transporter, which is known to be 
competitively inhibited by UDP-HexNAc species and hence, an inhibitory term has been included in 
the transport protein dissociation constant to reflect this [25].  

𝑁𝑆𝐷 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑟𝑎𝑡𝑒 = �
[𝑁𝑆𝐷]

𝐾𝑇𝑃,𝑁𝑆𝐷 + [𝑁𝑆𝐷]
� ��

𝜇
𝑉𝑐𝑒𝑙𝑙

𝑁𝑔𝑙𝑦,𝑐𝑒𝑙𝑙𝑁𝑁𝑆𝐷,𝑔𝑙𝑦� + �𝑁𝑔𝑙𝑦,𝑚𝐴𝑏𝑁𝑁𝑆𝐷,𝑚𝐴𝑏𝐹𝑚𝐴𝑏�� (21) 

The consumption rate contains terms for the host cell glycan structures and the antibody product. 
The first term of the summation describes the rate of glycan addition to host cell protein and is a 
function of cell growth. The glycan distribution on host cell proteins is assumed to be constant 
throughout the culture. Based on a protein weight of 33.7 µg/105 cells as reported by Bonarius  
et al. [21] and an average amino acid monomer molecular weight of 127 µg/µmol as calculated by 
Nolan and Lee [20], an amino acid concentration per cell was found. Multiplying the cellular amino 
acid concentration with an O-linked glycan frequency of 0.00371 glycans per amino and an N-linked 
glycan frequency of 0.00400 glycans per amino acid for 64.9% of glycosylated host cell proteins [26], 
an O-linked and N-linked glycan concentration of 1.41 × 10−8 and 1.31 × 10−8 µmol/cell, respectively, 
was calculated for each glycan species. This in turn gives a total number of glycans per cell of  
2.72 × 10−8 µmol/cell (Nglyc,cell). Furthermore, mass spectrometry data of the human mature  
B-cell glycoform was used to find the average compositions of O-linked and N-linked glycan 
structures based on the relative abundance of each species. The findings for each sugar species are 
summarized in Table 1 and the abundance of each individual identified species as well as the MS 
methodology on which the average glycoform are based are shown in Appendix 2. Thus, the system 
becomes constrained through the nine calculated outlet fluxes required to maintain cell growth. The 
glucose flux towards glycolysis is a function of the enzyme concentration (Eglyc) for the reaction step 
from fructose 6-phosphate to fructose 1,6-bisphosphate and thus, is allowed to vary as part of the 
parameter estimation as well as with the concentration of its substrate fructose 6-phosphate. The 
kinetic data and reaction mechanism were obtained from Chen et al. [27]. This step is assumed to be 
irreversible and acts as the main outlet flux from the NSD network. 
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Table 1. Frequency of sugar species occurrence in glycans of mature human B-cells. 

Glycan type GlcNAc GalNAc Man Gal Neu5Ac Fuc 
N-linked glycan 2.896 0 5.813 0.759 0.516 0.332 
O-linked glycan 0.156 1 0 1.156 1.543 0 

Glycan average (NNSD,glyc) 1.579 0.481 3.018 0.950 1.010 0.173 

The antibody term is based on the antibody production rate from the cell growth model and the 
experimentally determined glycoform of the HFN7.1 monoclonal antibody. 

While enzyme concentration levels of the nucleotide sugar metabolic network have been predicted 
to change based on transcriptomic analysis [28], they were held constant as part of this study due to 
lack of dynamic proteomic data. An initial enzyme concentration value was obtained based on an 
average hybridoma cell protein dry weight fraction and an averaged cell volume as reported by  
Frame et al. [29] and Lee et al. [29,30]. The average enzyme purification was found to be 1000-fold 
with an average molecular mass of 61 kDa based on the obtained literature values listed in the 
supplementary information (Table S1). Each protein was assumed to make up 0.1% of total cell 
protein resulting in an average molar enzyme concentration of 3.9 μM, which was used as an initial 
value for all subsequent parameter estimations.  

Glycolysis and the pentose phosphate pathway account for the majority of glucose and other hexose 
feed consumption in mammalian cells. The first three species of the nucleotide sugar network, namely 
glucose, glucose-6-phosphate and fructose-6-phosphate are substrates for both glycolysis and 
nucleotide sugar synthesis and, hence, the fraction consumed by glycolysis needs to be accounted for.  

Studies by Fujita et al. on phosphomannose isomerase deficient mice suggested that the mannose 
salvage pathway is in fact substantial [31]. As a result the cleaved mannose from the glycan core 
structure is fed back into the metabolic pathway as part of the mathematical model. The amount of 
salvaged mannose per N-linked glycan is obtained through the difference of the original glycan 
precursor structure featuring nine mannose molecules and the final average mannose count per glycan 
of the host cell protein or antibody product. This also applies to UDP-Glc, where the glucose 
molecules added to the glycan precursor are salvaged as intracellular glucose. It was assumed that four 
UDP-Glc molecules are consumed per glycan in the Calnexin and Calreticulin cycle. 

Including reverse and parallel reactions as well as the nine transport rates, a total of 69 distinct 
reactions are simulated as part of the bottom-up approach model. In addition, there are nine non-NSD 
species held at constant concentration (Appendix 3) and intracellular glutamine, which due to lack of 
experimental data has been assumed to follow intracellular glucose concentrations. While initial 
concentrations for nucleotide sugar species have been experimentally determined, no data was 
available for any intermediate species. The initial concentrations of the remaining 27 species have 
been estimated at steady state using the mathematical model such that the initial conditions for the 
seven experimentally measureable nucleotide sugars are met. 

2.4. Parameter Estimation 

A total of 46 parameters were initially estimated using gPROMS to give a first fit for the 
experimentally derived data. In a second step, a global sensitivity analysis was performed to reduce the 
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number of estimated parameters. Sensitivity analysis is a powerful tool, which can be used in model 
development for identifying parameter importance with respect to model outputs. It allows for 
parameters to be ranked with respect to impact on an output, i.e., the concentration of NSDs. 
Knowledge about the relationship of model inputs with respect to outputs can offer valuable insights 
into complex models and thus allow for improved design of experiments [32] or, as presented in this 
study, allow for more targeted parameter estimation and reduction in model size. The method 
employed in this study was the Sobol global sensitivity analysis (GSA) method, which provides 
quantitative results and incorporates the entire range of parameter values. With this method, all input 
parameters are varied simultaneously, accounting for non-linearities and capturing parameter 
interaction effects. In this study, total effect Sobol Sensitivity Indices have been computed, which are 
based on the ANOVA decomposition as extensively discussed in the literature [33–35]. 

The Sobol GSA was applied to the bottom-up model with a total of 46 input parameters to be 
examined. The GSA has been performed on the parameters as initially estimated, as opposed to values 
obtained from literature. This includes 30 enzyme concentrations, eight dissociation constants, seven 
turnover rates and one Hill coefficient. The enzyme concentration governing the outlet rate towards 
glycolysis has been excluded from the GSA as it accounts for between 95.8% and 97.6% of total 
glucose flux into the cell at any given time. Those values are in agreement with Chen et al., who 
calculated the fraction of glucose, going towards the nucleotide sugar metabolic network to be 3.52% 
for CHO cells [27] based on previous experimental work by Goudar et al. [36]. This parameter is 
known to be important and was expected to dwarf others, as was confirmed by a preliminary GSA 
study. The remaining 46 parameters created a very large parameter space and thus, a very large sample 
set was required in order to map the model behavior accurately resulting in computationally very 
expensive calculations. In order to reduce calculation times, a metamodel was created using 
SobolHDMR v2.0, a general purpose metamodeling software. The program is based on a number of 
Random Sampling-High dimensional model representation (RS-HDMR) methods. The original  
RS-HDMR method is presented by Li et al. [37,38] and Li and Rabitz [39] while the improved 
techniques are described in [40,41]. All of the implemented techniques use Quasi-Monte Carlo 
sampling based on Sobol sequences. Supplied with “black-box” data of input parameter values with a 
sample set of 131,072 (217) and corresponding model outputs a metamodel was created upon which the 
GSA was performed thus, greatly reducing computational cost. 

The GSA was performed for all seven nucleotide sugars of interest at time points 20, 40, 60, 80 and 
120 h corresponding to early-exponential, mid-exponential, late-exponential, stationary and decline 
growth phases, respectively. Indices greater than 0.036, i.e., the lowest experimental error in NSD 
concentration measurements, have been deemed significant. 

3. Model Performance and Discussion 

The dynamic Monod kinetics growth model was able to describe the consumption of glucose and 
glutamine as well as cell growth and cell death (Figure 4). Interestingly, the model equation describing 
mAb production was a function of cell density only, but was still able to describe mAb titer well, 
indicating that mAb productivity was independent of the specific cell growth rate. 
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Figure 5 depicts the fits of the simple nucleotide model as compared with the experimentally 
determined intracellular nucleoside concentrations. The model based on the reduced network was able 
to produce satisfactory fits. Some oscillatory behavior can be observed, most notably with the GTP 
model output. This effect is most likely due to the assumption that the flux of nucleotides out of the 
system is a function of growth only. However, to improve upon this fit would require an extensive 
analysis of the intracellular fluxes of the nucleotides involved and thus, decoupling the outlet flux from 
the cell growth term. 

Figure 4. Experimental data compared with generated fits from the dynamic Monod 
growth model. Fits for extracellular glucose concentration (top left), extracellular 
glutamine concentration (top right), viable and dead cell density (bottom left) and 
antibody titer (bottom right). 

  

  

The main focus of the presented work is the mechanistic bottom-up nucleotide sugar synthesis 
model, which was able to produce good fits for all species except for GDP-Fuc (Figure 6). The 
difficulties in estimating GDP-Fuc concentrations stem from its comparatively low intracellular 
concentration and, thus, the relatively large uncertainty in its measurements (including concentrations 
below the detection limit for some time points). Additionally, due to the lack of dynamic GDP-Man 
data, estimations of dissociation constants and enzyme concentrations of the reaction steps leading up 
to GDP-Fuc do not restrict the parameter space sufficiently to arrive at a satisfying result. Like the 
nucleotide model, the NSD outlet fluxes are a function of the cell growth rate. To improve on the fits, a 
detailed flux balance analysis will be required to constrain the in vivo metabolic network in a more 
physiologically accurate way and therefore depict its behavior more accurately in silico. The size of 
the metabolic network and the various intra-network interactions pose an additional challenge to the 
estimation of parameters as well as the design of experiments to improve parameter fit. Since many 
parameters were shown to have insignificant impact on model outputs, this presents scope for a formal 
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model reduction to tackle the aforementioned difficulties. All estimated parameters are summarized in 
Appendix 3. While extensive quantitative proteomic [42,43] as well as transcriptomic [44] maps for 
mammalian species are beginning to appear, there is no data available for absolute enzyme 
concentrations within the NSD metabolic network. Additionally, the uncertainty in turnover rate data 
makes a comparison of estimated enzyme concentrations with literature data not feasible at this point. 

Figure 5. Experimental data compared with generated fits from the nucleotide model. Fits 
for intracellular ADP concentration (top left), intracellular AMP concentration (top right), 
intracellular ATP concentration (center left), intracellular CTP concentration (center right), 
intracellular GTP concentration (bottom left) and intracellular UTP concentration  
(bottom right). 

  

  

  

The output from the nucleotide sugar donor model, i.e., the NSD concentrations, were fed into a 
model describing the cumulative N-linked glycosylation of the antibody Fc region as presented by  
del Val et al. [17] in order to estimate the resulting glycan distribution on the product. The results 
compare well with the measured data for product glycosylation, as shown in Figure 7. The glycan data 
for time points 48 and 72 h of the cell culture corresponding to exponential and stationary growth 
phases, respectively, are shown compared to the model simulation results. The glycan distribution is 
estimated by the model in sufficient accuracy. The small deviations observed suggest that the 
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experimentally observed changes during this period may not be due to changes in nucleotide sugar 
concentration alone, but possibly also caused by variations in the levels of glycosylatransferases [28]. 
A further indication that the degree of galactosylation is not a strong function of UDP-Gal during the 
given time period is the very low KM value of 0.0024 mM for the UDP-Gal Golgi transporter [45]. 
This is well below the measured and estimated UDP-Gal concentrations and indicates saturation of the 
transport protein until later stages of the cell culture. 

Figure 6. Experimental data compared with generated fits from the mechanistic bottom-up 
approach nucleotide sugar synthesis model. Fits for intracellular CMP-Neu5AC concentration 
(top left), intracellular GDP-Fuc concentration (top right), intracellular UDP-GalNAc 
concentration (center left), intracellular UDP-Gal concentration (center right) and 
intracellular UDP-GlcNAc concentration (bottom left).  
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Figure 7. Simulated and experimentally determined distribution of the cumulative  
N-linked glycoform of the antibody Fc region for two time points during cell culture. 

 

4. Materials and Methods 

4.1. Cell Culture, Metabolite Monitoring and Antibody Quantification 

The mouse hybridoma HFN7.1 cell line (ATCC CRL-1606™, Teddington, UK) producing an IgG1 
antibody against fibronectin from human plasma was used in this study. The cells were maintained in 
suspension cultures in 4.5 g/L glucose DMEM (Gibco, Paisley, UK) supplemented with 10% fetal 
bovine serum (Sigma-Aldrich, Gillingham, UK) at 37 °C and 5% CO2 on an orbital shaking platform 
rotating at 125 rpm. Subculture was performed every three days and new cultures were seeded at a 
density of 2 × 105 cells/mL. Experiments were performed in 2 L vented Erlenmeyer flasks with  
a working volume of 400 mL. Cell concentration was determined using a Neubauer ruling 
haemocytometer and viability was estimated by the trypan blue dye exclusion method using light 
microscopy. Extracellular glucose, glutamine and lactate concentrations were measured using the 
BioProfile 400 (Nova Biomedical, Runcorn, UK). The antibody concentration in the supernatant was 
determined using an indirect sandwich enzyme-linked immunosorbent assay (ELISA) as described by 
Kontoravdi et al. [32]. 

4.2. Intracellular Nucleotide and Nucleotide Sugar Extraction  

Cell culture samples were centrifuged at 800 rpm and the resulting cell pellet was resuspended in 
200 µL of 0.5 M perchloric acid solution (Sigma-Aldrich, Gillingham, UK). The solution was 
incubated on ice for 10 min before centrifugation (4 °C, 10,000× g, 5 min). The supernatant was 
incubated with 40 µL of potassium hydroxide (Sigma-Aldrich, Gillingham, UK) on ice for a further  
10 min, after which it was again centrifuged (4 °C, 10,000× g, 5 min). The final supernatant sample 
was filtered through a 0.22 µm syringe filter and briefly stored at 5 °C prior to analysis. Quenching 
with 0.9% w/v sodium chloride prior to extraction, as described by Dietmair et al. [46] has been 
investigated previously and shown not to affect NSD recovery, thus, quenching was deemed to be 
unnecessary [47]. 
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4.3. Characterization of Intracellular Nucleotides and Nucleotide Sugars 

An optimized high-performance anion-exchange chromatography (HPAEC) method as described  
in [47] was used for nucleotide sugar and nucleotide quantification. HPAEC elutions were performed 
with gradients of 1.5 M sodium acetate solution (Sigma-Aldrich, Gillingham, UK) in 3 mM potassium 
hydroxide (Sigma-Aldrich, Gillingham, UK) with a maximum ion concentration of 1 M sodium 
acetate using a CarboPac PA1 column (Dionex, Bannockburn, IL, USA). The applied method was able 
to resolve and detect six nucleotide sugar standards namely cytidine monophosphate N-acetylneuraminic 
acid (CMP-Neu5Ac), guanosine diphosphate fucose (GDP-Fuc), guanosine diphosphate mannose 
(GDP-Man), uridine diphosphate N-acetylgalactosamine (UDP-GalNAc), uridine diphosphate glucose 
(UDP-Glc), uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) as well as adenine diphosphate 
(ADP), adenine monophosphate (AMP), adenine triphosphate (ATP), cytidine triphosphate (CTP), 
guanosine triphosphate (GTP) and uridine triphosphate (UTP) within a 20 min run.  

4.4. Glycan Purification and Analysis 

Antibody samples were purified using the Proteus Protein G antibody purification kit (Pro-Chem, 
Littleton, MA, USA) according to the manufacturer’s instructions. The purified antibody samples were 
lyophilized in a ModulyoD freeze dryer (Thermo Fisher Scientific, Waltham, MA, USA) prior to 
reduction and carboxymethylation, as described previously [48,49]. Briefly, reduction and 
carboxymethylation consisted of incubating the sample at 37 °C for 1 h in 1 mL of 0.6 M Tris-HCl 
buffer (Pierce, Rockford, IL, USA), pH 8.5, supplemented with 2 mg/mL dithioreitol (Sigma Aldrich, 
Gillingham, UK). Then 100 μL of 12 mg/mL iodoacetic acid (Sigma Aldrich, Gillingham, UK) in  
0.6 M Tris-HCl buffer, pH 8.5 was added and incubating in the absence of light for 2 h at 37 °C. The 
product was dialysed against 4.5 L ammonium bicarbonate buffer, pH 7.7 for 24 h with regular buffer 
changes. The reduced and carboxymethylated samples were lyophilized once more, subjected to 
trypsin (TPCK treated bovine pancreas trypsin, EC 3.4.21.4) digestion and purified using reverse 
phase Sep-Pak C18 cartridges (Waters, Elstree, UK) as described previously [48,49]. Peptide-bound  
N-glycans were released by incubating 200 μL of the purified tryptic digest with 2.5 units of 
recombinant Peptide-N-glycosidase F (PNGase F, EC 3.5.1.52) from E.coli (Roche Applied Science, 
Burgess Hill, UK) for 24 h at 37 °C. The samples were lyophilized and dissolved in 200 μL of 5% 
(v/v) acetic acid (Romil, Cambridge, UK) and purified using the 1-propanol/5% acetic acid system on 
Sep-Pak C18 cartridges as described in [49]. The resulting 5% (v/v) acetic acid solutions were pooled 
and lyophilized in preparation for N-glycan NaOH permethylation [48,49]. The latter procedure was 
performed as described in [48,49]. The resulting permethylated samples were lyophilized and 
subsequently purified using the methanol/acetonitrile C18 Sep-Pak system [47]. The acetonitrile 
fractions were collected and lyophilized prior to dissolution in 10 μL methanol (Romil, Cambridge, 
UK). 2 μL of this methanol solution were mixed in a 1:1 ratio with 20 mg/mL 2,5-dihydrobenzoic acid 
(Fluka, Gillingham, UK) dissolved in 70% (v/v) aqueous methanol and loaded onto a 100-well MALDI 
metal plate [49]. The MALDI plate was placed under vacuum for ~20 min, and when completely dry, 
was loaded into the mass spectrometer for analysis. 



Int. J. Mol. Sci. 2014, 15 4508 
 

MALDI-MS was performed on a Voyager-DE STR MALDI workstation (Perspective Biosystems, 
Paisley, UK) equipped with delayed extraction technology. The machine was set in positive reflectron 
mode and data was acquired using the Voyager 5 Instrument Control Software. Data was processed 
using Data Explorer 4.9 software (Applied Biosystems, Darmstadt, Germany), where baseline 
correction and noise filtering (correction factor of 0.7) was performed. The mass spectra were then 
transferred to the GlycoWorkBench software [50,51] for peak assignment and relative quantification 
of the observed glycans. 

5. Conclusions 

The holistic modelling framework presented is a first step towards quantifying the impact of 
extracellular nutrient concentrations on the glycoform of biotherapeutics through capturing changes in 
the nucleotide and nucleotide sugar metabolism. A closed-loop in silico platform could ultimately be 
used for the optimisation of glycosylation in biotherapeutics. More work is required to assess how the 
availability of nucleotides and the addition of another, or even a combination of, different carbon 
sources will impact the metabolism of nucleotide sugars. However, in order to capture the in vivo 
behavior more accurately in silico, a flux balance approach is required to constrain model inlets and 
outlets more accurately, particularly with respect to the role of amino acids in the de novo synthesis of 
nucleotide sugars and, more importantly, nucleotides. By extending the dynamic growth model to 
capture changes in extracellular amino acid concentrations and using those changes as dynamic inputs 
for a flux balance model, the dynamic nature and predictive capability of the present modelling 
framework can be significantly enhanced. Furthermore, extending the modelling platform to other 
mammalian cell lines, most notably Chinese hamster ovary cells (CHO), and products could produce a 
more versatile and industrially relevant modelling platform for in silico optimisation of the 
glycosylation process. 
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Appendix 1—Enzyme Mechanisms 

A1.1. Single Substrate Michaelis-Menten Rate Equation 

Based on the listed assumptions the following reaction scheme for single substrate Michaelis-Menten 
kinetics was set up: 
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Figure A1. Single substrate Michaelis-Menten kinetics and competitive inhibition of 
species A through I. 

 

Based on this reaction scheme and the previously described assumptions, the following rate  
of reaction equations were derived including inhibitory enzyme kinetics for competitive and  
non-competitive inhibition:  

Equation (1)  
Rate of reaction for Single substrate Michaelis-
Menten kinetics  

Equation (2)  
Rate of reaction for Single substrate Michaelis-
Menten kinetics including competitive inhibition of 
species A 

 

Equation (3)  
Rate of reaction for Single substrate Michaelis-
Menten kinetics including non-competitive 
inhibition 

 

A1.2. Random Order Bi-Bi Kinetics 

Based on the previous assumptions the following reaction scheme for random order bi-bi kinetics 
was set up: 

Figure A2. Random order bi-bi kinetics and competitive inhibition of species A through I 
and species B competing with J. 
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Based on this reaction scheme and the previously described assumptions, the following rate of 
reaction equations were derived including inhibitory enzyme kinetics for competitive and  
non-competitive inhibition: 

Equation (4)  
Rate of reaction for random order bi-bi kinetics 

 
Equation (5)  
Rate of reaction for random order bi-bi kinetics including competitive inhibition of species A and B 

 
Equation (6)  
Rate of reaction for random order bi-bi kinetics including non-competitive inhibition 

 

A1.3. Ordered Bi-Bi Kinetics 

Based on the previous assumptions the following reaction scheme for ordered bi-bi kinetics was set up: 

Figure A3. Ordered bi-bi kinetics and competitive inhibition of species A through I and 
species B competing with J. 

 

Based on this reaction scheme and the previously described assumptions, the following rate  
of reaction equations were derived including inhibitory enzyme kinetics for competitive and  
non-competitive inhibition: 

Equation (7)  
Rate of reaction for ordered 
bi-bi kinetics 

 

Equation (8)  
Rate of reaction for ordered 
bi-bi kinetics including 
competitive inhibition of 
species A and B 

 

Equation (9)  
Rate of reaction for ordered 
bi-bi kinetics including  
non-competitive inhibition 
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A1.4. Ping-Pong Bi-Bi Kinetics 

Based on the previous assumptions the following reaction scheme for ping-pong bi-bi kinetics was 
set up: 

Figure A4. Ping-pong bi-bi kinetics and competitive inhibition of species A through I and 
species B competing with J. 

 

Based on this reaction scheme and the previously described assumptions, the following rate  
of reaction equations were derived including inhibitory enzyme kinetics for competitive and  
non-competitive inhibition: 

Equation (10)  
Rate of reaction for ping-pong  
bi-bi kinetics 

 

Equation (11)  
Rate of reaction for ping-pong  
bi-bi kinetics including 
competitive inhibition of species 
A and B 

 

Equation (12)  
Rate of reaction for ping-pong  
bi-bi kinetics including  
non-competitive inhibition 

 

A1.5. Ping-Pong Ter-Ter Kinetics 

Based on the previous assumptions the following reaction scheme for ping-pong ter-ter kinetics was 
set up: 

Figure A5. Ping-pong ter-ter kinetics and competitive inhibition of species A through I. 
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Based on this reaction scheme and the previously described assumptions, the following rate of 
reaction equations were derived including inhibitory enzyme kinetics for competitive and  
non-competitive inhibition: 

Equation (13)  
Rate of reaction for ping-pong ter-ter kinetics including competitive inhibition of species A 

 

A1.5. Hexokinase Rate of Reaction Expression 

Figure A6. Hexokinase reaction scheme including competitive inhibition of species ATP 
through ADP, Glucose competing with other hexose species and un-competitive inhibition 
through Glucose-6P. 

 

The rate of reaction for Hexokinase cannot be described by any of the previously described rate 
expressions. This is due to its competitive inhibition of ADP with ATP, various Hexose sugar 
substrates competing (namely glucose, glucosamine, fructose and mannose) and un-competitive 
inhibition by glucose-6-phosphate. Based on previous assumptions a reaction scheme for the catalysis 
of glucose to glucose-6-phosphate can be represented as depicted in Figure 16. Based on this reaction 
scheme and the previously described assumptions, the following rate of reaction equations were derived: 
Equation (14)  
Rate of reaction for hexokinase based on the above reaction scheme 

 

A1.6. Glycolysis 

The rate of reaction has been described by Chen et al. and is given by Equation (16), where  
both the dissociation constant for Fructose-6-phosphate and the Hill coefficient, are a function of  
fructose-2,6-bisphosphate [27]. 

Equation (15) describing the rate of Fructose-6-P removal to glycolysis 
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A1.7. Hill Coefficients 

The Hill equation is used to yield thermodynamic information about homotropic reactions and is a 
measure of cooperativity of the binding reaction. A value of 1 for n indicates non-cooperative 
behaviour and thus simple Michaelis-Menten kinetics, while values of less than 1 indicate negatively 
cooperative behaviour and values greater than 1 indicate positive cooperativity. Hill coefficients were 
obtained from literature for a number of reactions within the NSD metabolic network and are indicated 
in Table S1. Fractional occupation (θ) of an enzyme species for a single substrate reaction is described 
by Equation (15), where S denotes substrate concentration.  

Equation (16) Hill equation describing the fractional occupation of an enzyme by its substrate 

 

Appendix 2—Relative Abundances of Activated Human B-Cell Glycans 

The two tables shown below summarise the relative abundance of all N-linked and O-linked glycan 
species for activated human B-cells as determined from the relative MS intensities. The relative 
abundances were used to find an average N-linked and O-linked glycan composition and thus, an 
overall average glycan composition as described in part 3.3. 

The compositions of O-linked and N-linked glycan structures of activated human B-cells are 
derived from putative glycan structures which are based on MALDI-TOF-MS molecular ion 
compositions, MALDI-TOF/TOF-MS fragmentation of molecular ions, GC-MS linkage analysis of 
partially methylated alditol acetates and the biosynthetic knowledge [49].  

Table A1. Summary of the relative abundances of N-linked glycan structures used to 
obtain an average glycan structure. 

Glycan structure 
Sugar frequency per glycan (mol/mol) 

Species 
abundance (%) GlcNAc Man Gal Fuc CMP-

Neu5Ac 

 

7.37 2 5    

 

10.86 2 6    

 
1.75 4 3  1  

 

13.40 2 7    
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𝐾𝑚 + 𝑆 𝑛
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Table A1. Cont. 

Glycan structure 
Sugar frequency per glycan (mol/mol) 

Species 
abundance (%) GlcNAc Man Gal Fuc CMP-

Neu5Ac 

 
1.75 4 3 1 1  

 

14.85 2 8    

 
0.69 4 3 2 1  

 

0.47 5 3 1 1  

 

17.69 2 9    

 
1.87 4 3 2  1 

 

0.44 5 3 2 1  

 
2.97 4 3 2 1 1 

 

0.49 4 3 2 2 1 

 
1.23 4 3 2  2 

 
10.78 4 3 2 1 2 

 

2.59 5 3 3 1 1 

 

5.03 5 3 2 1 2 

 

0.34 6 3 3 1 1 
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Table A1. Cont. 

Glycan structure 
Sugar frequency per glycan (mol/mol) 

Species 
abundance (%) GlcNAc Man Gal Fuc CMP-

Neu5Ac 

 

1.35 5 3 3 1 2 

 

0.59 6 3 4 1 1 

 

0.12 6 3 3 1 2 

 
0.10 7 3 4 1 1 

 

0.31 5 3 3 1 3 

 

0.68 6 3 4 1 2 

 
0.10 7 3 5 1 1 

 

0.09 7 3 4 1 2 

 

0.18 6 3 4 1 3 

 

0.36 7 3 5 1 2 

 

0.09 7 3 5 1 3 

 

0.09 8 3 6 1 2 
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Table A2. Summary of the relative abundances of O-linked glycan structures used to 
obtain an average glycan structure. 

Glycan structure Sugar frequency per glycan (mol/mol) 
Species abundance (%) GlcNAc GalNAc Gal CMP-Neu5Ac 

 30.34  1 1 1 

 
2.18 1 1 2  

 
53.64  1 1 2 

 
11.42 1 1 2 1 

 
0.77  1 1 3 

 
1.27 1 1 2 2 

 
0.38 2 1 3 1 

Appendix 3—Estimated Parameter Values and Non-Nucleotide Species  

A3.1. NSD Metabolic Network Parameter Values 

The first global sensitivity analysis results indicate that 22 of the 46 of the initially estimated 
parameters of the NSD metabolic network were significant. This allowed for a more targeted 
parameter estimation and the final estimated values are shown below. 

Table A3. NSD metabolic netowrk parameter values. 

Parameter name Parameter value 
E15a 2.5400E-05 
E8a 0.0000E+00 

E26b 0.0000E+00 
E28a 0.0000E+00 
E34a 0.0000E+00 
E19a 6.4400E-06 
E21a 6.8586E-06 
Eglyc 7.0800E-05 

Ki15a_GDPFuc 2.1200E-04 
E29a 1.3313E-03 
E1c 1.5096E-03 
E1a 1.8477E-03 

Km17a_Man6P 2.5300E-03 
E23a 3.7138E-03 
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Table A3. Cont. 

Parameter name Parameter value 
E12a 3.9000E-03 
E32a 3.9000E-03 
E14a 3.9000E-03 
E16a 3.9000E-03 
E20a 3.9000E-03 
E2a 3.9000E-03 

E37a 3.9000E-03 
E3b 3.9000E-03 
E40a 3.9000E-03 
E4a 3.9000E-03 
E4b 3.9000E-03 
E17a 3.9532E-03 
E22a 1.0000E-02 
E3a 1.4167E-02 

E38a 3.5128E-02 
E13a 3.9000E-02 
E31a 3.9000E-02 
E33a 3.9000E-02 
E5a 3.9000E-02 
E6a 3.9000E-02 

Km26a_Glc6P 9.3842E-02 
Km22a_UDPGlc 2.0697E-01 

Km7b_UDPGlcNAc 8.2129E-01 
Gln_coef 1.0000E+00 

n29a_CMPNeu5Ac 4.2000E+00 
Ki_SA_Tra_UDPGlcNAc 6.8885E+00 

Km19a_Fru6P 1.9700E+01 
k5aB 6.0000E+02 

Ki34a_CMPNeu5Gc 1.0000E+03 
k26aF 2.0972E+03 
k6aB 2.3900E+04 
k17aF 7.0928E+04 
k22aB 1.6151E+05 

Ki29a_CMPNeu5Ac 5.2433E+05 
k21aB 4.2900E+06 
k21aF 6.1200E+06 
k19aF 1.5900E+07 
k27aF 1.1200E+08 

Table A4. Cell dynamics model parameter values. 

Parameter name Parameter value 
k_T_gln 3.3800E-06 

Kd_Glc_ext 1.0051E-01 
Kd_Gln_ext 1.1872E-02 
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Table A4. Cont. 

Parameter name Parameter value 
Km_Glc_ext 2.6700E+00 
Km_Gln_ext 1.2000E+00 

mu_d_max_glc 3.9300E-01 
mu_d_max_gln 6.2053E-02 

mu_g_max 6.6745E-02 
Y_ext_glc 9.1600E+07 
Y_ext_gln 5.6400E+08 

Y_mAb_mu 0.0000E+00 
Y_mAb_Xv 1.1400E-09 

Glc_in 0.0000E+00 
Gln_in 0.0000E+00 
F_in 0.0000E+00 

F_out 0.0000E+00 

Table A5. Nucleotide model parameter values. 

Parameter name Parameter value 
Kdf_10_Gln 2.6356E+00 
Kdf_11_Glc 2.1296E+00 
Kdf_11_Gln 1.3425E+00 
Kdf_12_ATP 1.1302E+01 
Kdf_13_ADP 3.9892E-04 
Kdf_13_Glc 4.7469E+00 

Kdf_14_ADP 2.5000E+01 
Kdf_15_AMP 1.1312E+01 
Kdf_15_Glc 2.3025E+00 
Kdf_8_Glc 1.2067E+00 
Kdf_8_Gln 2.4832E+00 
Kdf_9_Gln 2.1804E+00 
Kdf_9_UTP 5.0374E-03 
Kdout_ATP 1.0000E-03 
Kdout_CTP 1.0000E-03 
Kdout_GTP 1.0000E-03 
Kdout_UTP 1.0000E-03 

kf_10 7.6621E+00 
kf_11 6.7500E+00 
kf_12 3.2344E+00 
kf_13 2.1454E-01 
kf_14 1.1649E+02 
kf_15 8.6900E+01 
kf_8 7.9486E+00 
kf_9 1.3393E+00 
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Table A6. N-linked antibody constant region glycan parameters. 

Parameter name Parameter value 
KdiFucTA 0.0000E+00 
KdiFucTB 0.0000E+00 

KdiGalTa1A 1.0709E+02 
KdiGalTa1B 7.2051E+00 
KdiGalTa2A 3.4573E+01 

KdiGntII 7.7067E+01 

A3.2. Non-NSD Species 

In addition to the 34 sugars and nucleotide sugars there are 16 further intracellular species, which 
play a role in the catalysis of the NSD metabolic network as co-substrates, activators and inhibitors. 
Data was obtained from literature as reported by Williamson et al. and is listed in Table A5, where all 
concentrations are assumed to remain constant throughout the investigation [52]. 

Table A7. Non-nucleotide sugar species and their intracellular concentrations. 

Intracellular species Intracellular conc. (mM) Source tissue 
Acetyl Coenzyme A (ACoA) 0.029 Rat liver 
Coenzyme A (CoA) 0.13 Rat liver 
Glucose-1,6-biphosphate (Glc16PP) 0.014 Mouse liver 
Nicotinamide adenine dinucleotide (NAD) 0.76 Rat liver 
Nictotinamide adenine dinucleotide phosphate (NADP) 0.067 Rat liver 
Nictotinamide adenine dinucleotide phosphate, reduced (NADPH) 0.30 Rat liver 
Phosphoenolypyruvic acid (PEP) 0.11 Mouse liver 
Inorganic phosphate (PPi) 3.37 Rat liver 
Pyruvate (Pyr) 0.18 Mouse liver 
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