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Abstract: Neuropeptides such as vasoactive intestinal peptide (VIP) and calcitonin  

gene-related peptide (CGRP) are present in nerve fibers of bone tissues and have been 

suggested to potentially regulate bone remodeling. Oscillatory fluid flow (OFF)-induced 

shear stress is a potent signal in mechanotransduction that is capable of regulating both 

anabolic and catabolic bone remodeling. However, the interaction between neuropeptides 

and mechanical induction in bone remodeling is poorly understood. In this study, we 

attempted to quantify the effects of combined neuropeptides and mechanical stimuli on 

mRNA and protein expression related to bone resorption. Neuropeptides (VIP or CGRP) 

and/or OFF-induced shear stress were applied to MC3T3-E1 pre-osteoblastic cells and 

changes in receptor activator of nuclear factor kappa B (NF-κB) ligand (RANKL) and 

osteoprotegerin (OPG) mRNA and protein levels were quantified. Neuropeptides and  

OFF-induced shear stress similarly decreased RANKL and increased OPG levels compared 

to control. Changes were not further enhanced with combined neuropeptides and  

OFF-induced shear stress. These results suggest that neuropeptides CGRP and VIP have an 

important role in suppressing bone resorptive activities through RANKL/OPG pathway, 

similar to mechanical loading. 
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1. Introduction 

Many cytokines, present in the extracellular matrix or synthesized by the bone cells, are involved in 

bone-remodeling [1]. The receptor activator of nuclear factor kappa B (NF-κB) ligand (RANKL) and 

osteoprotegerin (OPG) signaling pathway has culminated recently in the discovery of the genetics on 

bone metabolism. Osteoblasts have a significant role in the control of bone resorption through release 

of OPG, an inhibitor of osteoclast function, and RANKL, an osteoclast differentiation factor. RANKL 

and its soluble receptor play a critical role during the osteoclast differentiation and act in a paracrine 

way [2]. Therefore, RANKL and OPG genes are important transcription factors in the regulation of 

bone formation and resorption for maintaining bone mass [3,4]. 

The differentiation and activation of osteoclasts require two key elements, macrophage colony 

stimulating factor (M-CSF) and RANKL [5]. M-CSF promotes the proliferation, survival of osteoclast 

progenitor cells. Mature osteoclast differentiation requires RANKL binding to RANK on the surface of 

osteoclast progenitor cells [6]. Mature osteoclasts resorb bone by secreting tartrate-resistant acid 

phosphatase (TRAP) to the space between cell membrane and bone matrix. TRAP is a well-known 

marker of bone resorption to measure the activation of osteoclasts [7,8]. 

Mechanical loading is an important regulator of bone cell activity. When dynamic physical load is 

applied to bone, the interstitial fluid that surrounds bone cells is forced out of regions of high 

compressive strain and then returns when the load is removed. This results in bone cells being exposed 

to a dynamic oscillating fluid flow (OFF)-induced shear stress. OFF-induced shear stress is a potent 

regulator of both anabolic and catabolic bone cell metabolism. In a recent study using a co-culture 

system, dynamic OFF has been demonstrated to suppress osteoclast formation by decreasing RANKL 

and increasing OPG mRNA expression [9]. 

Neuropeptides and neurotransmitters include vasoactive intestinal peptide (VIP), calcitonin  

gene-related peptide (CGRP), substance P (SP), pituitary adenylate cyclase activating peptide 

(PACAP), neuropeptide Y (NPY), leptin, somatostatin (SOM), serotonin, glutamine, norepinephrine, 

and tyrosine hydroxylase (TH) [10–16]. Mice lacking the Y2 receptors for NPY display an increase in 

appetite and body mass, resulting in higher bone trabecular volumes [17]. Leptin knockout mice results 

in higher bone mass due to increased bone formation [18]. Neuropeptides and neurotransmitters have 

been suggested to potentially regulate bone remodeling [19,20]. 

VIP and CGRP are present in nerve fibers of various regions within the bone tissue (e.g., periosteum, 

bone marrow cavity, and vascular canal) [11,13] and their receptors are expressed in MC3T3-E1  

pre-osteoblastic cells [21]. VIP is a 28 amino acid peptide supported by its presence in skeletal nerve 

fibers in periosteum of the bone. VIP has been shown to stimulate calcium release from neonatal 

mouse calvariae in organ culture [22]. CGRP receptors are detected on osteoblastic cells [11]. 

Recently, bone formation has been shown to be neuronally regulated in distant bones of the 

skeleton that were not loaded [20]. However, very few studies exist with the goal to elucidate the bone 

remodeling process via the interaction between neuropeptides and mechanical induction. In addition, 

there are even fewer studies on the resorptive aspect of bone remodeling. Therefore, our goal was to 

quantify the effects of combined mechanical stimuli and neuropeptides on mRNA and protein 

expression related to bone resorption using a pre-established OFF-induced shear stress system. 
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2. Results and Discussion 

2.1. Osteoclast Formation and Activity 

Co-culture of MC3T3-E1 pre-osteoblastic cells and RAW 264.7 macrophage cells for 9 days 

resulted in formation of TRAP-positive multinucleated osteoclasts in the presence of M-CSF and 

1α,25-dihydroxyvitamin D3. The number of osteoclasts was significantly decreased by 90% with the 

addition of CGRP and by 40% with the addition of VIP during co-culture (Figure 1). Also, TRAP 

activity was significantly reduced in CGRP and VIP treated groups compared to control (Figure 2). 

Figure 1. Osteoclast formation and activity. (A) Co-culture of MC3T3-E1 pre-osteoblastic 

cells and RAW 264.7 machrophage cells resulted in the formation of multinucleated cells 

with three or more nuclei; and (B) effect of CGRP (calcitonin gene-related peptide) and 

VIP (vasoactive intestinal peptide) on formation of osteoclasts. Using a microscope with a 

magnification ×200, Cells with three or more nuclei were considered to be osteoclasts.  

* p < 0.05 control. The arrow and 1, 2, 3 are nucleus.  
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Figure 2. Multinucleated osteoclasts were stained red colors by TRAP (tartrate-resistant 

acid phosphatase) Assay Kit. (A) Control group (TRAP-positive multinucleated cells with 

no VIP or CGRP treatment); (B) 10 nM CGRP treatment group; and (C) 1 μM VIP 

treatment group. To assess the formation and activity of osteoclasts, cells were stained for 

TRAP activity on Day 9 with a magnification ×200. 
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2.2. Expression of RANKL and OPG mRNA 

Immediately after exposure to 1 h OFF-induced shear stress, RANKL mRNA decreased by 90% 

compared to control (Figure 3A). Treatment with neuropeptides also significantly decreased RANKL 

mRNA. CGRP treatment decreased RANKL mRNA by 97% and VIP treatment by 96% compared to 

control. Combined neuropeptide treatment and loading resulted in a similar decrease to loading or 

neurotransmitter only treatment groups. CGRP + Load and VIP + Load decreased RANKL mRNA by 

85% and 98%, respectively, compared to control. 

Figure 3. Expression of RANKL (receptor activator of nuclear factor kappa B (NF-κB) 

ligand) and OPG (osteoprotegerin) mRNA. Change in (A) RANKL mRNA; (B) OPG 

mRNA; and (C) RANKL/OPG mRNA ratio after neurotransmitter and/or mechanical 

stimulation. * p < 0.05 control.  
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OPG mRNA expression did not change with loading and/or neuropeptide treatment  

statistically (Figure 3B). Still, there was a trend of increase in OPG mRNA with either loading or 

neuropeptide treatment. 
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RANKL/OPG mRNA ratio displayed a significant decrease in all treated groups compared to 

control (Figure 3C). RANKL/OPG ratio decreased in the loading group (94%), neuropeptide groups 

(99% in CGRP and 97% in VIP), and the combined neuropeptide and loading groups  

(97% in CGRP + Load and 98% in VIP + Load). 

2.3. Expression of RANKL and OPG Protein  

Mechanical loading for 1 h resulted in a significant decrease (approximately 30%) in RANKL 

protein level (Figure 4A). Neuropeptide treatment resulted in a similar decrease. CGRP treatment  

and VIP treatment decreased RANKL protein level by approximately 35% and 40%, respectively. 

Combined CGRP and loading resulted in a 35% decrease and combined VIP and loading resulted in a 

30% decrease. Similar to mRNA expression, combined neuropeptide and loading treatment did not 

further enhance the decrease in RANKL protein level. 

Figure 4. Expression of RANKL and OPG protein. Change in (A) RANKL protein;  

(B) OPG protein; and (C) RANKL/OPG protein ratio after neurotransmitter and/or 

mechanical stimulation. * p < 0.05 control. 
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Loading did not result in an increase in OPG protein level compared to control (Figure 4B). 

However, neuropeptide treatment significantly increased OPG protein. CGRP increased OPG protein 

level by 180% and VIP increased OPG protein level by 170% compared to control. Combined VIP and 

loading also displayed a significant increase (180%) in OPG protein level compared to control. 

RANKL/OPG protein ratio significantly decreased in all treatment groups compared to control 

(Figure 4C). RANKL/OPG ratio resulted in a 45% decrease in the loading group, approximately  

60% decreases in the CGRP and VIP treatment groups, and approximately 60% decreases in the  

CGRP + Load and VIP + Load groups. 

2.4. Discussion 

The question addressed by this study was whether neuropeptides have the potential to suppress 

bone resorptive activities in a mechanism similar to mechanical loading. The main finding from this 

study is that neuropeptides CGRP and VIP both suppress bone resorptive activities through regulation 

of the RANKL/OPG expression similar to mechanical loading. 

We have shown that treatment of MC3T3-E1 pre-osteoblastic cells with neuropeptides CGRP or 

VIP can significantly decrease osteoclast formation and TRAP activity. These results are similar to  

the effects of OFF-induced shear stress on bone cells [9] and suggest that CGRP and VIP, two 

neuropeptides that exist in bone tissues [11,20,23], may have the potential to independently suppress 

bone resorption. 

Suppression of bone resorptive activities with neuropeptide treatment involves the regulation of the 

RANKL/OPG signaling mechanism. Previous studies show decrease in bone resorptive activities with 

various types of mechanical loading, including OFF-induced shear stress and dynamic loads [9,24]. 

Results from this present study are consistent with those studies in that exposure of cells to OFF results 

in a significant decrease in RANKL/OPG mRNA and protein ratio. Treatment with CGRP or VIP 

followed a similar trend with loading in that decrease in RANKL/OPG ratio was mostly due to a 

decrease in RANKL mRNA and protein. A simultaneous increase in OPG resulted in a synergistic 

decrease in RANKL/OPG mRNA and protein ratio. 

Interestingly, the extent of decrease in RANKL/OPG ratio was similar in the loading only  

(i.e., Load), neuropeptide only (i.e., CGRP and VIP), and combined neuropeptide and loading groups 

(i.e., CGRP + Load and VIP + Load). This indicates that combined neuropeptide and mechanical 

loading does not further enhance the decrease in RANKL/OPG ratio and subsequently the extent  

of suppression of bone resorption. This finding suggests that OFF-induced shear stress and 

neuropeptides VIP and CGRP may regulate bone resorptive activities in a similar cellular signal 

transduction mechanism. 

The limitation of this study is that although regulation of bone resorptive activities were similar 

using either neuropeptides or mechanical loading, it is not possible to address whether they both result 

in in vivo bone remodeling at identical sites of bone tissue. It would be fascinating if in vivo 

suppression of bone resorption through neuropeptide treatment occurs in a manner similar to 

mechanical loading (i.e., minimization of the decrease in bone tissue mechanical properties such as 

modulus and strength). Therefore, in vivo animal studies are necessary to understand whether 

neuropeptides and mechanical loading treatment both result in similar bone microstructure and strength. 
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In summary, we have shown that neuropeptides CGRP and VIP have an important role in 

suppressing bone resorptive activities through the RANKL/OPG pathway, similar to mechanical 

loading. Understanding the neural regulation aspect of bone remodeling and its combined effect on 

mechanically induced bone remodeling may have the potential to treat bone diseases. 

3. Experimental Section 

3.1. Osteoclast Formation and Activity 

MC3T3-E1 pre-osteoblastic cells and RAW 264.7 murine monocytic macrophage cells 

(25000:10000 ratio) were co-cultured in 6-well tissue culture plates in alpha-MEM (GIBCO, Grand Island, 

NY, USA) with 10% FBS (GIBCO) and 1% penicillin/streptomycin (GIBCO). M-CSF (25 ng/mL; 

Peprotech, Rocky Hill, NJ, USA) and 1α,25-dihydroxyvitamin D3 (10 nM; Sigma-Aldrich, St. Louis, 

MO, USA) were added to induce the expression of RANKL and subsequently the formation of 

osteoclasts on Days 1, 3, 5, and 7. Neurotransmitters VIP (10 μM; Sigma-Aldrich) or CGRP (10 nM; 

Sigma-Aldrich) were added on Days 1, 3, 5, and 7. Cells were placed in an incubator at 37 °C and 5% 

CO2. To assess the formation and activity of osteoclasts, cells were stained for TRAP activity  

(Sigma-Aldrich) on Day 9. Using a microscope with a 20× objective, TRAP-positive cells with three 

or more nuclei were considered to be osteoclasts and counted by three blinded independent observers. 

3.2. Oscillatory Fluid Flow (OFF)-Induced Shear Stress 

MC3T3-E1 pre-osteoblastic cells were cultured on tissue culture dishes in alpha-MEM (GIBCO) 

with 10% FBS (GIBCO) and 1% penicillin/streptomycin (GIBCO). 1α,25-dihydroxyvitamin D3 (10 nM) 

was added to induce the expression of RANKL on Days 1 and 3. Neurotransmitters VIP (1 μM)  

or CGRP (10 nM) were added on Days 1 and 3. Cells were placed in an incubator at 37 °C and  

5% CO2. On Day 5, cells were subcultured on glass slides (75 mm × 38 mm × 1 mm) at a density of 

approximately 7 × 105 cells/cm2, prepared for either osteoclast formation study or OFF-induced shear 

stress study. 

On Day 6, the slides with cells were placed in custom-built parallel plate flow chambers under 

sterile conditions. Dynamic OFF was produced with a glass syringe connected in series with rigid 

walled tubing and a parallel plate flow chamber. The syringe was driven by an actuator that can deliver 

a precise media flow rate at 1 Hz and a peak shear stress of ±1 Pa for 1 h. Control cells were also 

placed in flow chambers with no fluid flow applied. The six experimental groups were Control, Load, 

CGRP, CGRP + Load, VIP, and VIP + Load. Cells were then prepared for quantification of either gene 

expression or protein synthesis. 

3.3. RNA Isolation and Real-time RT-PCR 

After oscillatory fluid flow for 1 h, the slide with MC3T3-E1 pre-osteoblastic cells were removed 

from the flow chambers and placed in sterile petri dishes for RNA isolation. The cells were lysed and 

total RNA extracted using Tri-Reagent (Sigma-Aldrich). Real-time RT-PCR (Applied Biosystems, 

Foster City, CA, USA) was analyzed to show the results of RANKL and OPG gene expression 

(Taqman Gene Expression Assays, Applied Biosystems). The results were normalized by the 
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housekeeping gene 18S (Taqman Gene Expression Assays, Applied Biosystems). Each RNA sample 

was analyzed in triplicates. 

3.4. Protein Quantification 

After oscillatory fluid flow for 1 h, the slides with MC3T3-E1 pre-osteoblastic cells were removed 

from the flow chambers and placed in sterile petri dishes with 10 mL fresh serum-free media and 

incubated at 37 °C and 5% CO2 for 1 h. After incubation, the supernatant samples were collected to 

measure RANKL and OPG protein release by ELISA using Quantikine Mouse RANKL Immunoassay 

and Quantikine Mouse OPG Immunoassay (R&D systems, Minneapolis, MN, USA). The MC3T3-E1 

osteoblastic cells were also extracted by lysis buffer (1% Triton X-100, 0.5% Nonidet P-40,  

10 mM Tris (pH 7.4), 0.2 mM PMSF, 150 mM NaCl, 1 mM EDTA, 30 mM Na4P2O7) to assay the total 

protein quantities using Quick Start™ Bradford Protein Assay (Bio-rad Laboratories, Munich, Germany). 

3.5. Statistical Analysis 

Statistical significance was determined by ANOVA followed by the post hoc Fisher’s least 

significant difference test. A significance level of 0.05 was employed for all statistical analyses. 

4. Conclusions 

In this study, neuropeptides VIP or CGRP and/or OFF-induced shear stress were applied to 

MC3T3-E1 pre-osteoblastic cells and changes in receptor activator of RANKL and OPG mRNA and 

protein levels were quantified. Neuropeptides and OFF-induced shear stress similarly decreased 

RANKL and increased OPG levels compared to control. Changes were not further enhanced with 

combined neuropeptides and OFF-induced shear stress. Therefore, neuropeptides CGRP and VIP have 

an important role in suppressing bone resorptive activities through RANKL/OPG pathway, similar to 

mechanical loading. 
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