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Abstract: The growth and development of plants are sensitive to their surroundings. 

Although numerous studies have analyzed plant transcriptomic variation, few have 

quantified the effect of combinations of factors or identified factor-specific effects.  

In this study, we performed RNA sequencing (RNA-seq) analysis on tobacco leaves 

derived from 10 treatment combinations of three groups of ecological factors, i.e., climate 

factors (CFs), soil factors (SFs), and tillage factors (TFs). We detected 4980, 2916,  

and 1605 differentially expressed genes (DEGs) that were affected by CFs, SFs, and TFs, 

which included 2703, 768, and 507 specific and 703 common DEGs (simultaneously 

regulated by CFs, SFs, and TFs), respectively. GO and KEGG enrichment analyses showed 

that genes involved in abiotic stress responses and secondary metabolic pathways were 
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overrepresented in the common and CF-specific DEGs. In addition, we noted enrichment 

in CF-specific DEGs related to the circadian rhythm, SF-specific DEGs involved in 

mineral nutrient absorption and transport, and SF- and TF-specific DEGs associated with 

photosynthesis. Based on these results, we propose a model that explains how plants adapt 

to various ecological factors at the transcriptomic level. Additionally, the identified DEGs 

lay the foundation for future investigations of stress resistance, circadian rhythm and 

photosynthesis in tobacco. 

Keywords: climate factors; soil factors; tillage factors; tobacco leaves; transcriptome; 

RNA-seq 

 

1. Introduction 

Given that plants root at the same spot throughout their life and that they have large surface areas in 

contact with the environment, environmental changes have a greater impact on the growth and survival 

of plants than they do on animals. Several environmental factors, including terrain, climate,  

soil properties, and soil water have been recognized as affecting plant growth and development and 

these factors are typically considered when selecting cultivation sites [1]. Among these environmental 

factors, climate factors (CFs: including light, temperature, air, rainfall, and wind) have the greatest 

impact on the spatial distribution of vegetation and the yield performance of crops [2], and account for 

much of the regional variation in crop production. SFs also have a critical effect on plant growth and 

crop yield, as they determine the physical environment of crop roots and are the major source of 

nutrients [3]. Soil fertility, texture, organic-matter content, and mineralogy greatly affect the quality 

and yield of crops. Because SFs can be carefully managed to promote the production of high-yielding 

and high-quality crops, soil fertility and plant nutrition supplies have been the focus of much  

research [4,5]. Over 65% of all cropland is supplemented with commercial fertilizer, lime, and soil 

conditioners, and almost all maize (Zea may) and over 80% of wheat (Triticum aestivum) and cotton 

(Gossypium hirsutum) are supplemented with commercial nutritional products to improve soil fertility 

and, ultimately, crop yield in the United States [1]. In addition to environmental factors, TFs also 

influence the yield and quality of food crops by affecting soil moisture, nutrient availability, 

temperature, and aeration [6]. Although no-tillage (NT) management has become more popular in 

North America, as this approach reduces soil erosion and cost and improves soil health, conventional 

tillage (CT) is still the major farming practice in Asia, South America, and Africa, since the NT 

approach tends to decrease yield and protein content of crops [7,8]. It is well known that various 

environmental factors and TFs mutually affect each other [9]. While the effect of each of the  

above-mentioned factors on crop production has been widely investigated, only a few studies have 

analyzed the influence of combinations of these factors or identified the specific impact of each factor 

at the transcriptomic level. Both in tobacco and Arabidopsis thaliana, the molecular and metabolic 

response of plants to a combination of drought and heat stress is distinct from that of plants subjected 

to each of these stresses applied individually, 454 transcripts in Arabidopsis were observed specifically 

expressed in cells during a combination of drought and heat stress [10,11]. Investigation on phenotypic 
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plasticity of grapevine (Vitis vinifera) by comparing the berry transcriptome also revealed the 

relationships among differential gene expression profiles, environments, growing conditions and 

ripening parameters and identified several putative candidate genes for the definition of berry  

quality traits [12]. 

Recent advances in high-throughput sequencing technology have led to a dramatic increase in the 

production of sequencing data for RNA-seq and ChIP-seq analyses [13], providing rapid and  

cost-effective tools to monitor transcriptomic changes. Several studies have assessed global gene 

expression in different tissues, at different developmental stages, and in response to various 

environmental stimuli [14,15]. However, the emphasis has always been placed on transcriptomic 

variation in response to an individual treatment, and the effects of various combinations of treatments 

have been largely neglected. A transcriptome comparison of fertilized ovary and basal leaf meristem 

tissue of drought-treated and well-watered maize revealed that more drought-responsive genes were 

activated in the ovary than in the leaf meristem upon exposure to drought stress [14]. Whole-genome 

expression profile analysis of lupin (Lupinus spp.) identified 2128 genes that were differentially 

expressed in response to phosphate (Pi) deficiency stress, suggesting that novel mechanisms of  

Pi deficiency-induced metabolism and cytokinin and gibberellic acid signaling exist [16]. 

Transcriptome assembly from RNA-seq data identified 28,335 unique genes from sorghum  

(Sorghum bicolor L. Moench) root and shoot tissues challenged with polyethylene glycol  

(PEG)-induced osmotic stress and exogenous abscisic acid (ABA) [16]. Recent transcriptomic data from 

the leaves of field-grown rice (Oryza sativa) plants at various seasonal, diurnal, and developmental 

time points along with the corresponding meteorological data were successfully used to develop a 

statistical model that predicts the influence of variable environmental conditions on transcriptome 

dynamics, which was found to be predominantly governed by endogenous diurnal rhythms, ambient 

temperature, plant age, and solar radiation [17]. Model testing on the following year’s rice plants 

proved that this model was highly accurate at associating gene expression changes with environmental 

influences, thus suggesting a promising means of translating large amounts of laboratory-learnt 

knowledge into practical solutions for problems encountered in agricultural production. Despite 

numerous studies of plant genomes and transcriptomes, few studies have addressed the influence of 

combinations of environmental and other factors on gene expression profiles. Moreover, few extensive 

studies have quantified the transcriptome-wide effect of a specific factor although some research has 

focused on the transcriptomic variation caused by single factors. 

Tobacco (Nicotiana tabacum) belongs to the agriculturally important Solanaceae family and is  

a valuable industrial and commercial crop in many countries, although consumption has steadily 

declined due to increased public awareness of smoking-related health risks and government  

regulations [18]. It is also an important model organism in plant genetics research, and is ideal  

for studies in phenotypic diversity, hybridization and ploidy manipulations, and functional 

characterization. Growth, flowering, and metabolism of tobacco plants are remarkably sensitive to 

environmental changes, especially to changes in the physical and chemical properties of the soil. 

Nitrogen and potassium are the nutrient elements with the greatest impact on tobacco growth and 

development. Optimal levels of nitrogen in the soil increase crop yield, while potassium improves 

tobacco quality [19]. Compared with CT, minimum tillage (MT) did not have a pronounced effect on 

tobacco yield, but significantly prolonged the vegetative growth stage [20]. To investigate the 
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transcriptomic variation caused by CFs, SFs, and/or TFs, we analyzed the leaves of tobacco plants 

subjected to various treatment combinations. Our study provides novel insight into the molecular 

mechanisms whereby plants adapt to ecological changes and the relationship between various 

ecological factors at the transcriptomic level. 

2. Results and Discussion 

2.1. RNA-Seq Data Analyses 

To compare transcriptomic variations in the leaves of tobacco plants exposed to different CFs, SFs, 

and TFs, ten samples cultivated in Kaiyang County (KY), Weining County (WN), and Tianzhu County 

(TZ) and exposed to different treatments were collected and used for RNA-seq analysis. 

After removal of low quality and contaminated reads, a total of 58,466,453 50 bp raw reads were 

acquired, ranging from 5.2 to 6.2 M reads per sample, containing 8.28 gigabases (Gb) of sequence data 

(Table 1). We aligned the sequence reads against the tobacco SGN Unigene database (containing 

84,602 unique ESTs) in the Solanaceae Genomics Network (SGN) [21], using TopHat with default 

parameters [22]. Seventy percent of the total reads were successfully mapped to the reference sequence 

(Table 1), resulting in about a 50-fold average coverage of the tobacco SGN Unigenes. Previous study 

demonstrated that 10 and 30 M (75 bp) reads could detect about 80% and all annotated chicken genes, 

respectively [23]. But, another study also indicated that RNA-seq density generated by about 6 M  

(36 bp) reads showed a strong congruence with expression metrics from array intensities (Pearson’s  

r = 0.90–0.91) [24]. Considering tobacco is a tetraploid, the sequencing depth in our study would be 

enough to identify highly expressed DEGs, but might be insufficient for detection of extremely low 

expression transcripts. 

Table 1. Summary of RNA-seq reads mapping to reference genes. 

Sample Total reads Mapped reads 
% Mapped 

reads 
Number of 
transcripts 

KYC 6,010,205 4,164,387 69.29% 26,864 
KYP 6,127,551 4,276,322 69.79% 25,823 

KYsWN 5,566,935 3,894,388 69.96% 25,001 
KYsTZ 6,020,409 4,162,982 69.15% 25,550 
WNC 5,252,135 3,663,806 69.76% 23,971 
WNP 5,913,266 4,259,827 72.04% 24,185 

WNsKY 5,218,808 3,704,089 70.98% 24,261 
TZC 6,091,837 4,254,123 69.83% 25,128 
TZP 6,005,103 4,222,155 70.31% 25,540 

TZsKY 6,260,204 4,455,821 71.18% 26,100 
Overall 58,466,453 41,057,900 70.22% 31,057 

KYC, TZC, and WNC represent samples came from KY, TZ, and WN without soil exchange and tillage 

treatment. KYP, TZP, and WNP represent samples harvested from the corresponding cultivated regions with 

tillage treatment. KYsTZ and KYsWN represent samples harvested from KY grown in soil from TZ and WN, 

respectively; TZsKY and WNsKY indicate samples collected from TZ and WN, respectively, and grown on 

KY soil. Total reads corresponds to the initial output of sequencing reads. Mapped reads refers to the number 

of reads mapped to the tobacco SGN Unigene reference sequence. 
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To quantify transcriptomic variations in our samples, Cufflinks was used to assemble all reads into 

transcript models [22]. Subsequently, expression levels for all transcripts were calculated in fragments 

per kilobase of exon model per million mapped reads (FPKM), a length-normalized measure of exonic 

read density that allows expression levels to be compared within or between different samples [25]. 

Using a threshold of mean FPKM higher than 10, an aggregate of 23,442 to 26,935 mRNA transcripts 

for each sample was observed. A total of 30,688 unique transcripts were expressed in ten samples 

(Table S1). The transcripts generated in our study most likely represent almost the complete 

transcriptome of tobacco leaves. Our results are in accordance with those from a previous tobacco 

transcriptome analysis in which the transcripts were assembled into a set of 40,642 high-quality 

unigenes [26]. The transcript number in our study was also much lower than that of the tobacco  

SGN Unigenes (84,602), indicating that more than half of the SGN unigenes are not expressed in  

tobacco leaves. 

Expression distribution and box plot analysis revealed that ten samples in our study possessed 

similar expression patterns, with more than 80% of the genes being expressed between 10 and 100 

FPKM and around 15% between 100 and 1000 FPKM (Figures S1 and S2). After normalization,  

box plot and gene expression level distributions both showed that the transcripts of ten samples had 

similar expression patterns and variation ranges and a normal distribution, suggesting that the ten sets 

of sequencing data are comparable and suitable for downstream transcriptomic variation analysis. 

To confirm our RNA-seq data and to conduct a preliminarily comparison of the effects of three 

different ecological factors on tobacco leaf transcriptomes, we implemented a principal component 

analysis (PCA) of the sample correlation matrix calculated from log2-transfromed FPKM values 

(Figure 1A). The first principal component accounted for 82.82% of the total variability, which in this 

case corresponds to the reference sequence-specific variance, and the subsequent principal components 

accounted for 5.33% and 3.35% of overall variance, highlighting the difference between the samples 

affected by CFs and SFs, respectively (Figure 1 and Table S2), as the values in the component matrix 

between WN, TZ, and KY were quite different, while those within the same cultivated region varied 

only slightly (Table 2). Based on the PCA and MDC plots, the largest variance was caused by CFs,  

and the smallest by TFs (Figure 1). Although it is challenging to make direct comparisons between 

factors in the above-mentioned two plots, transcriptomic variation caused by SFs is markedly higher 

than that caused by TFs. 

2.2. General Trend of DEGs in Tobacco Leaves 

To determine the general trend of differentially expressed genes (DEGs) in tobacco leaves exposed 

to different ecological factors, we identified and analyzed DEGs between the 10 samples in our study 

(Figure S3 and Table 2). Both up- and down-regulated DEGs were represented with red dots.  

The number of DEGs between RNA-seq samples retrieved from the same cultivated region was far 

smaller than those from different cultivated regions, which is in accordance with our PCA and  

MDC results. 
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Table 2. The number of DEGs in tobacco leaves affected by different CFs, SFs, and/or TFs. 

Group No. Combination 
Number of 

DR genes 

Number of 

UR genes 

Number of 

DEGs 

(i) Different CFs and the 

same SFs and TFs 

1 KYP/WNsKY 610 722 1332 

2 KYP/TZsKY 971 1029 2000 

3 KYP/WNsKY_TZsKY 858 679 1537 

4 KYsWN/WNP 533 1100 1633 

5 KYsTZ/TZP 857 1104 1961 

6 KYsWN_KYsTZ/WNP_TZP 648 1155 1803 

7 TZsKY/WNsKY 631 739 1370 

(ii) The same CFs and 

different SFs and TFs 

8 KYsWN/KYC 505 330 835 

9 KYsTZ/KYC 654 585 1239 

10 KYsWN_KYsTZ/KYC 558 604 1162 

11 WNsKY/WNC 164 242 406 

12 TZsKY/TZC 331 513 844 

13 WNsKY_TZsKY/WNC_TZC 8 18 26 

(iii) Different SFs and the 

same CFs and TFs 

14 KYsWN/KYP 462 576 1038 

15 KYsTZ/KYP 514 893 1407 

16 KYsWN_KYsTZ/KYP 518 1041 1559 

17 WNsKY/WNP 255 395 650 

18 TZsKY/TZP 416 315 731 

19 WNsKY_TZsKY/WNP_TZP 44 30 74 

(iv) The same SFs and 

different CFs and TFs 

20 WNsKY/KYC 960 506 1466 

21 TZsKY/KYC 1168 737 1905 

22 WNsKY_TZsKY/KYC 662 543 1205 

23 KYsWN/WNC 362 850 1212 

24 KYsTZ/TZC 668 1143 1811 

25 KYsWN_KYsTZ/WNC_TZC 317 709 1026 

(v) Different TFs and the 

same CFs and SFs; 

26 KYP/KYC 452 277 729 

27 WNP/WNC 289 307 596 

28 TZP/TZC 151 259 410 

29 KYP_WNP_TZP/KYC_WNC_TZC 0 0 0 

(vi) The same TFs and 

different CFs and SFs 

30 KYC/WNC 523 1212 1735 

31 KYC/TZC 710 1412 2122 

32 KYC/WNC_TZC 531 794 1325 

33 TZC/WNC 625 821 1446 

34 KYP/WNP 750 1082 1832 

35 KYP/TZP 1034 1109 2143 

36 KYP/WNP_TZP 1144 1065 2209 

37 TZP/WNP 529 956 1485 

UR genes: up-regulated genes; DR genes: down-regulated genes. In each combination, DEGs are identified 

from expression level comparison between samples before and after the slash, using the latter as reference. 

Underscore between samples indicate that these samples are regarded as an integral whole sample for 

transcriptomic comparison. For example, the FPKM value of each gene in WNsKY_TZsKY in combination 3 

is calculated from samples WNsKY and TZsKY. 
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Figure 1. PCA and MDC plots of log2-normalized FPKM of ten RNA-seq samples. In the 

PCA plot (A); green, blue, and brown discs represent samples from KY, WN, and TZ, 

respectively; In the MDS plot (B), the brown and blue ellipses indicate transcriptomic 

variation affected by TFs and CFs, respectively. 

 

To compare the effect of CFs, SFs, and TFs on the transcriptomes of tobacco leaves, RNA-seq 

samples were grouped into six different treatments containing 37 pairs of combinations (Tables 2 and S3), 

including (i) different CFs and the same SFs and TFs; (ii) the same CFs and different SFs and TFs;  

(iii) different SFs and the same CFs and TFs; (iv) the same SFs and different CFs and TFs;  

(v) different TFs and the same CFs and SFs; (vi) different TFs and the same CFs and SFs. Based on 

the screening standard described in Materials and Methods, we found that 6386 genes with FDR <0.5 

were differentially expressed in the treatment groups (i), (iii), and (v) (Figure 2), which differ in terms 

of a single factor. A Venn diagram was created to identify ecological factor-specific DEGs and 

common DEGs readily affected by changes in ecological factors. The number of CF-, SF-, and TF-specific 

DEGs was 2703, 768, and 507, respectively, while there were 703 common DEGs in the three 

treatment groups. In addition, many DEGs were observed between samples that were treated with the 

same two groups of ecological factors. For instance, CFs and SFs share 1311 common DEGs, whereas 

TFs have 261 and 133 common DEGs with CFs and SFs, respectively. For samples in group (i) above, 

KY and TZ (No. 1 and 5 in Table 2) had the most DEGs, while TZ and WN (No. 7 in Table 2) had the 

fewest DEGs. In group (iii), the number of DEGs in KY soil (No. 14 to 16 in Table 2) was much 

higher than that in either WN (No. 17 in Table 2) or TZ (No. 18 in Table 2). In group (v), the number 

of DEGs in KY, WN, and TZ (No. 26 to 28 in Table 2) sequentially decreased, suggesting that changes 

in TF had diverse effects on the transcriptomes of tobacco leaves sampled from plants cultivated in 

different regions, and had the greatest effect on plants grown in KY (Table 2 and Figure 2B). 

Based on our volcano plot analysis and comparison of number of DEGs affected by different 

ecological factors (Figure S3), the CFs generally had the greatest effect on transcriptomic variation in 

tobacco leaves, followed by SFs, and TFs. Cluster analysis of all 6386 DEGs also strongly supported 

the above conclusion, since expression data of ten samples could be divided into three groups firstly 
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based on three different cultivated regions (CFs), while in the same regions, those between no-tillage 

and conventional tillage (TFs) were primarily clustered, then grouped with samples derived from soil 

exchange treatment (Figure 3). 

2.3. Functional Analysis of Common DEGs Affected by CFs, SFs, and TFs 

Genes that are induced by ecological factors play crucial roles in plant growth, development,  

and adaptation to different ecological stresses. In our study, we identified 703 common DEGs that 

were simultaneously induced by CFs, SFs, and TFs. These inducible genes might be important for 

maintaining normal growth and development of tobacco plants and for improving resistance to 

environmental changes. Based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) annotations, 21,410 and 9214 unique genes in our study could be assigned GO and 

KO terms. Enrichment analysis of common DEGs identified a total of 146 GO and 18 KO terms that 

were significantly over-represented. 

Figure 2. DEGs identified in three treatment combinations. (A) A Venn diagram was 

generated to identify CF-, SF-, and TF-specific DEGs and common DEGs within treatment 

groups (i), (iii), and (v); (B) Number of DEGs in 17 comparison combinations, including 

seven CF, six SF, and four TF combinations. In each combination, samples were taken 

from the treatment group with only one different group of ecological factors (CFs, SFs, or 

TFs). For example, samples of the third comparison combination “KYP/WNsKY_TZsKY” 

were harvested from the same SFs (KY) and TFs (tillage) and different CFs (KY and sum 

of WN and TZ). DEGs were determined by comparing the FPKM values of samples before 

and after slash using the latter as control. An underscore in the sample name indicates  

an integrated sample. For instance, “WNsKY_TZsKY” represents the average of the sum 

of WNsKY and TZsKY. 
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Figure 3. Hierarchical clustering and Treeview visualization of all DEGs. Ten samples 

from three different cultivated regions with soil exchange and tillage treatments were 

collected were subjected to RNA-seq, revealing a total of 6,386 DEGs among treatment 

groups (i), (iii), and (v). Log2 values were used to cluster all the DEGs in Cluster 3.0 using 

uncentered correlation and the complete linkage method. Results were visualized using 

Treeview. Left heatmap represents global visualization of all the DEGs, right gene cluster 

are representative CF-, SF- and TF-specific DEGs. Red indicates genes that are up-regulated, 

green indicates genes that are down-regulated. 
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In our GO enrichment analysis (Table S4), 153 genes were found to be involved in response to 

stimulus (GO:0050896), and 125 of these were annotated as response to stress (GO:0006950).  

These results suggest that several genes related to the plant’s response to environmental stresses are 

regulated primarily for adaptation to environmental variation in tobacco plants, which is agreement 

with our previous study [18]. These stress-responsive genes could be further divided into three classes, 

i.e., genes that are responsive to a temperature stimulus (GO:0009266, 42 genes), light stimulus 

(GO:0009416, 29 genes), and oxidative stress (GO:0006979, 32 genes). It is noteworthy that 20 of the 

29 genes that respond to a light stimulus are responsive to high intensity light. The first two sets of 

inducible genes are mainly involved in adaptation to climate change through transcriptional regulation 

of temperature- and high light-responsive genes in tobacco leaves, whereas the oxidative stress-responsive 

genes might be important for adaptation to different soils, especially those with different water content. 

Furthermore, we identified 75 and 30 genes that respond to chemical stimulus (GO:0042221) and 

hormone stimulus (GO:0009725), suggesting that auxin, ethylene, and abscisic acid (ABA) signaling 

pathway genes have pivotal roles in the tobacco plant’s response to environmental stresses. Many of 

the 703 common DEGs had functions related to carbohydrate metabolic processes (GO:0005975,  

43 genes) and the cell wall (GO:0005618, 47 genes). These genes have important roles in plant cell 

wall organization, biosynthesis, and modification, and could increase tobacco plant resistance to 

abiotic or biotic stresses. 

In our KEGG enrichment analysis, KEGG pathway annotations of 203 common DEGs were 

generated and analyzed for statistical significance (Table S5). Common DEGs were mainly  

over-represented in ancient, conserved, and secondary metabolic pathways, such as flavonoid 

biosynthesis (ko00941, 6 genes), phenylpropanoid biosynthesis (ko00940, 12 genes), and starch and 

sucrose metabolism pathways (ko00500, 12 genes). Although nitrogen metabolism (ko00910, 7 genes) 

and MAPK signaling pathway (ko04010, 7 genes) genes were also significantly over-enriched in our 

study, DEGs involved in protein processing in the endoplasmic reticulum (ko04141, 42 genes) were 

more abundant than those associated with any other pathway. Therefore, based on our GO and KEGG 

enrichment analyses, we propose that common DEGs affected by CFs, SFs, and TFs are the most 

important for the survival of tobacco plants under various ecological conditions, particularly stress. 

Based on the meteorological data at three cultivated regions (Table S6 [27]), measurement of 

agronomic traits (Table S7) and activities of antioxidant enzyme superoxide dismutase (SOD,  

EC 1.15.1.1), peroxidase (POD, EC 1.11.1.7) and catalase (CAT, EC 1.11.1.6) (Table 3), it could be 

observed that tobacco plant height and number of leaves at 70 days after transplanting (DAT) at 

cultivation region KY were obviously higher than WN and TZ, and stem perimeter and maximum leaf 

area at 45 and 70 DAT at cultivation region TZ were smaller than KY and WN. In addition, the 

influence of soil exchange and tillage treatment on agronomic traits also could be found, for example, 

four tested agronomic traits between KYC and KYP (TFs), and between KYP and KYsTZ (SFs)  

were quite different (Table S7). To further investigate tobacco plant growth status the activities of 

antioxidant enzymes SOD, POD and CAT of tobacco leaves were measured. From Table 3, the impact 

of environmental variation (CFs) on activities of CAT and POD could be seen. For instance,  

CAT activities of samples from cultivation region TZ were much higher than KY and WN at 45 DAT, 

but lower at 70 DAT. Soil exchange (SFs) and tillage treatment (TFs) also showed significant 

influence on variation of POD activities (Table 3). These results indicated that tobacco plants adapted 
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to variation of CFs, SFs and TFs by adjusting enzyme activity and plant growth, which was in 

accordance with the above-mentioned GO and KEGG pathway analyses. 

Table 3. CAT, POD and SOD activities of tobacco leaves. 

Location Treatments 
45 DAT 70 DAT 

CAT POD SOD CAT POD SOD 

KY 

KYC 140.8 1551.3 611.7 101.4 6298.3 481.3 
KYP 128.0 2181.9 648.2 93.5 6914.7 483.9 

KYsTZ 116.4 4275.2 594.0 108.8 8468.2 545.4 
KYsWN 124.5 3929.5 654.1 74.7 9298.9 454.1 

TZ 
TZC 378.7 3929.3 511.5 94.3 4362.9 500.7 
TZP 391.9 4697.0 476.8 134.3 4474.2 449.5 

TZsKY 361.2 3435.4 514.5 175.9 3724.5 499.4 

WN 

WNC 175.7 1780.9 509.4 142.4 5180.0 516.9 

WNP 177.7 2255.6 469.8 144.2 6428.5 470.8 

WNsKY 208.3 1426.6 507.7 143.5 4348.7 492.8 

Values were expressed in units of enzyme activity per gram wet weight of tissue. 

2.4. Functional Analysis of CF-Specific DEGs 

Compared with SFs and TFs, CFs had a much greater influence on the transcriptomic variation of 

tobacco leaves. In our study, a total of 2703 CF-specific DEGs were identified and found to be  

over-represented in 64 GO terms and 12 KEGG pathways (Table 4). Among the over-enriched KEGG 

pathways, plant hormone signal transduction (ko04075), with 35 DEGs, was most enriched (Table S8). 

Although several genes that respond to hormone stimuli were identified in the above-mentioned 

common DEGs, these genes differed from hormone-responsive CF-specific DEGs (ko04075).  

We identified several well-studied hormone-responsive genes amongst the CF-specific DEGs, such as 

ABA-responsive element binding factor ABF3 (XLOC_016015) [28], ABA-activated protein kinase 

(XLOC_003676), jasmonate receptor CORONATINE INSENSITIVE 1 (COI1) [29], auxin-inducible 

SAUR gene (XLOC_018600) [30], and cytokinin receptor histidine kinase AHK3 (XLOC_014140) [31]. 

The large number of hormone-responsive genes specifically affected by CFs may improve the adaptive 

ability of tobacco plants, allowing them to flourish in various growth regions. 

DEGs related to the circadian rhythm (ko04712) were present only amongst the CF-specific DEGs. 

Given the large number of DEGs related to the circadian rhythm (19 in total; Table S9), we conclude 

that the circadian rhythm has a considerable effect on the transcriptome of tobacco plants. This result is 

consistent with a recent study that found that the transcriptome of rice leaves was widely affected by 

three factors: the circadian clock, environmental stimuli, and plant age. Similar to our study on  

tobacco plants, the entrained circadian clock and temperature had particularly large effects on the 

transcriptome [32]. We thus suggest that changes in the circadian rhythm cause CF-specific 

transcriptomic variations in tobacco plants. Among the CF-specific DEGs, we identified a nuclear 

zinc-finger gene GIGANTEA (GI, XLOC_014804, XLOC_018429, XLOC_021883, XLOC_023447, 

XLOC_020085, XLOC_015139 and XLOC_017755), which governs the diurnal rhythm, promoting 

plant flowering through the CONSTANS (CO)–FLOWERING LOCUS T (FT) regulatory module under 
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long-day conditions [33]. The MYB transcription factors LATE ELONGATED HYPOCOTYL (LHY, 

XLOC_012886 and XLOC_012888) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) are partially 

redundant and essential for the maintenance of circadian rhythms in constant light conditions [34],  

and contribute to plant cold tolerance by regulating the C-REPEAT BINDING FACTOR (CBF)  

cold-response pathway [35]. An active transcriptional repressor of LHY and CCA1, PSEUDO-RESPONSE 

REGULATOR5 (PRR5, XLOC_011077), could directly downregulate LHY and CCA1 expression, 

forming an interlocking transcriptional-translational feedback loop of the circadian clock in  

plants [36]. GI, LHY, and PRR5 could act as key nodes of the circadian clock regulatory network in the 

leaves of tobacco plants derived from different cultivated regions, playing pivotal roles in plant growth 

and development and reflecting the adaptive ability of plants to changing environmental cues. 

Table 4. Over-represented GO terms of CF-specific DEGs. 

GO-ID p-value 
Input 

number 

Background 

number 
Description 

0048578 4.00 × 109 8 8 positive regulation of long-day photoperiodism, flowering 

0010378 4.00 × 109 8 8 temperature compensation of the circadian clock 

0009813 7.20 × 109 20 52 flavonoid biosynthetic process 

0042398 1.51 × 108 44 200 cellular amino acid derivative biosynthetic process 

0055114 5.23 × 108 237 1916 oxidation reduction 

0010229 1.08 × 107 11 19 inflorescence development 

0006575 2.18 × 107 57 316 cellular amino acid derivative metabolic process 

0009812 2.20 × 107 20 62 flavonoid metabolic process 

0009699 4.81 × 107 23 82 phenylpropanoid biosynthetic process 

0048586 5.16 × 107 8 11 regulation of long-day photoperiodism, flowering 

0006857 7.65 × 107 17 50 oligopeptide transport 

0015833 7.65 × 107 17 50 peptide transport 

0009698 9.35 × 107 29 123 phenylpropanoid metabolic process 

0019748 1.01 × 106 44 230 secondary metabolic process 

0006355 1.57 × 106 161 1262 regulation of transcription, DNA-dependent 

0045449 1.99 × 106 161 1267 regulation of transcription 

0051252 2.52 × 106 161 1272 regulation of RNA metabolic process 

0008215 3.27 × 106 6 7 spermine metabolic process 

0006597 3.27 × 106 6 7 spermine biosynthetic process 

0010556 6.96 × 106 162 1304 regulation of macromolecule biosynthetic process 

0008295 7.34 × 106 8 14 spermidine biosynthetic process 

0031326 8.48 × 106 166 1347 regulation of cellular biosynthetic process 

0009889 1.05 × 105 166 1352 regulation of biosynthetic process 

0008216 1.45 × 105 8 15 spermidine metabolic process 

0006835 2.38 × 105 7 12 dicarboxylic acid transport 

0051171 2.62 × 105 167 1384 regulation of nitrogen compound metabolic process 

0019219 2.89 × 105 165 1367 regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process 

0015798 3.15 × 105 5 6 myo-inositol transport 

0006596 6.03 × 105 9 22 polyamine biosynthetic process 

0006833 6.17 × 105 11 32 water transport 
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Table 4. Cont. 

GO-ID p-value 
Input 

number 

Background 

number 
Description 

0042044 6.17 × 105 11 32 fluid transport 

0006725 9.44 × 105 52 341 cellular aromatic compound metabolic process 

0051258 1.06 × 104 13 45 protein polymerization 

0006595 1.79 × 104 10 30 polyamine metabolic process 

0080090 1.82 × 104 170 1466 regulation of primary metabolic process 

0000160 1.91 × 104 25 130 two-component signal transduction system (phosphorelay) 

0015791 2.52 × 104 5 8 polyol transport 

0015850 2.52 × 104 5 8 organic alcohol transport 

0009610 2.95 × 104 4 5 response to symbiotic fungus 

0009873 3.36 × 104 13 50 ethylene mediated signaling pathway 

0010468 3.41 × 104 162 1405 regulation of gene expression 

0019438 3.46 × 104 33 198 aromatic compound biosynthetic process 

0006629 3.87 × 104 98 784 lipid metabolic process 

0042752 5.76 × 104 8 23 regulation of circadian rhythm 

0008610 6.35 × 104 58 422 lipid biosynthetic process 

0008202 6.75 × 104 12 47 steroid metabolic process 

0051552 7.97 × 104 8 24 flavone metabolic process 

0051553 7.97 × 104 8 24 flavone biosynthetic process 

0051554 7.97 × 104 8 24 flavonol metabolic process 

0051555 7.97 × 104 8 24 flavonol biosynthetic process 

0035235 8.07 × 104 6 14 ionotropic glutamate receptor signaling pathway 

0007215 8.07 × 104 6 14 glutamate signaling pathway 

0060255 8.65 × 104 163 1444 regulation of macromolecule metabolic process 

0071369 9.03 × 104 13 55 cellular response to ethylene stimulus 

0009409 9.30 × 104 42 286 response to cold 

0031323 9.94 × 104 184 1661 regulation of cellular metabolic process 

0009755 1.12 × 103 45 315 hormone-mediated signaling pathway 

0032870 1.13 × 103 46 324 cellular response to hormone stimulus 

0042401 1.22 × 103 12 50 cellular biogenic amine biosynthetic process 

0071495 1.22 × 103 49 352 cellular response to endogenous stimulus 

0046148 1.36 × 103 21 116 pigment biosynthetic process 

0010033 1.52 × 103 116 993 response to organic substance 

0009723 1.55 × 103 22 125 response to ethylene stimulus 

0009608 1.65 × 103 5 11 response to symbiont 

In addition, genes involved in secondary metabolism pathways (phenylpropanoid biosynthesis, 

starch and sucrose metabolism) were significantly represented in CF-specific DEGs, although these 

pathways were also overrepresented in common DEGs. Of the CF-specific DEGs involved in 

phenylpropanoid biosynthesis, genes encoding 4-coumaroyl-CoA synthase 1 (4CL1, XLOC_024395), 

4-coumaroyl-CoA synthase 3 (4CL3, XLOC_020018 and XLOC_027613), cinnamic acid 4-hydroxylase 

(C4H, XLOC_004844 and XLOC_024688), ferulate 5-hydroxylase (F5H, XLOC_004677), phenylalanine 

ammonia-lyase 1 (PAL1, XLOC_010156), and phenylalanine ammonia-lyase 2 (PAL2, XLOC_026730 

and XLOC_010164) are involved in lignin biosynthesis, providing the strength necessary for vertical 
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growth and resistance to biotic stresses and plant diseases. These lignin pathway genes often exist in 

multi-copy, e.g., four copies of 4CLs and PALs were found in the Arabidopsis genome. To adapt to 

climate change and to improve plant disease resistance, various members of these multi-gene families 

may be activated in tobacco leaves, resulting in increased lignin content and, concomitantly, resistance. 

2.5. Functional Analysis of SF-Specific DEGs 

Soil and nutrients are necessary for the growth and development of tobacco plants in the field.  

To examine transcriptomic variation in the leaves of plants grown under the same CFs and TFs, but 

under different SFs, we exchanged soils from the different regions used in this study. Most of the  

2915 DEGs attributed to TFs were also differentially expressed in response to changes in CFs and SFs. 

Only 768 of these DEGs were TF-specific. 

KEGG and GO enrichment analyses of all TF-specific DEGs identified 8 and 20 significantly 

enriched pathways and GO terms, respectively (Tables 5 and S9). Based on these results,  

DEGs associated with photosynthesis, e.g., antenna proteins (ko00196 and GO:0009523), protein 

processing in endoplasmic reticulum (ko04141 and GO:0055035), mineral absorption (ko04978  

and GO:0000041), and response to stress (GO:0006950) were of special interest. Although stress 

resistance-related genes were overrepresented in common and CF-specific DEGs, they were also the 

largest group of SF-specific DEGs. Many SF-specific DEGs were involved in various biotic and 

abiotic stress responses. Among these genes were HEAT SHOCK FACTOR 4 (HSF4, XLOC_011884) 

and HEAT SHOCK PROTEIN 70 (HSP70, XLOC_017046 and XLOC_018164), which were both 

strongly induced by heat stress, and SALT OVERLY SENSITIVE 3 (SOS3, XLOC_008474), which 

encodes a calcium sensor that is essential for potassium nutrition and salt tolerance. Proteins encoded 

by the NB-LRR domain-containing disease resistance gene (RPPL1, XLOC_030092) might function 

with other TIR-NBS proteins involved in salicylic acid biosynthesis and systemic acquired resistance. 

Stress-responsive SF-specific DEGs did not show a significant preference for a specific stress 

condition, implying that tobacco plants might have evolved the ability to automatically regulate the 

transcriptome to withstand changes in soil environments. 

Other noteworthy GO terms were closely related to mineral nutrient absorption and transport in the 

root, such as cellular response to phosphate starvation (GO:0016036), high-affinity iron ion transport 

(GO:0006827), and copper ion transport (GO:0006825), reflecting the potential differences of mineral 

content between soils from the three cultivated regions. Nitrogen is the most important nutrient 

element for normal plant growth and development. In our study, common, CF- and TF-specific DEGs 

associated with nitrogen metabolism were simultaneously overrepresented. This finding suggests  

that nitrogen in soil plays a crucial role in tobacco plants’ nutrition from the transcriptome-scale 

perspective. As a component of the complex nucleic acid structure, the significance of phosphorus for 

plants is second only to nitrogen. SF-specific DEGs, but not common, CF-, and TF-specific DEGs, 

involved in the response to phosphate (Pi) deficiency were enriched. The differential expression of 

these genes might be caused by differences in phosphorus nutrient status in soils of the three cultivated 

regions, as the available Pi in soil at KY was about three and ten folds of that at WN and TZ, 

respectively (Table S10 [27]). There were several notable Pi-starvation responsive genes in the SF-specific 

group, such as SPX (SYG1/Pho81/XPR1, XLOC_002815 and XLOC_000642), PHOSPHOLIPASE D P2 
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(PLDP2, XLOC_021274), PLDP1 (XLOC_031030), SULFO QUINOVOSYLDIACYLGLYCEROL 1 

(SQD1, XLOC_012522 and XLOC_027534), and SQD2 (XLOC_024053 and XLOC_002768).  

In Arabidopsis thaliana, repression of AtSPX3 led to a decrease in tolerance to Pi starvation and 

enhanced expression of a subset of Pi-responsive genes. Six SPX genes in rice were found to have 

diverse functions in plant tolerance to Pi starvation, five of which were responsive to Pi-deficiency in 

shoots and/or roots, and involved in the regulation of Pi-signaling network in a complex regulatory 

system [37]. We propose that differences in Pi concentration and distribution in soils in different 

cultivated regions might result in adaptive changes of Pi homeostasis during the growth and 

development of tobacco plants, increasing Pi acquisition and absorption by repressing the expression 

of SPX genes, or vice versa (Table S10). Other than nitrogen- and phosphorus-related genes, we identified 

seven genes involved in copper acquisition and transport, including copper transporter 1 (COPT1, 

XLOC_006434 and XLOC_006435), copper transport protein (CCH, XLOC_006386 and XLOC_006380), 

copper-transporting ATPase (RAN1, XLOC_000748 and XLOC_000749), and haloacid dehalogenase-like 

hydrolase family protein (PAA2, XLOC_001489). Among these copper homeostasis-related genes, 

COPT1, CCH, and RAN1 were mainly involved in copper acquisition and transport in leaves, while 

PAA2 was mainly responsible for metal ion binding and coupled to transmembrane movement of 

substances. Since these genes were induced by copper deficiency, ozone, and senescence and are 

required for copper homeostasis and normal plant growth and development, the available copper 

concentration in the soils of the cultivated regions WN, TZ and KY were 1.29, 1.53 and 1.87 mg/kg, 

did not show significant difference. Thus, these DEGs involved in copper homeostasis were highly 

sensitive to change of copper iron concentration could be assumed. 

Table 5. Over-represented GO terms of SF-specific DEGs. 

GO-ID p-value Input number Background number Description 

0016036 3.89 × 105 8 52 cellular response to phosphate starvation 

0000041 8.71 × 105 9 74 transition metal ion transport 

0007154 1.10 × 104 15 195 cell communication 

0009765 1.97 × 104 8 65 photosynthesis, light harvesting 

0009867 2.73 × 104 6 37 jasmonic acid mediated signaling pathway 

0071395 2.73 × 104 6 37 cellular response to jasmonic acid stimulus 

0006464 3.34 × 104 75 2049 protein modification process 

0035303 4.11 × 104 4 15 regulation of dephosphorylation 

0006950 4.38 × 104 79 2205 response to stress 

0050896 5.30 × 104 119 3644 response to stimulus 

0006664 5.55 × 104 6 42 glycolipid metabolic process 

0009875 5.57 × 104 7 58 pollen-pistil interaction 

0006827 6.15 × 104 2 2 high-affinity iron ion transport 

0046506 6.15 × 104 2 2 sulfolipid biosynthetic process 

0046505 6.15 × 104 2 2 sulfolipid metabolic process 

0006825 6.68 × 104 5 29 copper ion transport 

0009247 7.85 × 104 5 30 glycolipid biosynthetic process 

0009267 8.20 × 104 8 80 cellular response to starvation 

0009743 8.66 × 104 12 165 response to carbohydrate stimulus 

0043687 9.48 × 104 68 1883 post-translational protein modification 
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2.6. Functional Analysis of TF-Specific DEGs 

To compare the effect of different tillage methods on transcriptomic variation of tobacco leaves,  

NT and CT approaches were implemented at the three cultivated regions. Overall, TFs had a much 

smaller effect than CFs and SFs, with a total of 1604 TF-related DEGs being identified, only 507 of 

which were TF-specific DEGs. KEGG analysis found that TF-specific DEGs involved in 

photosynthesis (ko00195) showed the highest enrichment level, suggesting that changes in tillage 

methods would have a significant impact on tobacco plants by altering the transcriptional regulation of 

photosynthesis genes, especially those related to photosystem I (Tables 6 and S11). More than half of 

the 13 photosynthesis DEGs encode subunit proteins of the photosystem I reaction center, such as 

PsaA (XLOC_030806), PasB (XLOC_015064 and XLOC_004737), PasD (XLOC_026534),  

PasG (XLOC_003245), and PasK (XLOC_014624). Furthermore, TF-specific DEGs encoding ATP 

synthase B (ATPase B, XLOC_000443), ATPase F (XLOC_001007), ferredoxin (XLOC_007987), 

and the cytochrome b(6) subunit of the cytochrome b6f complex (PETB, XLOC_007806) and involved 

in converting light energy into chemical energy, energy absorption, electron transfer, and ATP 

synthesis, may also contribute to the differences in photosynthetic efficiency of tobacco leaves of 

plants cultivated by CT or NT. A previous study showed that the photosynthetic rate of rice plants 

cultivated under NT was significantly higher than that of plants cultivated under CT [38]. This finding 

is in accordance with the results of our study, which show that TFs affect tobacco plants by modulating 

the expression of photosynthetic genes. 

Table 6. Over-represented GO terms of TF-specific DEGs. 

GO-ID p-value Input number Background number Description 

0015833 1.28 × 104 6 50 peptide transport 
0042454 1.29 × 104 3 7 ribonucleoside catabolic process

2.7. Validation of RNA-Seq Data by qRT-PCR 

To confirm the transcriptome data generated by RNA-seq, qRT-PCR was carried out on five DEGs 

and one non-DEG randomly selected for their different expression levels. These genes encoded 

HSP17.4-CI, HSP70, osmotin-like protein (OSM34), delta 1-pyrroline-5-carboxylate synthetase A 

(P5CS1), beta-fructofuranosidase, and SF3A3 (splicing factor 3A subunit 3), respectively. All genes 

except for SF3A3 showed a concordant direction of fold change between RNA-seq and qRT-PCR, 

using the expression value in WNC to calibrate the data (Figure 4). Although three samples for SF3A3 

had different directions of fold change, the remaining seven samples had similar expression patterns. 

These results confirm the reliability and accuracy of the RNA-seq data in this study. 

3. Experimental Section 

3.1. Plant Materials 

Tobacco plants (Nicotiana tabacum cv. Yunyan 85) used in this study were kindly provided by the 

Guizhou Tobacco Research Institute, Guiyang, China. Plants were grown in three different cultivated 

regions of Guizhou Province, including Longgang Town, Kaiyang County (KY), Niupeng Town, 
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Weining County (WN), and Shexue Town, Tianzhu County (TZ) in 2009, as in our previous  

study [18]. Main meteorological data at different growth stages and basic physiochemical property of 

soils at three cultivated regions were listed in Tables S7 and S10. To compare the effect of climate 

factors (CFs; different cultivated regions), SFs (soils of different regions), and TFs (CT or NT) on the 

transcriptomes of tobacco leaves, soil from KY was exchanged with soil from WN and TZ, and the soil 

plow layer (soil depth 20–40 cm) at the three regions was broken (i.e., the plough layer (soil depth  

0–20 cm) and plow layer were refilled in turn in their original positions after being dug up). In total, 

ten RNA-seq samples subjected to various treatments were harvested from the three cultivated regions 

(Table 7). For each treatment, two to three mature leaves (about 65 cm, taken from the middle parts of 

tobacco plants) were collected from three plants 70 DAT. To minimize the impact of sampling error, 

sample collection were carried out at 10:00 to 11:00 a.m. for three consecutive sunny days. All 

samples were immediately frozen in liquid nitrogen and stored at −80 °C. 

Figure 4. Correlation of differential expression between RNA-seq and qRT-PCR.  

Five DEGs and one non-DEG were chosen as differentially expressed by RNA-seq.  

The log2-fold change of DEGs obtained from RNA-seq data (blue) versus log2-fold 

changes of qRT-PCR derived on the basis of expression levels for treatment (pink) 

averaged from three samples. All the log2-fold changes were calculated using the 

expression value of WNC as a calibrator. Error bars indicate SD. 
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Table 7. RNA-seq samples subjected to various treatments. 

Cultivated regions CF SF TF 

KY KYC KYsTZ and KYsWN KYP 
TZ TZC TZsKY TZP 
WN WNC WNsKY WNP 

KYC, TZC, and WNC represent samples originating from KY, TZ, and WN without soil exchange and tillage 

treatment. KYsTZ and KYsWN represent samples harvested from KY grown in soils from TZ and WN, 

respectively. TZsKY and WNsKY indicate samples collected from TZ and WN and grown on KY soil. KYP, 

TZP, and WNP represent samples harvested from the corresponding cultivated regions with tillage treatment. 

3.2. RNA Preparation 

Total RNA was extracted from approximately 100 mg tobacco leaves using a Plant RNA Mini Kit 

(Watson Biotechnologies, Inc., Shanghai, China), as previously described [39]. RNA was treated with 

RNase-free DNase I (TaKaRa, Dalian, China) for 30 min at 37 °C to remove all possible DNA 

contamination. RNA quality was checked by gel electrophoresis (using a 1.2% formaldehyde 

denaturing agarose gel). RNA concentrations were determined by measuring the absorbance at 260 nm 

with a NanoDrop ND-2000 Spectrophotometer (Thermo Scientific, Waltham, MA, USA) and  

an Agilent 2100 BioAnalyzer (Agilent Technologies, Palo Alto, CA, USA). After quantification,  

RNA samples from each treatment were equivalently pooled for RNA-seq and qRT-PCR analysis. 

3.3. RNA-Seq Library Preparation and Sequencing 

Library preparation and sequencing reactions were conducted in the Beijing Genome Institute (BGI, 

Shenzhen, China). Briefly, mRNAs were isolated from purified total RNA using magnetic oligo (dT) 

beads and fragmented, followed by first-strand cDNA synthesis using random hexamer-primed reverse 

transcription. The second-strand cDNA was generated using buffer, dNTPs, RNase H, and DNA 

polymerase I. After purification with a QIAquick Gel Extraction Kit (Qiagen, Frankfurt, Gremany), 

short fragments were resolved for end reparation and adaptor ligation. Following gel electrophoresis, 

cDNA fragments of approximately 200 bp were isolated and used for cluster generation. Finally, the 

samples were sequenced using single end (SE) read sequencing with 50 cycles on an Illumina HiSeq 

2000, following the manufacturer’s instructions. Base calling was performed with Illumina software 

Pipeline 1.4 (Illumina, San Diego, CA, USA). RNA-seq data were deposited in the NCBI Sequence 

Read Archive (SRA) under accession numbers SRR1040764 to SRR1040773. 

3.4. RNA-Seq Analysis 

RNA-seq reads were mapped to 84,602 of tobacco SGN Unigene sequences (ftp://ftp.solgenomics. 

net/unigene_builds/single_species_assemblies/Nicotiana_tabacum/Nicotiana_tabacum_unigene.v2.seq) 

retrieved from the Solanaceae Genomics Network (SGN) [21] using TopHat, as described by  

Trapnell et al. [15]. Cufflinks assembled transcripts and quantified transcript abundance in terms of 

fragments per kilobase of exon per million mapped fragments (FPKM) [22]. Both TopHat and 

Cufflinks analyses were carried out in default modes. The Cuffdiff program within Cufflinks was used 

to test for statistically significant differences in transcript expression between 37 comparison pairs 
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(Table 2). Differentially expressed genes (DEGs) were identified using the following two criteria:  

(i) absolute fold-change >2 and (ii) q-value (false discovery rate (FDR)) < 0.05. To further the analysis 

of our sequencing data, cluster analysis of expression profiles of all DEGs was performed with Cluster 

3.0 software with uncentered correlation and complete linkage hierarchical clustering option [40] and 

the heatmap was visualized using Java TreeView [41]. 

To better understand the meaning of differential expression, the function of tobacco SGN UniGenes 

was annotated using BLASTX against the Arabidopsis thaliana proteome (version TAIR10 database) 

with an e-value cut-off of 10−5 [42,43]. GO annotations of reference SGN UniGenes were performed to 

retrieve molecular function, biological process, and cellular component terms using Blast2GO 

(http://www.blast2go.org/) [44]. Enrichment of GO categories among DEGs was assessed by BinGO 

v2.4.4, a Cytoscape plugin [45,46]. KEGG-based annotation and pathway enrichment analysis was 

performed using KOBAS 2.0 program [47], which assigned the enzyme commission (EC) numbers 

and significantly enriched metabolic pathways in DEGs compared with the whole reference  

sequences [48]. All GO and KEGG statistical tests were corrected for multiple comparisons 

(Benjamini Hochberg method) [49]. To cluster the samples based on the similarity of gene expression 

profiles of tobacco leaves, unsupervised principal component analysis (PCA) and multi-dimensional 

scaling (MDS) were applied. To visualize patterns in different treatments, SPSS 20 (IBM Corp., 

Armonk, NY, USA) and the R package CummeRbund v2.0.0 were used [50]. The expression of all 

detected genes in our RNA-seq data was subjected to PCA and MDS analysis and plotted. 

3.5. Quantitative Real-Time PCR (qRT-PCR) Validation 

Five DEGs and one non-DEG identified by RNA-seq were assayed by qRT-PCR. Gene-specific 

primers were designed based on the nucleotide sequence of the chosen unigenes using Primer 3.0 

software [51]. Primers used in this study are summarized in Table S12. The same total RNAs were 

used as those in the RNA-seq experiments. cDNA synthesis, qRT-PCR cycling conditions, 

amplification efficiency, and specificity assessment were as described in Lei et al. [18]. Briefly,  

1 μg of DNaseI-treated total RNA was reverse-transcribed using the PrimeScript RT Master Mix 

(TaKaRa). qRT-PCR was performed with SYBR Premix Ex Taq II (TaKaRa) using the CFX96  

Touch Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA). Three independent 

biological replicates were analyzed per sample. The expression level of each sample was calculated 

using the 2−ΔΔCt method, with the housekeeping gene NtEF-1α serving as an internal control, as its 

expression is stable in tobacco plants [52,53]. 

3.6. Measurement of Agronomic Traits and SOD, CAT and POD Activities of Tobacco Leaves 

To assess the impact of different ecological factors on tobacco plants, four agronomic traits, including 

plant height, stem perimeter, number of leaves and maximum leaf area of tobacco plants were determined 

at 45 and 70 DAT. A portable leaf area meter (LI-COR, model LI-3000) was used for measuring the 

area of the maximum leaf of tobacco plant in each treatment. The activities of SOD, POD and CAT 

were determined spectrophotometrically. For extraction of SOD, POD and CAT, about 1 g of tobacco 

leaves samples were ground under liquid nitrogen and homogenized in 10 mL of the extraction buffer 

containing 50 mM phosphate buffer (pH 7.8) and 1% polyvinylpyrrolidone (PVP). The homogenate 
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was centrifuged at 10,000× g at 4 °C for 10 min. The supernatants obtained after centrifugation were 

used for the enzyme activity analyses. SOD and CAT activities were measured using SOD and CAT 

Detection Kits (A001 and A007, Nanjing Jiancheng Bioengineering Institute, Nanjing, China) 

according to the manufacturer’s instructions. Total POD activities were determined by spectrophotometrically 

monitoring guaiacol oxidation at 470 nm following a previous described method [54]. Values were 

expressed in units of SOD, POD or CAT activities per gram wet-weight of tissue. 

4. Conclusions 

In conclusion, we performed RNA-seq analysis on tobacco leaves derived from 10 treatment 

combinations of three ecological factors, CFs, SFs and TFs. RNA-seq analysis generated 58,466,453 reads, 

which assembled into 30,688 unique transcripts. We detected 4980, 2916, and 1605 DEGs that were 

affected by CFs, SFs, and TFs, which included 2703, 768, and 507 specific and 703 common DEGs, 

respectively. Plots of PCA and MDC, and cluster analysis all revealed that the greatest transcriptomic 

variation was caused by CFs, followed by SFs, with the ratio of factor-specific impacts of 

CFs:SFs:TFs being about 5:1.5:1. GO and KEGG enrichment analyses showed that genes involved in 

abiotic stress responses and secondary metabolic pathways were overrepresented in the common  

and CF-specific DEGs, implying that these genes mediate adaptation to environmental variation.  

In addition, we noted enrichment in CF-specific DEGs related to the circadian rhythm, SF-specific 

DEGs involved in mineral nutrient absorption and transport, and SF- and TF-specific DEGs associated 

with photosynthesis. Based on these results, we propose a model that explains how plants adapt to 

various ecological factors at the transcriptomic level. Additionally, these data would be useful in 

selecting candidate genes for future investigations of stress resistance, the circadian rhythm, nutrient 

absorption, and photosynthesis in tobacco. 
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