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Abstract: Accumulating evidence indicates that obesity is closely associated with an 

increased risk of metabolic diseases such as insulin resistance, type 2 diabetes, dyslipidemia 

and nonalcoholic fatty liver disease. Obesity results from an imbalance between food 

intake and energy expenditure, which leads to an excessive accumulation of adipose tissue. 

Adipose tissue is now recognized not only as a main site of storage of excess energy 

derived from food intake but also as an endocrine organ. The expansion of adipose tissue 

produces a number of bioactive substances, known as adipocytokines or adipokines, which 

trigger chronic low-grade inflammation and interact with a range of processes in many 

different organs. Although the precise mechanisms are still unclear, dysregulated production 

or secretion of these adipokines caused by excess adipose tissue and adipose tissue 

dysfunction can contribute to the development of obesity-related metabolic diseases. In this 

review, we focus on the role of several adipokines associated with obesity and the potential 

impact on obesity-related metabolic diseases. Multiple lines evidence provides valuable 

insights into the roles of adipokines in the development of obesity and its metabolic 

complications. Further research is still required to fully understand the mechanisms 

underlying the metabolic actions of a few newly identified adipokines. 
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1. Introduction 

The worldwide prevalence of obesity and its metabolic complications have increased substantially 

in recent decades. According to the World Health Organization, the global prevalence of obesity has 

nearly doubled between 1980 and 2008, and more than 10% of the adults aged 20 and over is obese in 

2008 [1]. Projections based on the current obesity trends estimate that there will be 65 million more 

obese adults in the USA and 11 million more obese adults in the UK by 2030, consequently accruing 

an additional 6–8.5 million cases of diabetes, 5.7–7.3 million cases of heart disease and stroke for  

USA and UK combined [2]. The increased prevalence in obesity is also associated with increasing 

prevalence of nonalcoholic fatty liver disease (NAFLD). Among the Americas, the prevalence of 

NAFLD is highest in the USA, Belize and Barbados and Mexico, which have a high prevalence of 

obesity [3]. Obesity, especially abdominal obesity, is one of the predominant underlying risk factors 

for metabolic syndrome [4]. Obesity increases the risk of developing a variety of pathological 

conditions, including insulin resistance, type 2 diabetes, dyslipidemia, hypertension and NAFLD 

(Figure 1). Accumulating evidence suggests that chronic inflammation in adipose tissue may play a 

critical role in the development of obesity-related metabolic dysfunction [5–7]. 

Figure 1. Concept of metabolic syndrome. 

 

Adipose tissue has been recognized as an active endocrine organ and a main energy store of the 

body [8]. Excess adiposity and adipocyte dysfunction result in dysregulation of a wide range of 

adipose tissue-derived secretory factors, referred to as adipokines, which may contribute to the 

development of various metabolic diseases via altered glucose and lipid homeostasis as well as 

inflammatory responses [9,10]. In addition, excess fat accumulation promotes the release of free fatty 

acids into the circulation from adipocytes, which may be a critical factor in modulating insulin 

sensitivity [11,12]. However, plasma free fatty acid levels do not increase in proportion to the amount 
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of body fat, since their basal adipose tissue lipolysis per kilogram of fat is lower in obese subjects than 

in lean subjects [13]. This finding has been supported by other studies of adipocytes from obese 

subjects [14,15] and it was associated with down-regulation of hormone sensitive lipase and adipose 

triglyceride lipase, key enzymes involved in intracellular degradation of triglycerides [14,16–18]. 

Thus, Karpe et al. [19] have recently suggested that the link between circulating free fatty acid levels 

and insulin sensitivity in vivo is needed to further elucidate this complicated relationship. 

In this review, we will first discuss the critical role of adipose tissue for health and as a repository 

of free fatty acids. We will also review how the dysregulation of free fatty acids and inflammatory 

factors released by enlarged adipose tissue is associated with the pathogenesis of metabolic syndrome 

(insulin resistance, dyslipidemia and NAFLD). In particular, we will focus on the imbalance of  

pro-inflammatory and anti-inflammatory molecules secreted by adipose tissue which contribute to 

metabolic dysfunction. 

2. Function of Adipose Tissue 

Adipose tissue is the major site for storage of excess energy in the form of triglycerides, and it 

contains multiple cell types, including mostly adipocytes, preadipocytes, endothelial cells and immune 

cells. During positive energy balance, adipose tissue stores excess energy as triglycerides in the lipid 

droplets of adipocytes through an increase in the number of adipocyte (hyperplasia) or an enlargement 

in the size of adipocytes (hypertrophy) [20]. The number of adipocytes is mainly determined in 

childhood and adolescence and remains constant during adulthood in both lean and obese subjects, 

even after marked weight loss [21]. Hence, an increase in fat mass in adulthood can primarily be 

attributed to hypertrophy. However, recent study has reported that normal-weight adults can expand 

lower-body subcutaneous fat, but not upper-body subcutaneous fat, via hyperplasia in response to 

overfeeding [22], suggesting hyperplasia of adipocytes can also occur in adulthood. Although overall 

obesity is associated with metabolic diseases, adipose tissue dysfunction caused by hypertrophy has 

been suggested to play an important role in the development of metabolic diseases such as insulin 

resistance [23–25]. In contrast to positive energy balance states, when energy is needed between meals 

or during physical exercise, triglycerides stored in adipocytes can be mobilized through lipolysis to 

release free fatty acids into circulation and the resulting free fatty acids are transported to other tissues 

to be used as an energy source. It is generally accepted that free fatty acids, a product of lipolysis, play 

a critical role in the development of obesity-related metabolic disturbances, especially insulin 

resistance. In obesity, free fatty acids can directly enter the liver via the portal circulation, and 

increased levels of hepatic free fatty acids induce increased lipid synthesis and gluconeogenesis as well 

as insulin resistance in the liver [26]. High levels of circulating free fatty acids can also cause 

peripheral insulin resistance in both animals and humans [26,27]. Moreover, free fatty acids serve as 

ligands for the toll-like receptor 4 (TLR4) complex [28] and stimulate cytokine production of 

macrophages [29], thereby modulating inflammation of adipose tissue which contributes to  

obesity-associated metabolic complications. However, circulating free fatty acid concentrations do not 

increase in proportion to fat mass and do not predict the development of metabolic syndrome [30–33], 

although many studies suggest a relationship between the release of free fatty acids from adipose tissue 

and obesity-related metabolic disorders. 
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Adipose tissue also has a major endocrine function secreting multiple adipokines (including 

chemokines, cytokines and hormones) (Figure 2). Many of the adipokines are involved in energy 

homeostasis and inflammation, including chemokines and cytokines. In the obese state, the adipocyte 

is integral to the development of obesity-induced inflammation by increasing secretion of various  

pro-inflammatory chemokines and cytokines [34,35]. Many of them, including monocyte chemotactic 

protein (MCP)-1, tumor necrosis factor (TNF)-α, interlukin (IL)-1, IL-6 and IL-8, have been reported 

to promote insulin resistance [36–39]. Moreover, the macrophage content of adipose tissue is 

positively correlated with both adipocyte size and body mass, and expression of pro-inflammatory 

cytokines, such as TNF-α, is mostly derived from macrophages rather than adipocytes [40]. Along 

with the increased number of macrophages in adipose tissue, obesity induces a phenotypic switch in 

these cells from an anti-inflammatory M2 polarization state to a pro-inflammatory M1 polarization 

state [41]. The accumulation of M1 macrophages in adipose tissue has been shown to result in 

secretion of a variety of pro-inflammatory cytokines and chemokines that potentially contribute to 

obesity-related insulin resistance [5,42]. In contrast, M2-polarized macrophages participate in 

remodeling of adipose tissue, including clearance of dead or dying adipocytes and recruitment  

and differentiation of adipocyte progenitors [43]. Decreased adipose macrophage infiltration or 

macrophage ablation reduces expression of inflammatory cytokines in adipose tissue and improves 

insulin sensitivity in diet-induced obese mice [44–47]. Furthermore, weight loss decreases macrophage 

infiltration and pro-inflammatory gene expression in adipose tissue in obese subjects [48,49]. In 

addition to M1 macrophages, levels of multiple pro-inflammatory immune cells, such as interferon 

(IFN)-γ+ T helper type 1 cells and CD8+ T cells, are increased in adipose tissue in obesity [50]. In 

contrast, secretion of insulin-sensitizing adiponectin is reduced in obese subjects [51]. 

3. Obesity and Insulin Resistance 

Insulin resistance is an integral feature of metabolic syndrome and is a major predictor of the 

development of type 2 diabetes [52]. It has long been recognized that obesity is associated with type 2 

diabetes, and the major basis for this link is the ability of obesity to induce insulin resistance. Insulin 

resistance is defined as the decreased ability of tissues to respond to insulin action. Adipose tissue is 

one of the insulin-responsive tissues, and insulin stimulates storage of triglycerides in adipose tissue  

by multiple mechanisms, including promoting the differentiation of preadipocytes to adipocytes, 

increasing the uptake of glucose and fatty acids derived from circulating lipoproteins and lipogenesis 

in mature adipocytes, and inhibiting lipolysis [53]. The metabolic effects of insulin are mediated by  

a complex insulin-signaling network (Figure 3). Insulin signaling is initiated when insulin binds to  

its receptor on the cell membrane, leading to phosphorylation/activation of insulin receptor  

substrate (IRS) proteins that are associated with the activation of two main signaling pathways:  

the phosphatidylinositol 3-kinase (PI3K)-AKT/protein kinase B (PKB) pathway and the  

Ras-mitogen-activated protein kinase (MAPK) pathway. The PI3K-AKT/PKB pathway is important 

for most metabolic actions of insulin. IRS-1, which is phosphorylated by the insulin receptor, activates 

PI3K by binding to its SH2 domain. PI3K generates phosphatidylinositol-(3,4,5)-triphosphate,  

a lipid second messenger, which activates several phosphatidylinositol-(3,4,5)-triphosphate-dependent 

serine/threonine kinases, including AKT/PKB. Ultimately, these signalling events result in the 
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translocation of glucose transporter 4 to the plasma membrane, leading to an increase in adipocyte 

glucose uptake. The MAPK pathways are not implicated in mediating metabolic actions of insulin but 

rather in stimulating mitogenic and growth effects of insulin. In the adipose tissue, insulin also has an 

anti-lipolytic effect, whereby the activation of PI3K stimulates phosphodiesterase-3 so that more 

adenosine 3',5'-cyclic monophosphate is hydrolyzed in adipocytes, which in turn limits the release of 

fatty acids from adipocytes. In addition, the transcription factors, including adipocyte determination 

and differentiation factor 1/sterol regulatory element-binding protein-1c (SREBP1-c), regulate the 

expression of multiple genes that are responsible for adipocyte differentiation, lipogenesis and fatty 

acid oxidation. 

Figure 2. Secretion of inflammatory adipokines from adipose tissue in obese state. In 

obese state, the enlarged adipose tissue leads to dysregulated secretion of adipokines and 

increased release of free fatty acids. The free fatty acids and pro-inflammatory adipokines 

get to metabolic tissues, including skeletal muscle and liver, and modify inflammatory 

responses as well as glucose and lipid metabolism, thereby contributing to metabolic 

syndrome. In addition, obesity induces a phenotypic switch in adipose tissue from  

anti-inflammatory (M2) to pro-inflammatory (M1) macrophages. On the other hand, the 

adipose production of insulin-sensitizing adipokines with anti-inflammatory properties, 

such as adiponectin, is decreased in obese state. The red arrows indicate increased (when 

pointing upward) or decreased (when pointing downward) responses to obesity. ANGPTL, 

angiopoietin-like protein; ASP, acylation-stimulating protein; IL, interleukin; MCP-1, 

monocyte chemotactic protein; NAFLD, nonalcoholic fatty liver disease; PAI-1, 

plasminogen activator inhibitor-1; RBP4, retinol binding protein 4; SAA, serum amyloid 

A; SFRP5, secreted frizzled-related protein 5; TGF-β, Transforming growth factor-β;  

TNF-α, tumor necrosis factor-α. 
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Figure 3. Schematic view of insulin signaling pathway in adipose tissue. Binding of 

insulin to its receptor on adipocytes triggers the phosphorylation and activation of insulin 

receptor substrate, which forms a docking site for phosphatidylinositol 3-kinase (PI3K) at 

the membrane. When docked, PI3K converts phosphatidylinositol 4,5-bisphosphate  

to phosphatidylinositol 3,4,5-trisphosphate, a second messenger that activates 

phosphoinositide-dependent protein kinase 1 and recruits Akt (also known as protein 

kinase B, PKB) to the cell membrane. Consequently, PI3K-AKT/PKB signaling pathway 

regulates metabolic processes. The red arrows indicate up-regulation (when pointing 

upward) or down-regulation (when pointing downward) in response to PI3K-AKT/PKB 

signaling pathway. The Ras-mitogen-activated protein kinase pathway leads to the 

activation of genes which are involved in cell growth, thereby promoting inflammation and 

atherogenesis. IRS-1, insulin receptor substrate; MAPK, mitogen-activated protein kinase; 

PDK, phosphoinositide-dependent protein kinase 1; PI3K, phosphatidylinositol  

3-kinase; PIP2, phosphatidylinositol 4,5-bisphosphate; PIP3, phosphatidylinositol  

3,4,5-trisphosphate; PKB, protein kinase B. 

 

Evidence has suggested a role for adipose tissue in the development of insulin resistance. As 

discussed in the preceding text, free fatty acids and various adipokines released from adipose tissue 

have been involved in abnormal insulin signaling. It has been suggested that fatty acids and their 

metabolites, such as acyl-coenzyme A, ceramides and diacyglycerol, can impair insulin signaling by 

promoting protein kinases such as protein kinase C, MAPK, c-Jun N-terminal kinase (JNK), and the 

inhibitor of nuclear factor κB kinase β [54]. Saturated fatty acids, but not unsaturated fatty acids, 

induce the synthesis of ceramide, and inhibition of ceramide synthesis ameliorates saturated  

fatty acids-induced insulin resistance [55]. TNF-α also promotes ceramide accrual by activating 

sphingomyelinase, an enzyme that catalyzes the hydrolysis of sphingomyelin to ceramide [56], and 

ceramide mediates TNF-α-induced insulin resistance in adipocytes [57]. Haus et al. [58] reported that 
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plasma ceramide levels are elevated in obese subjects with type 2 diabetes and it contributes to insulin 

resistance by activating inflammatory mediators, such as TNF-α. Thus, ceramide has been regarded as 

mediator linking several metabolic stresses (i.e., TNF-α and saturated fatty acids, but not unsaturated 

fatty acids) to the induction of insulin resistance [55,57], although the role of TNF-α in insulin 

resistance is somewhat controversial [59]. Obese subjects had greater whole body free fatty acids rates 

of appearance in plasma compared with lean subjects [60], and a sustained reduction in plasma free 

fatty acids levels after treatment of lipolysis inhibitor was associated with an improvement of insulin 

sensitivity in diabetic obese subjects [61]. The anti-lipolysis drug also decreased fasting plasma free 

fatty acids levels in lean control, obese nondiabetic, obese subjects with impaired glucose tolerance, 

and the lowering of plasma free fatty acids levels improved insulin resistance and glucose tolerance  

in obese subjects, regardless of the degree of their preexisting insulin resistance [62]. Recently,  

Girousse et al. [63] reported that a decrease in adipose tissue lipolysis improved insulin tolerance and 

glucose metabolism without altering fat mass. Obesity-induced increases in lipolysis not only increases 

local extracellular lipid concentrations but also derives accumulation of macrophages in adipose  

tissue [64], which is associated with systemic hyperinsulinemia and insulin resistance in obese  

subjects [65]. In fact, macrophage recruitment was increased with fat mass [54], and the phenotype of 

adipose macrophages and recruitment of macrophages and other immune cells to the adipose tissue 

play important roles in the development of obesity-related insulin resistance [66]. 

Obesity-induced insulin resistance is also associated with increased secretion of cytokines and other 

bioactive substances from adipose tissue as well as the number of adipose macrophages. In the adipose 

tissue of obese humans and animals, there are a large number of macrophages infiltrations, and this 

recruitment is linked to the pathogenesis of obesity-induced inflammation and insulin resistance [5,40]. 

The production of most inflammatory factors by adipose tissue is also increased in the obese state  

and promotes obesity-linked metabolic diseases [67,68]. Adipocytes and immune cells (primarily 

macrophages) in the adipose tissue are the primary sources of many inflammatory proteins [67,68]. 

There are two types of inflammatory proteins: pro-inflammatory and anti-inflammatory. A number of 

pro-inflammatory proteins, including MCP-1, TNF-α, IL-6, IL-18, leptin, resistin, plasminogen 

activator inhibitor (PAI)-1, visfatin, retinol binding protein 4 (RBP4) and angiopoietin-like protein 2 

(ANGPTL2), are described in more detail in the following text. Additionally, we briefly discuss the 

metabolic properties of two anti-inflammatory adipokines, adiponectin and secreted frizzled-related 

protein 5 (SFRP5). There are discrepancies between preclinical studies and clinical trials regarding 

some adipokines, including TNF-α, resistin and SFRP5. Although the cause of discrepancy between 

preclinical studies and clinical trials is unclear, it may be due to a number of factors including the 

discrepancies on the species (e.g., difference in the tissue compositions and gene profiles between 

animals and humans), outcome measures, pre-morbid conditions and treatment methods. In addition, 

considering the wide spectrum of pro- and anti-inflammatory adipokines, which are altered in obesity, 

it is likely that crosstalk of many adipokines rather than a single adipokine in adipose tissue and other 

tissues may be involved in the metabolic dysregulation. Further studies are still required to clarify their 

roles in various conditions. 
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4. Role of Adipose Tissue-Produced Adipokines in Insulin Resistance 

4.1. CCL2/MCP-1 and Other Chemokines 

Chemokines play a major role in selectively recruiting monocytes, neutrophils, and lymphocytes 

and in inducing chemotaxis, and chemokines and their receptors are highly expressed in human 

visceral and subcutaneous adipose tissue in obesity [69]. C-C motif chemokine ligand 2/macrophage 

chemoattractant protein-1 (CCL2/MCP-1) is one of the key chemokines that regulate migration and 

infiltration of monocytes/macrophages. It initiates adipose inflammation by attracting inflammatory 

cells from the blood stream into adipose tissue [66,70]. CCL2/MCP-1 is expressed by adipocytes and 

circulating levels of CCL2/MCP-1 correlate with adiposity. Over-expression of CCL2/MCP-1 in 

adipose tissue increases macrophage recruitment and worsens the metabolic phenotype [71,72], 

whereas a deficiency of CCL2/MCP-1 or its receptor CCR2 reduces pro-inflammatory macrophages 

accumulation in adipose tissue and provides protection from insulin resistance as well as hepatic 

steatosis [45,71,73]. Recently, Meijer et al. [74] reported that adipocyte-derived CCL2/MCP-1 can 

stimulate inflammation independently of macrophages/leukocytes in human adipose tissue, although 

many cells in adipose tissue, including adipocyte and macrophages/leukocytes, produce CCL2/MCP-1. 

In a large cohort of Caucasians, circulating CCL2/MCP-1 was increased in type 2 diabetes subjects 

and presence of the MCP-1 G-2518 allele was associated with decreased plasma CCL2/MCP-1 levels 

as well as prevalence of insulin resistance and type 2 diabetes [75]. Similarly, MCP-1 G-2518 gene 

variant was decreased the risk of type 2 diabetes in a Chinese and Turkey populations [76,77]. These 

results support a role for CCL2/MCP-1 in pathologies associated with hyperinsulinaemia, although 

there are contradictory results [78,79]. 

Besides CCL2/MCP-1, several other chemokines such as CCL5, C-X-C motif chemokine ligand 5 

(CXCL5) and CXCL14 are also involved in adipose tissue macrophage infiltration and obesity-induced 

insulin resistance [46,80,81]. High levels of multiple chemokine ligands (CCL2, CCL3, CCL5, CCL7, 

CCL8, CCL11) and receptors (CCR1, CCR2, CCR3, CCR5) have been observed in adipose tissue of 

obese subjects and are associated with increased inflammation [69]. Similarly, Tourniaire et al. [82] 

have reported that expression of numerous chemokines (CCL2, CCL5, CCL7, CCL19, CXCL1, 

CXCL5, CXCL8, CXCL10) is increased in adipose tissue of obese subjects compared to lean  

subjects. Thus, these studies suggest possibility that loss of one chemokine may be compensated by 

other chemokines. 

4.2. TNF-α 

TNF-α is a pro-inflammatory cytokine that may contribute to the pathogenesis of obesity and 

insulin resistance [36]. Expression of TNF-α is increased in obesity and insulin resistance in humans 

and is positively correlated with insulin resistance [36]. Treatment with TNF-α induces insulin 

resistance in adipose tissue [83], whereas deletion of TNF-α or its receptors improves insulin 

sensitivity in obese animals [84]. However, the correlation between plasma TNF-α levels and insulin 

resistance is relatively weak [36,85], and chronic neutralization of TNF-α does not improve insulin 

resistance in healthy overweight subjects with metabolic syndrome and insulin resistance, despite 

improvements in inflammatory status [86]. Bernstein et al. [87] have also reported that administration 
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of TNF-α antagonist does not improve insulin sensitivity in humans. The absence of an effect on 

insulin sensitivity may be due to a compensatory role of other cytokines in the absence of TNF-α, 

since metabolic dysregulation has been attributed to numerous pro-inflammatory cytokines secreted by 

adipose tissue, including TNF-α, IL-1, and IL-6, all of which have been involved in disrupting insulin 

signaling [88]. TNF-α is a part of complex inflammation network and is capable of initiating cytokine 

cascades involving both synergistic and inhibitory reactions, which control the synthesis and 

expression of other cytokines, hormones, and their receptors [89]. For example, In TNF-α null mice, 

serum IL-12 levels were increased [90]. Because IL-12 and TNF-α are co-stimulators for IFN-α, one 

of the essential cytokines for regulation of the inflammation and insulin resistance in obesity [91], the  

up-regulation of IL-12 in the absence of TNF-α could act in a compensatory manner to induce and 

maintain appropriate IFN-α levels. In addition, TNF-α does not induce insulin resistance when IL-6 is 

down-regulated in adipose tissue [92]. 

4.3. IL-6 and IL-18 

IL-6 is another cytokine that plays an important role in the development of insulin resistance in 

obesity [93]. Adipose tissue contributes to 10%–35% of circulating IL-6 levels in humans [94], and 

hypertrophic enlargement of adipocytes is accompanied by increased production of IL-6 by adipose 

tissue [95]. Expression of adipose IL-6 positively correlates with insulin resistance both in vivo and  

in vitro [96]. Hyperglycemia results in increased IL-6 levels [97], and treatment with IL-6 induces 

hyperglycemia and insulin resistance in humans [98]. However, the correlation between IL-6 and 

obesity or insulin resistance is controversial. A lack of IL-6 has been shown to cause obesity and 

insulin resistance in mice [99], but Di Gregorio et al. [100] did not observe any obvious phenotype 

related to obesity and diabetes in IL-6-deficient mice compared with wild-type mice. IL-6 appears to 

have different actions depending on the tissue (i.e., skeletal muscle vs. adipose tissue). Treatment of 

IL-6 enhances insulin-stimulated glucose disposal in humans in vivo, and it increases glucose uptake 

and fatty acid oxidation in cultured L6 myotubes via activation of adenosine monophosphate-activated 

protein kinase (AMPK), as well as having an anti-inflammatory effect [101,102], whereas IL-6 induces 

insulin resistance in adipocytes [39]. Thus, the different tissue-specific functions of IL-6 may account 

for the controversial findings regarding the correlation between IL-6 and insulin resistance. 

IL-18 is also a pro-inflammatory cytokine and has been suggested to be produced by adipose  

tissue [103]. Circulating IL-18 levels have been shown to be increased in obese subjects and reduced 

with weight loss [104]. Moreover, overexpression of IL-18 aggravated insulin resistance in a rat model 

of metabolic syndrome [105]. However, a lack of IL-18 or its receptor in mice induces hyperphagia, 

obesity and insulin resistance [106]. Thus, further studies are needed to evaluate the role of IL-6 and 

IL-18 in the pathogenesis of obesity and insulin resistance. 

4.4. Leptin 

Leptin is abundantly expressed in adipose tissue, specifically adipocytes and is involved in the 

regulation of energy homeostasis [107]. It inhibits appetite and food intake and stimulates energy 

expenditure [107]. However, circulating leptin levels [108] and its mRNA expression in adipose  

tissue [109] are increased in obese subjects, probably due to the existence of leptin resistance [107]. 
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Leptin also plays an important role in the regulation of glucose homeostasis, independent of actions on 

food intake, energy expenditure or body weight. Leptin improves insulin sensitivity in the liver and 

skeletal muscle and regulates pancreatic β-cell function [110], whereas it impairs insulin signaling in 

murine adipocytes [111,112]. In addition, leptin is suggested to have pro-inflammatory effects;  

Leptin has a cytokine-like structure, and its receptor is member of the class I cytokine receptor (gp130) 

superfamily [113]. It not only promotes the production of the pro-inflammatory cytokines, IL-2 and 

IFN-γ, but also inhibits the production of the anti-inflammatory cytokine IL-4 by T cells or 

mononuclear cells [114]. Concomitantly, circulating leptin levels and its expression in adipose  

tissues are increased in response to pro-inflammatory cytokines (TNF, IL-1) and endotoxin 

(lipopolysaccharide, LPS) [115]. Accordingly, the interactions between leptin and inflammation are 

bidirectional: Pro-inflammatory cytokines increase the synthesis and release of leptin, which in turn 

contribute to maintain a chronic inflammatory state in obesity [113]. 

4.5. Resistin 

Resistin is also an adipocyte-specific secreted adipokine, and it promotes both inflammation and 

insulin resistance in murine models. Levels of circulating resistin are increased in obese mice and 

correlated with insulin resistance [116,117], whereas a lack of resistin protects mice from diet-induced 

hyperglycemia by increasing the activity of AMPK and decreasing the expression of gluconeogenic 

enzymes in the liver [118]. Moreover, resistin inhibits multiple steps involved in insulin signaling in 

3T3-L1 adipocytes and induces the expression of suppressor of cytokine signaling-3 (SOCS-3), a 

known inhibitor of insulin signaling, in both 3T3-L1 adipocytes and murine adipose tissues [119]. 

However, there are conflicting reports of the potency of resistin in metabolic diseases in humans. 

Several studies have consistently reported a close relationship between resistin levels and obesity, 

insulin resistance, or type 2 diabetes [120–124]. However, other studies have shown that circulating 

resistin levels and adipocyte expression are not associated with insulin resistance in humans [125,126]. 

Unlike mouse resistin, human resistin is exclusively expressed in mononuclear cells including 

macrophages [126], and macrophage-derived human resistin exacerbates adipose tissue inflammation 

and insulin resistance in mice [127]. 

4.6. PAI-1 

PAI-1, a primary inhibitor of fibrinolysis, is also synthesized by adipocytes as well as stromal 

vascular cells, such as preadipocytes, fibroblasts, vascular endothelial cells, and a variety of immune 

cells, in adipose tissue, and its levels in plasma are increased in obesity and insulin resistance [128,129]. 

A deficiency of PAI-1 decreases body weight gain, increases total energy expenditure, and improves 

insulin resistance in mice fed a high-fat diet [130]. Moreover, mice lacking PAI-1 have promoted 

adipocyte differentiation and enhanced basal glucose uptake as well as insulin-stimulated glucose 

uptake [131]. PAI-1 regulates expression of inflammatory factors, such as IL-8 and leukotriene B4, 

and monocyte migration, and its expression is regulated by various cytokine inducers such as cigarette 

smoke extraction and LPS [132]. 
  



Int. J. Mol. Sci. 2014, 15 6194 

 

 

4.7. Visfatin 

Visfatin, which was previously identified as a modulator of β-cell differentiation that is expressed 

in a variety of tissues and cell types, including lymphocytes, bone marrow, muscle and liver [133],  

has been reported to be secreted by adipose tissue, especially visceral adipose tissue, and exhibit  

insulin-like activities in mice [134,135]. Visfatin was highly expressed in the visceral adipose tissue of 

mice as well as humans, and treatment with visfatin enhances glucose uptake in adipocytes and 

myocytes [134]. However, several studies have failed to confirm that visfatin is expressed 

predominantly in visceral white adipose tissue [136–139] and that expression of visfatin in adipose 

tissue is related to obesity [136,139,140]. Moreover, several studies have reported that circulating 

visfatin levels are high in subjects with obesity and type 2 diabetes and are positively associated with 

insulin resistance [139–141]. However, serum visfatin levels and expression of visfatin in adipose 

tissue are not correlated with glucose metabolism or insulin resistance [137,142]. A recent study  

has demonstrated that central visfatin improves hypothalamic insulin signaling and increases  

glucose-stimulated insulin secretion and β-cell mass without changing serum visfatin levels in diabetic 

rats [143]. Oki et al. [144] reported that, although not related to insulin resistance in humans, serum 

visfatin levels are positively correlated with serum levels of IL-6 and C-reactive protein, which are 

known to be pro-inflammatory markers. Therefore, further studies are needed to clarify the role of 

visfatin in the pathogenesis of obesity induced-insulin resistance. 

4.8. RBP4 

RBP4 is a hepatocyte-synthesized protein that is involved in the transport of vitamin A (retinol) in 

the body [145]. Recently, it has been suggested that RBP4 is also secreted by adipocytes and affects 

insulin sensitivity [146]. In states of obesity and insulin resistance, RBP4 is preferentially produced  

by visceral adipose tissue compared with subcutaneous adipose tissue, and thus it is linked to  

intra-abdominal adipose tissue expansion [147]. Expression of RBP4 is increased in adipose tissue in 

insulin-resistant mice, and adipose tissue RBP4 mRNA expression is correlated with changes in serum 

RBP4 levels [147]. In primary human adipocytes, RBP4 inhibits insulin-induced phosphorylation of 

IRS-1 and ERK1/2, which may be involved in integrating nutrient sensing with insulin signaling [148]. 

Clinical studies have also reported that circulating RBP4 levels are associated with insulin resistance  

in subjects with obesity, impaired glucose tolerance, or type 2 diabetes as well as in nonobese  

subjects [149,150]. Along with markers of obesity and insulin resistance, RBP4 is correlated with 

inflammatory factors [151]. Several RBP4 gene variants are associated with adiposity and insulin 

resistance [152–154]. However, in several clinical studies, circulating RBP4 levels were not associated 

with obesity and insulin resistance [155,156]. Furthermore, some studies showed no correlation 

between serum RBP4 levels and expression of RBP4 in adipose tissue [155,157]. Thus, the 

relationship between adipose RBP4 expression, circulating levels of RBP4, obesity and insulin 

resistance in humans needs to be evaluated in future studies. 
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4.9. ANGPTL2 

ANGPTL2 was recently identified as an adipocyte-derived inflammatory mediator that promotes 

inflammation and insulin resistance [158]. Expression of ANGPTL2 in adipose tissue and circulating 

levels of ANGPTL2 are higher in diet-induced obese mice than in control mice, and circulating levels 

of ANGPTL2 are closely related to adiposity, insulin resistance, and inflammation in mice [158]. A 

deficiency of ANGPTL2 improves adipose tissue inflammation and insulin resistance in diet-induced 

obese mice, whereas its overexpression in adipose tissue promotes inflammation as well as insulin 

resistance in mice [158]. ANGPTL2 is also closely associated with adiposity and inflammation in 

humans [158]. Recently, Doi et al. [159] reported that circulating ANGPTL2 levels are positively 

correlated with the development of type 2 diabetes in humans, and this relationship is independent of 

other risk factors for type 2 diabetes, including high-sensitivity C-reactive protein levels. Further 

studies are needed to identify the association of human adipose ANGPTL2 expression with the 

development of type 2 diabetes. 

4.10. Adiponectin 

Adiponectin is a well-known adipose-specific adipokine that produces insulin-sensitizing effects. 

Levels of adiponectin are low in obese subjects, and treatment with adiponectin increases insulin 

sensitivity in animal models [160,161]. Expression of adiponectin in adipose tissue is lower in subjects 

with obesity and insulin resistance than in lean subjects and is associated with higher degrees of insulin 

sensitivity and lower adipose TNF-α expression [162]. A deficiency of adiponectin in mice induces 

insulin resistance, whereas over-expression of adiponectin in mice improves insulin sensitivity and 

glucose tolerance [163]. It has been reported that the adiponectin receptors, adiponectin receptor 

(AdipoR)1 and AdipoR2 are reduced in obesity-related insulin resistance and mediate the anti-metabolic 

actions of adiponectin [164]. 

4.11. SFRP5 

SFRP5 is a new adipokine with insulin sensitizing and anti-inflammatory properties that exhibits 

beneficial effects on metabolic dysfunction [165]. The SFRP5 gene and protein are expressed at higher 

levels in adipose tissue than in other tissues and, in particular, gene expression is confined to 

adipocytes rather than stromal vascular cells [165]. A deficiency of SFRP5 in mice induced impaired 

insulin sensitivity, increased risk of developing NAFLD and aggravated adipose inflammation 

compared with control mice when fed a high-calorie diet, although SFRP5-deficient mice did not show 

detectable phenotype changes on a regular diet [165]. Conversely, administration of SFRP5 improves 

metabolic function and reduces adipose inflammation in obese and diabetic mice. The metabolic 

dysfunction observed in SFRP5-deficient mice is associated with increased accumulation of 

macrophages and enhanced production of pro-inflammatory cytokines in adipose tissue [165]. 

Furthermore, in SFRP5-deficient mice, JNK1 loss reverses the impaired insulin sensitivity and 

increased adipose inflammation [165], suggesting that a deficiency of SFRP5 promotes obesity-induced 

inflammation and metabolic dysfunction via activation of JNK1 in adipose tissue. Clinical study also 

demonstrated that plasma levels of SFRP5 were lower in adult subjects with impaired glucose 
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intolerance and type 2 diabetes than normal glucose tolerance subjects, and its levels were negatively 

correlated with body mass index (BMI), waist-to-hip ratio and HOMA-IR [166,167]. In addition, 

circulating SFRP5 was associated with obesity and metabolic syndrome in obese children, and its 

levels were increased after weight loss [168]. However, Carstensen et al. [169] reported a positive 

correlation between serum SFRP5 levels and parameters of glucose homeostasis or insulin resistance 

in healthy and obese subjects. Future clinical studies are required to determine the role of adipose 

SFRP5 in the control of obesity-related abnormalities in glucose homeostasis and insulin sensitivity. 

5. Obesity and Dyslipidemia 

Obesity is also linked to an increased prevalence of dyslipidemia. Dyslipidemia is an abnormal 

amount of lipids, such as cholesterol and triglyceride, in the blood and is a widely accepted risk factor 

for cardiovascular disease. Obesity-related dyslipidemia is primarily characterized by increased levels 

of plasma free fatty acids and triglycerides, decreased levels of high-density lipoprotein (HDL), and 

abnormal low-density lipoprotein (LDL) composition (Figure 4). The most significant contributing 

factor for obesity-related dyslipidemia is likely uncontrolled fatty acid release from adipose tissue, 

especially visceral adipose tissue, through lipolysis, which causes increased delivery of fatty acids to 

the liver and synthesis of very-low-density lipoprotein (VLDL). Increased levels of free fatty acids can 

decrease mRNA expression or activity of lipoprotein lipase (LPL) in adipose tissue and skeletal 

muscle, and increased synthesis of VLDL in the liver can inhibit lipolysis of chylomicrons, which 

promotes hypertriglyceridemia [170–172]. Hypertriglyceridemia further triggers a cholesterylester 

transfer protein-mediated exchange of triglycerides for cholesterol esters between triglyceride-rich 

lipoproteins (VLDL, immediate-density lipoprotein) and lipoproteins, which are relatively richer in 

cholesterol esters (LDL, HDL), which leads to a decreased HDL-cholesterol concentration and a 

reduction in triglyceride content in LDL [173]. The increased triglyceride content in LDL is 

hydrolyzed by hepatic lipase (HL) [173], leading to the formation of small, dense LDL particles that 

are associated with a higher risk of cardiovascular disease [174]. For decades, in clinical practice, LDL 

cholesterol has been the cornerstone measurement for assessing cardiovascular risk and is typically 

estimated using Friedewald formula [175]. As the formula is calculated based on measurements of 

total cholesterol, triglyceride, HDL cholesterol, the accuracy of Friedewald formula depends on the 

accuracy of these values. Therefore, recently, the limitation and errors of the Friedewald equation  

are not well appreciated by clinicians although well-documented. Currently, there are several 

homogeneous assays for LDL cholesterol based on selective detergents or other elimination methods 

to separate chylomicrons, VLDL, and HDL from LDL [176]. A homogeneous assay for measurement 

of small, dense LDL cholesterol has also been developed [177]. The selective measurement of the 

small, dense LDL cholesterol concentration is crucial for evaluating the actual atherogenic risk of 

individuals, since a high concentration of small, dense LDL cholesterol is closely related to a high 

prevalence of cardiovascular disease [178]. Rizzo et al. [179] suggested the predictive role of small, 

dense LDL beyond traditional cardiovascular risk factors in subjects with metabolic syndrome events, 

and National Cholesterol Education Program-Adult Treatment Panel III has accepted the sd-LDL as a 

novel cardiovascular risk factor. 
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Figure 4. Mechanisms of dyslipidemia in obesity. An increased free fatty acids (FFA) 

release from adipose tissue via lipolysis can result in enhanced delivery of FFA to the liver. 

The enhanced FFA leads to increased triglyceride (TG) and very-low-density lipoprotein 

(VLDL) production in the liver as well as inhibition of lipoprotein lipase in adipose tissue 

and skeletal muscle, thereby promoting hypertriglyceridemia. Moreover, the increased 

VLDL in the liver can inhibit lipolysis of chylomicrons, which also contributes to 

hypertriglyceridemia. The TG in VLDL is exchanged for cholesteryl esters from  

low-density lipoproteins (LDL) and high-density lipoproteins (HDL) by the cholesteryl 

ester transport protein, producing TG-rich LDL and HDL. The TG in the LDL and HDL is 

then hydrolyzed by hepatic lipase, producing both small, dense LDL and HDL. The 

decreased HDL concentration and formation of small, dense LDL particules are linked to a 

higher risk of cardiovascular disease. The red arrows indicate increased (when pointing 

upward) or decreased (when pointing downward) responses to obesity. CE, cholesteryl 

esters; CETP, cholesteryl ester transport protein; FFA, free fatty acids; HDL, high-density 

lipoproteins; HL, hepatic lipase; LDL, low-density lipoproteins; LPL, lipoprotein lipase; 

TG, triglyceride; VLDL, very-low-density lipoprotein. 

 

Adipocyte size is suggested to be an important factor for determining the degree to which adipose 

tissue contributes to dyslipidemia. Enlargement of adipocytes is associated with an increase in  

lipolysis [180], which leads to further increases in levels of circulating free fatty acids and their 

• Hypertriglyceridemia  • Cardiovascular disease 
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delivery to the liver to increase triglyceride synthesis. Along with triglyceride synthesis in the liver, the 

increased delivery of free fatty acids to the liver exacerbates insulin resistance, which promotes 

dyslipidemia. Obese subjects have higher whole body fatty acid release compared with lean subjects 

because of their greater fat mass, although their basal adipose tissue lipolysis per kilogram of fat is 

lower [13]. A recent study reported the association between enlargement of visceral adipocytes, but not 

subcutaneous adipocytes, and dyslipidemia independent of body composition and fat distribution in 

obese subjects [181]. A relationship between visceral adipose tissue and dyslipidemia was also found 

in patients with type 2 diabetes [182]. The content of visceral adipose tissue is positively correlated 

with the number of VLDLs and LDLs, even when controlling for BMI and distribution of 

subcutaneous adipose tissue [182]. Expansion of visceral adipose tissue has also been associated with 

larger VLDL particles as well as smaller LDL and HDL particles, which have a lower capacity to 

transfer cholesteryl esters in reverse cholesterol transport and predict atherosclerosis [182]. Visceral 

adipose tissue has higher lipolytic rates than subcutaneous adipose tissue, and free fatty acids are 

directly delivered to the liver through the portal vein [183]. Independent of total body fat, the expanded 

visceral adipose tissue is positively correlated with high hepatic triglyceride lipase activity [184].  

A high amount of visceral adipose tissue is also positively correlated with increased HL activity [185] 

which is associated with increased cardiovascular risk [174]. 

Many adipose-produced inflammatory molecules, including TNF-α, IL-6, IL-1, serum amyloid A 

(SAA) and adiponectin, and the number of adipose macrophages also play an important role in the 

development of dyslipidemia. As noted in the preceding text, obese subjects have higher levels of 

macrophage infiltration into adipose tissue compared with lean controls, leading to the increased levels 

of pro-inflammatory cytokines and circulating free fatty acids that are involved in the pathogenesis  

of dyslipidemia. Macrophage infiltration into visceral adipose tissue is positively correlated with 

circulating triglyceride levels in obese patients, and a negative relationship has been found with plasma 

HDL cholesterol levels [186]. Moreover, in subcutaneous adipose tissue, a macrophage-specific 

marker (CD68) is positively correlated with levels of plasma free fatty acid as well as LDL and 

negatively correlated with HDL levels [69]. In addition, inflammation can modify the size, composition 

and function of HDLs, which leads to the impairment of reverse cholesterol transport and parallel 

changes in apolipoproteins, cholesterol metabolism-related enzymes, anti-oxidant capacity, and 

adenosine triphosphate binding cassette A1-dependent efflux [187]. Several adipokines also stimulate 

lipolysis in adipocytes [188,189] and reduce the clearance of triglyceride-rich particles [190–192]. For 

example, IL-6 and TNF-α enhanced lipolysis and suppressed activity of LPL, a key regulatory enzyme 

in the catabolism and clearance of triglyceride-rich lipoproteins, in adipocytes [188,189,191,192]. 

6. Role of Adipose Tissue-Produced Adipokines in Dyslipidemia 

6.1. Cytokines 

TNF-α was originally identified as a factor that induces hypertriglyceridemia in bacteria  

infected-animals [193]. Levels of plasma TNF-α are higher in hyperlipidemic patients compared with 

healthy controls and are positively correlated with concentrations of VLDL triglyceride [194]. These 

effects are related to the promotion of hepatic triglyceride synthesis and secretion [195] as well as 
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inhibition of LPL [196]. In addition, TNF-α directly promotes the overproduction of hepatic 

apolipoprotein (apo) B100-containing VLDL through impairment of hepatic insulin signaling in 

animals [197]. Like TNF-α, IL-6 is also associated with hypertriglyceridemia. Subjects with 

hypertriglyceridemia have a higher production capacity of IL-6 as well as TNF-α [198,199], and 

increased levels of serum triglycerides are associated with increased levels of IL-6 [200]. Conversely, 

when anti-inflammatory cytokine (IL-10) levels are increased, plasma triglyceride levels are also 

increased [201]. Along with TNF-α, pro-inflammatory cytokines, such as IL-6, IL-1, IFN-α and IFN-γ, 

stimulate triglyceride synthesis in HepG2 cells [202] and/or promote lipolysis in adipocytes [188,189]. 

In addition, IL-1, IL-6 and IFN-α as well as TNF-α reduce LPL activity in vivo and in vitro [190–192]. 

Levels of serum pro-inflammatory cytokines, including TNF-α and IL-6, are negatively correlated 

with serum HDL-cholesterol levels in healthy subjects and patients with cardiovascular disease [203–205], 

whereas a positive correlation exists between the anti-inflammatory cytokine (IL-10) concentration 

and plasma HDL-cholesterol levels [201]. The administration of pro-inflammatory cytokines, such  

as TNF-α, IL-6 and IL-1, also reduces expression of apo A1 in hepatic cells and plasma in  

animals [190,206]. Apo A1 is the major protein component of HDL in plasma, and low concentrations 

of apoA1 are independent predictors for presence and severity of cardiovascular disease [207]. 

In contrast to HDL cholesterol, pro-inflammatory cytokines, including TNF-α, IL-6 and IL-1, 

increase circulating total cholesterol and LDL-cholesterol levels in animals by activating cholesterol 

synthesis [190,208–210], whereas increased IL-10 levels are negatively associated with high levels of 

total cholesterol and LDL cholesterol [201]. Pro-inflammatory cytokines (TNF-α, transforming growth 

factor-β or IL-1) not only promote lipoprotein uptake by scavenger receptor and LDL receptor but also 

inhibit adenosine triphosphate binding cassette transporter A1 (ABCA1)-mediated cholesterol efflux to 

HDL, which may contribute to lipid deposition and foam cell formation [211–213]. In addition, TNF-α 

increases secretion of apo B in rat hepatocyte cultures in the absence of extracellular fatty acids [214]. 

The level of circulating apo B has been reported to be a strong predictor of coronary artery disease 

compared with circulating HDL-cholesterol levels [215]. Moreover, in HepG2 cells, the treatment of 

cytokines (TNF-α, IL-6 and IL-1) stimulates the hepatic production and secretion of phospholipase  

A2 [216] which accelerate the development of atherosclerosis [217]. 

6.2. SAA 

SAA is an apolipoprotein that can replace apo A1 as the major apolipoprotein of HDL [218]. SAA 

is found in the adipose tissue and the liver in humans [34,219], and mice mainly express it in 

adipocytes [220]. Expression of SAA in adipose tissue and circulating levels of SAA are higher in 

obese subjects than in lean subjects and are decreased by caloric restriction [219]. A number of studies 

have suggested a role of SAA in the inflammatory process [221,222]. Treatment with SAA increases 

expression of the pro-inflammatory cytokines IL-6 and TNF-α in preadipocytes and adipocytes  

in vitro [221,222]. In addition, SAA affects the metabolism of HDL cholesterol through its inhibitory 

effects on HDL binding and selective lipid uptake mediated by scavenger receptor SR-BI [223], an 

HDL receptor that mediates the cellular uptake of cholesteryl esters from HDL, thereby promoting the 

process of reverse cholesterol transport from the periphery to the liver [224]. Lewis et al. [225] 

suggested that SAA might be a potential contributor to atherosclerosis directly by mediating retention 
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of SAA-enriched HDL to vascular proteoglycans, independent of an adverse effect on plasma 

lipoproteins. Thus, increased expression of SAA can promote dyslipidemia by affecting the HDL 

structure and function as well as inflammation. 

6.3. Adiponectin 

Adiponectin has beneficial effects on lipid metabolism and also plays a role as a vasoprotective 

adipokine [226]. Levels of plasma adiponectin have been negatively correlated with triglycerides and 

positively correlated with HDL cholesterol [71]. Decreased adiponectin levels are associated with 

dyslipidemia and cardiovascular disease compared with matched controls [227,228]. Adiponectin 

stimulates fatty acid oxidation and glucose utilization through activation of AMPK in the liver and 

skeletal muscle, which has been associated with many of the positive effects of adiponectin on 

lipoprotein metabolism as well as insulin sensitivity [229]. Adiponectin also induces activation of 

LPL, thereby enhancing VLDL clearance and reducing plasma triglyceride levels [230]. In addition, in 

subjects with type 2 diabetes and normal controls, low levels of adiponectin have been related to 

increased HL activity, which may be responsible for the decreased levels of HDL cholesterol [231]. 

More recently, Matsuura et al. [232] reported that adiponectin increases the mRNA expression and 

secretion of apo A1 as well as ABCA1 mRNA and protein expression in HepG2 cells, suggesting that 

adiponectin might increase HDL assembly in the liver. In adiponectin-knockout mice, plasma and 

hepatic apo A1 protein levels and hepatic ABCA1 gene and protein expression were shown to be 

decreased compared with wild-type-mice [233]. Recently, Chang et al. [234] suggested that 

hypoadiponectinemia may be a useful marker of dyslipidemia in subjects with polycystic ovarian 

syndrome, who have an increased risk of dyslipidemia. 

7. Obesity and NAFLD 

NAFLD is currently the most common form of chronic liver disease [235], and its incidence has 

increased in parallel to the rise in the incidence of obesity [3,236]. More than two-thirds of patients 

with NAFLD are obese [237]. NAFLD is characterized by two steps of liver injury: (1) accumulation 

of triglycerides in the liver (hepatic steatosis) and (2) inflammation and subsequent fibrosis 

(nonalcoholic steatohepatitis, NASH) [238]. The “two-hit” hypothesis is widely accepted to explain 

the development of NAFLD and the progression from simple steatosis to NASH [239]. The “first hit” 

is the accumulation of hepatic lipids, and the “second hit” promotes hepatocyte injury, inflammation 

and fibrosis. A number of factors, including proinflammatory cytokines, adipokines, mitochondrial 

dysfunction, oxidative stress and subsequent lipid peroxidation, initiate the second hit [239]. The 

classical “two-hit” hypothesis has now been modified by “multi-hit” hypothesis due to involvement of 

complex factors and interactions leading from lipid dysregulation, adipokine imbalance, adipose 

inflammation, oxidative stress, insulin resistance to NAFLD [240,241] (Figure 5). In the “multi-hit” 

hypothesis, imbalanced lipid metabolism and insulin resistance is considered as the “first hit”. 

Hyperinsulinemia, caused by insulin resistance, results in steatosis via increased de novo hepatic 

lipogenesis, decreased free fatty acid oxidation, decreased hepatic VLDL secretion and increased 

efflux of free fatty acids due to increased lipolysis from adipose tissue. After the development of 

steatosis, liver becomes more vulnerable to “multi-hit” including the gut-derived bacterial toxins, 
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adipokine/cytokine imbalance, mitochondrial dysfunction, oxidative damage, dysregulated hepatocyte 

apoptosis, release of pro-fibrogenic factors and pro-inflammatory mediators from impaired organelles 

and activation of hepatic stellate cell and Kupffer cell. Such multiple factors may collectively stimulate 

inflammation, apoptosis and fibrosis that ultimately leading to progressive liver disease. 

Figure 5. The Multi-hit hypothesis of NAFLD pathogenesis. The “first hit”, such as insulin 

resistance and lipid metabolism dysregulation, leads to the development of simple steatosis 

and renders hepatocytes susceptible to “multi-hit”, which include gut-derived bacterial 

toxins, adipocytokine imbalance, mitochondrial dysfunction, oxidative damage, 

dysregulated hepatocyte apoptosis, activation of pro-fibrogenic factors and pro-inflammatory 

mediators and hepatic stellate cell activation, ultimately leading to NASH and cirrhosis. 

The red arrows indicate up-regulation (when pointing upward) or down-regulation  

(when pointing downward) in response to insulin resistance. 

 

Excessive lipid accumulation in the liver generally occurs when the influx of lipids, via increased 

fatty acid import or de novo fatty acid synthesis, exceeds the ability of hepatic lipid clearance by fatty 

acid oxidation or triglyceride export [242,243]. Recent study has confirmed that increased de novo 

lipogenesis is a distinct characteristic of subjects with NAFLD [244]. As described in the preceding 

text, adipose tissue is suggested to be a source of free fatty acids and other factors entering the portal 

circulation [183,245]. Expanded adipose tissue promotes macrophage infiltration and secretion of 

many pro-inflammatory chemokines, cytokines and adipokines that are closely related to insulin 

resistance [5,6,40]. A failure to suppress lipolysis by insulin then results in increased release of free 

fatty acids from adipose tissue [246,247]. The increased lipolysis in adipose tissue, especially visceral 
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adipose tissue [13,180,248], increases free fatty acid influx directly into the liver by the portal  

vein [246]. The free fatty acids from enlarged adipose tissue are then taken up by the hepatocytes, 

which lead to reduced hepatic insulin clearance with a further increase in circulating insulin levels [53]. 

In the liver, free fatty acids promote increased glucose production and triglyceride synthesis and 

impair insulin suppression of hepatic glucose output [53]. In addition, free fatty acids are ligands of the 

membrane-bound TLR4 and can promote inflammation [24,28]. However, it is still unclear to what 

extent the portally drained adipose tissue influences hepatic steatosis. The contribution of visceral 

adipose tissue lipolysis to the delivery of hepatic free fatty acids has been shown to be only 5%–10% 

in normal-weight subjects and up to 25% in intra-abdominally obese subjects [245]; however, in the 

fasting state, hepatic fatty acids originate predominantly from circulating free fatty acids [249] and 

delivery of the portal free fatty acids to the liver is increased postprandially [250]. Nevertheless, 

increased free fatty acid influx is a key contributor to promoting accumulation of lipids in the liver, 

irrespective of the origin of the free fatty acids [247,251]. 

In the obese state, pro-inflammatory and anti-inflammatory factors secreted by inflamed adipose 

tissue are also associated with NAFLD [247]. Among them, adiponectin is suggested to protect the 

liver from steatosis and inflammation. In the liver, adiponectin increases the ability of insulin to 

suppress glucose production and glucose output [160]. Moreover, it inhibits hepatic lipogenesis by 

down-regulating the lipogenic transcription factor, SREBP1-c [252] and promotes glucose utilization 

and fatty-acid oxidation in the liver by activating AMPK [229]. These findings are supported by 

studies in which recombinant adiponectin given to obese mice not only ameliorated hepatomegaly, 

hepatic steatosis and inflammation but also normalized levels of alanine aminotransferase (ALT) [253] 

which is a sensitive indicator of liver injury and often used as a surrogate marker for NAFLD [254]. In 

addition to its metabolic effects, adiponectin has anti-inflammatory activities that might protect the 

progression of hepatic steatosis to fibrosis. In KK-Ay obese mice, adiponectin attenuated LPS-induced 

liver injury by decreasing TNF-α levels and activating peroxisome proliferator-activated receptor 

(PPAR)α in the liver [255]. Moreover, liver fibrosis induced by the administration of carbon 

tetrachloride was enhanced in adiponectin-deficient mice, whereas injection of adiponectin attenuated 

liver fibrosis in wild-type mice treated with carbon tetrachloride [256]. In accordance with animal 

studies, a number of clinical studies have suggested a protective role of adiponectin in NAFLD. 

Circulating adiponectin levels are lower in subjects with NAFLD than in healthy controls [257] and 

negatively correlated with liver function markers in healthy subjects [258]. Similarly, low adiponectin 

levels predict hepatic steatosis and increased liver injury enzyme levels in obese subjects [259]. In 

addition, expression of adiponectin and its receptor (AdipoR2) is significantly reduced in the liver of 

patients with NASH compared with those with simple steatosis [260]. Polymorphisms in the gene 

encoding AdipoR1 are also associated with hepatic steatosis in human [261]. 

Leptin is regarded as another key regulator of NAFLD. It directly stimulates AMPK which is 

involved in activation of lipid oxidation, such as β-oxidation and glycolysis, as well as inhibition of 

lipogenesis [262]. Expression of SREBP1-c is increased in the liver of leptin-unresponsive fa/fa Zucker 

diabetic fatty rats [263], and infusion of adenovirus-leptin not only decreases hepatic triglyceride 

synthesis but also increases β-oxidation through down-regulation of SREBP1-c and up-regulation of 

PPARα [264]. Moreover, a negative correlation between serum leptin levels and hepatic injury has 

been observed in humans [265]. Conversely, several clinical studies have reported that the 
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concentration of circulating leptin is positively correlated with high serum ALT or hepatic steatosis, 

independent of BMI and body fat mass [266,267]. Leptin also increases hepatic fibrosis, whereas a 

deficiency of leptin is related to the decreased hepatic injury in animal models [268].  

Leptin enhances the expression of pro-fibrogenic cytokine (transforming growth factor-β1) in  

Kupffer cells [269,270] and has a direct action on hepatic fibrogenesis by activating hepatic stellate 

cells and stimulating production of α-smooth muscle actin, collagen and tissue inhibitor of 

metalloproteinase 1 [267,269]. Leptin has been reported to be a potent hepatic stellate cell mitogen and 

inhibit hepatic stellate cell apoptosis, which promotes the pathogenesis of liver fibrosis [270]. 

In animal models, resistin also regulates glucose and lipid metabolism in the liver and acts as a 

mediator of hepatic insulin resistance. Circulating levels of resistin are increased in patients with 

NAFLD [271,272]. When NAFLD patients is divided according to liver histology (pure fatty liver vs. 

NASH), serum resistin levels are higher in patients with NASH than in those with pure fatty liver and 

positively correlated with the NASH score, an index that takes into account necrosis, inflammation, 

and fibrosis in liver biopsies and reflects the severity of the disease. However, the role of resistin in 

humans remains uncertain. In addition, TNF-α mediates not only the early stages of NAFLD but also 

the transition to more advanced stages of liver damage in animals and human, suggesting TNF-α has 

been proposed to play a key role in the development of NASH/NAFLD [273–275]. Moreover, IL-6 

and TNF-α increase expression of SOCS in the liver which is involved in increased hepatic SREBP-1c 

expression and insulin resistance [276]. Acylation-stimulating protein and angiotensinogen have also 

been observed in adipose tissue, and angiotensinogen levels are increased in obese subjects [277–279]. 

The levels of acylation-stimulating protein correlate with insulin resistance in NAFLD [277], and 

angiotensin II antagonists have been shown to improve liver function test results in patients with 

NAFLD and attenuated fibrosis in animal models [280]. 

8. Conclusions 

Obesity, especially visceral obesity, is associated with metabolic disturbances, such as insulin 

resistance, dyslipidemia and NAFLD. Enlarged adipose tissue results in the infiltration of macrophages 

and unbalance of pro-inflammatory and anti-inflammatory factors secreted by adipose tissue, which 

lead to the promotion of inflammation, impairment of insulin sensitivity and dysregulation of lipid 

metabolism. Excess free fatty acids also contribute to the initiation and progression of obesity-induced 

metabolic complications. The adipose tissue can affect many other tissues, including the liver,  

skeletal muscle and heart, via the production of free fatty acids and many pro-inflammatory and  

anti-inflammatory factors, and therefore has a critical role in the pathogenesis of insulin resistance, 

dyslipidemia and NAFLD. Although the cause-and-effect association has not been definitively 

established, available evidence have provided great insight into the critical role of adipose tissue in 

metabolic syndrome. Thus, further elucidation of the functions and mechanisms of adipose tissue-released 

bioactive substances will lead to a better understanding of the development of obesity-related 

metabolic syndrome, and it may provide novel therapeutic approaches to prevent or treat obesity and 

its metabolic complications. In addition, it will be also worthwhile to focus on how each adipokine 

signaling pathway integrates with multiple intracellular signaling cascades activated by other factors in 

the adipose tissue and other tissues. 
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