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Abstract: Glycosylation of glycoproteins is one of many molecular changes that 
accompany malignant transformation. Post-translational modifications of proteins are 
closely associated with the adhesion, invasion, and metastasis of tumor cells. CD147,  
a tumor-associated antigen that is highly expressed on the cell surface of various tumors,  
is a potential target for cancer diagnosis and therapy. A significant biochemical property of 
CD147 is its high level of glycosylation. Studies on the structure and function of CD147 
glycosylation provide valuable clues to the development of targeted therapies for cancer. 
Here, we review current understanding of the glycosylation characteristics of CD147  
and the glycosyltransferases involved in the biosynthesis of CD147 N-glycans. Finally,  
we discuss proteins regulating CD147 glycosylation and the biological functions of  
CD147 glycosylation. 
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1. Introduction 

CD147, a type-I transmembrane glycoprotein of the immunoglobulin superfamily (IgSF), was 
originally purified from the plasma membrane of the human LX-1 lung carcinoma cell line in 1982 [1]. 
It is found expressed in various cells, including platelets, fibroblasts, T-lymphocytes, and, especially, 
in tumor cells [2–4]. It has many designations across species including human extracellular matrix 
metalloproteinase inducer (EMMPRIN) [5], hBasigin [6], M6 [7] and HAb18G [8]; rat OX-47 [9] and 
CE9 [10]; mouse gp42 [11] and basigin-1 [12]; and chicken HT7 [13], neurothelin [14], and 5A11 [15]. 
Numerous studies have documented the significance of CD147 in various physiological processes, 
such as spermatogenesis and fertilization, neural network, and retinal development [12,16–18], and in 
the progression of several diseases including atherosclerosis, rheumatoid arthritis, and infections by 
malaria parasites and virus [19–22]. The best characterized function of CD147 is its role in tumor 
metastasis, angiogenesis, and chemoresistance [23–25]. As an adhesion molecule, CD147 mediates 
molecular events by interacting with a wide range of tumor and inflammation-associated molecules 
including integrins [24], monocarboxylate transporters (MCTs) [25], cyclophilins [26], caveolin-1 [18], 
and E-selectin [27].  

Alteration in glycans of glycoproteins and glycolipids is a significant characteristic of tumor 
malignant transformation, and is closely associated with the adhesion, invasion and metastasis of 
tumor cells [28]. CD147 is post-translationally modified through N-glycosylation. Investigations into 
CD147 glycosylation have clarified its role in numerous physiological and pathological events. This review 
focuses on recent progress on the structural and biological characteristics of CD147 glycosylation  
and recapitulates glycosyltransferases involved in the biosynthesis of CD147 asparagine-linked 
oligosaccharides (N-glycans) to seek future therapeutic strategies for CD147-associated diseases. 

2. Structure of CD147 

CD147 consists of a 21 amino acid (aa) signal peptide, a 185 aa extracellular domain (ECD), a 24 aa 
transmembrane domain, and a 39 aa cytoplasmic domain [5]. Four cysteines (41, 87, 126, and 185) 
located in the extracellular region form two typical IgSF domains [6], which share deep homology to 
the IgVκ domain and the β-chain of MHCII antigens [29]. The N-terminal domain is responsible for 
counter receptor activity and protein oligomerization [30,31]. The C-terminal domain is responsible  
for association with caveolin-1 [32], integrins (α3β1 and α6β1) [24,33], and annexin II [34]. The 
transmembrane domain possesses a series of conserved hydrophobic amino acids except a rarely 
occurring charged glutamic acid (218) in transmembrane proteins [5]. The transmembrane domain 
exhibits affinity toward other proteins, such as cyp60 [35], CD43 [36], and syndecan [37], thus, 
eliminating the high-energy charge. Moreover, it possesses a typical leucine zipper motif containing 
three leucines (206, 213 and 220) and a phenylalanine (227) appearing at every seventh residue, which 
facilitates membrane-protein associations and diverse cellular signal pathways [9,13]. The highly 
conserved intracellular domain of CD147 plays a pivotal role in association with MCTs (MCT1, 
MCT3 and MCT4) [38], although it has not been well explored.  

Alternative splicing and alternative promoters result in four isoforms of CD147. Among them, 
basigin-1 is a retina specific CD147 containing an additional unglycosylated domain [39,40]; basigin-3 
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or basigin-4, less expressed in normal and tumor human tissues, contains a single extracellular domain 
(IgI), and basigin-3 serves as an endogenous inhibitor of basigin-2 via hetero-oligomerization. Both 
basigin-3 and basigin-4 have HG (highly glycosylated) and LG (lowly glycosylated) forms as observed 
in basigin-2 [41]. However, the knowledge of glycosylation of the above-mentioned scarce isoforms  
is limited. Given that the ubiquitously expressed basigin-2 mediating matrix metalloproteinases 
(MMPs) production is profoundly explored, we will concentrate on the glycosylation of basigin-2 in 
the following discussion.  

The crystal structure of the ECD of CD147 (Figure 1) was revealed by X-ray analysis [42]. CD147 
crystallizes in space group with four monomers in the asymmetric unit. Each monomer consists of a 
typical N-terminal IgC2 set immunoglobulin domain 1 (22–101) and a typical C-terminal IgI set 
immunoglobulin domain 2 (107–205), which are connected by a 5 aa flexible linker responsible for 
diverse inter-domain angles within the four monomers. This unique C2-I domain arrangement 
distinguishes CD147 from all other IgSF proteins with known structures. With edge-by-edge packing 
and association of β-sheets, monomer interaction leads to two types of dimerization: C2–C2 
dimerization (BC, AC and DD' dimers) symbolizing a trans-cellular homophilic interaction between 
two CD147 molecules on neighboring cell membranes and C2-I dimerization (AD dimer) representing 
a heterophilic interaction between CD147 and other IgSF proteins. These dimers further adhere to each 
other by sharing some conserved β-strands at either edge of the β-barrels [42]. A further structure 
analysis of domain 1 illustrated that it formed a dimer through the exchange of its β-strand (strand G) [43]. 
Oligomerization contributes to CD147’s functions, including counter-receptor binding, association 
with other proteins, and MMPs induction [44,45]. 

Figure 1. Molecular model of the extracellular region of CD147 and its three glycosylation 
sites. The N-terminal domain is a typical C2 set immunoglobulin domain consisting of a  
β-barrel formed by the sheets EBA and GFCC' and a conserved disulfide bond between 
strands B and F. The C-terminal domain is a typical I set immunoglobulin domain formed 
by the β-sheets DEBA and A'GFCC' and a disulfide bond between Cys126 and Cys185 
connecting strands B and F together. One N-linked glycosylation site, Asn44, lies at the 
end of strand B, i.e., the outermost position of the EBA sheet. The other two sites, Asn152 
and Asn186, locate at the middle of C'D loop and strand F, respectively, with their lateral 
chains protruding oppositely from A'GFCC' and DEBA sheets [42]. The figure is generated 
using the GlyProt software program [46,47] and we select oligomannoses on behalf of the 
potential diverse glycan structures to create the 3D protein structure of CD147. 
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3. The Glycosylation Characteristic of CD147 

The overwhelming majority of studies showed that CD147 is a N-linked glycosylated protein except 
one study by Fadool et al., which demonstrated that chicken 5A11/HT7 antigen of neural retina and 
epithelial tissues contains both N-linked and O-linked oligosaccharides [13]. Members of CD147 
family, EMMPRIN, basigin, 5A11/HT7 for instance, from different species, tissues or cells appear as 
diverse glycosylated forms, with large variation in molecular weight [32,48–50]. In this review we 
focus on the N-glycosylation of CD147. The unglycosylated CD147 has a molecular weight of 27 kDa, 
whereas the glycosylated form has a molecular weight between 43 and 66 kDa [7,15,48–50]. Treatment 
with different endoglycosidases indicates that N-glycans contribute to almost half the size of the 
mature molecule [7,51]. 

Combining with site-specific mutagenesis study, the sequence alignment demonstrated that there 
were three conserved Asn glycosylation sites across species in the ECD of CD147 [5,32,42]. Mutation 
of three N-glycosylation sites (N44Q, N152Q, and N186Q) caused an approximately equal decrease  
in the molecular weight of HG-CD147 and LG-CD147, suggesting that they make comparable 
contributions to CD147 glycosylation [32]. The study unraveling the crystal structure of CD147 
provided the proof of the spatial position of three glycosylation sites: Asn44 at the end of strand B, 
Asn152 and Asn186 at the middle of C'D loop and strand F (Figure 1), respectively [42]. 

3.1. HG-CD147 and LG-CD147 

A distinct feature of CD147 from various cells and tissues is that based on the degree of 
glycosylation, two bands were shown on the result of Western blotting, suggesting that CD147 exists 
in two forms: HG-CD147 (~40–60 kDa) and LG-CD147 (core-glycosylated CD147, ~32 kDa).  
HG-CD147 contains complex-type carbohydrate that is sensitive to Peptide N Glycosidase F (PNGase F), 
whereas LG-CD147 contains high-mannose carbohydrate that is sensitive to Endoglycosidase H  
(endo H) [32]. In terms of the general process of protein glycosylation [52] and the characteristic of 
CD147 glycosylation [32,53], we may conclude that nascent peptide of CD147 receives preliminary 
glycosylation in the ER (Figure 2), forming an immature high mannose form (LG-CD147), and in  
the Golgi complex CD147 is further modified to form more complicated branching carbohydrate 
chains and specific terminal structures by a series of glycosyltransferases. Subsequently, the fully 
glycosylated mature CD147 (HG-CD147) is translocated to plasma membrane. In this context,  
LG-CD147 is the precursor of HG-CD147 in the ER, which requires an additional modification in the 
Golgi prior to express on the cell surface [32]. Different cell types have different HG/LG ratio and it is 
reported that both HG-CD147 and LG-CD147 could be detected on the plasma membrane [32],  
but there are also studies revealing that only fully glycosylated CD147 could be found on plasma 
membrane in hepatoma tumor cells [53] and COS-7 cells [30]. As a transmembrane protein, HG-CD147 
on the plasma membrane is considered to be the biological functional form. Comparatively, whether 
LG-CD147 stably existing within the hepatoma tumor cells participates in other cellular physiological 
functions remains to be further investigated.  
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Figure 2. Intracellular biosynthesis and trafficking of glycosylated CD147. Immature  
high-mannose form of CD147 is modified in the ER, during which 1 glycans on the 
Asn152 are essential for quality control. Misfolded proteins without Asn152 glycosylation 
are degraded through ERAD pathway [53]; 2 A part of LG-CD147 then enter the Golgi while 
3 the majority of newly produced LG-CD147 are degraded by the proteasome via the  
OS-9/SEL1L/Hrd1 pathway [54]. In the Golgi complex, LG-CD147 is further modified by 
many glycosyltransferases including GnT-III, GnT-IV, GnT-V and FuT-8 to form more 
complicated branching carbohydrate chains [53,55]. Subsequently, terminal modifications 
such as sialic acids are added to CD147 [56]; 4 Caveolin-1 binds to LG-CD147 in the 
Golgi, inhibits its maturation and escorts it into the cell membrane. LG-CD147 on the 
membrane fails to self-associate and induce MMPs [32]. However, it is also reported that 
caveolin-1 facilitates CD147 maturation [57]; 5 Then, HG-CD147 translocates to plasma 
membrane during which cyp60 in the Golgi is one of chaperones facilitating the 
translocation of CD147 [35]. Mature CD147 on the cell membrane form oligomers and a 
small fraction of transmembrane CD147 are shed and released into the extracellular matrix 
to act on neighbouring cells. Both forms of mature CD147 are capable of inducing MMPs; 
6 MCT is one of ancillary proteins that accompany CD147 during its maturation in the ER 
and they form CD147-MCT complex on the membrane bearing the double roles of MMPs 
induction and lactic acid exportion [58,59]. 
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3.2. The Structure of the Oligosaccharides of CD147  

CD147 is a transmembrane glycoprotein expressed on various tumor cells. Disclosing the structure 
of the oligosaccharides of CD147 from tumor tissues will provide valuable clues for the development 
of novel therapeutic modalities against tumor. However, due to the difficulties in purifying enough 
native transmembrane proteins from tumor tissues, determining the N-glycan profiles of CD147 by 
mass spectrometry analysis is a challenge. In a recent study, native CD147 was purified from lung 
carcinoma tissue specimen from a patient by immunoaffinity chromatography using mAbHAb18, and 
the structures of N-glycans of CD147 have been characterized by means of Nanospray Ionization-Linear 
Ion Trap (NSI-MS) [53]. The results showed that purified CD147 exhibited both high-mannose type 
and bi-antennary complex-type oligosaccharides, which was in accordance with the glycosidases 
treatment results of Yu et al. [51]. Moreover, the presence of β1,6-branched oligosaccharides on CD147 
was confirmed by lectin blotting carried out with Phaseolus vulgaris Leukoagglutinin (L-PHA) [32,53]. 
Fan et al. found that Phaseolus vulgaris Erythroagglutinin (E-PHA) also bound to CD147 
immunoprecipitated from mouse hepatocarcinoma cells, indicative of bisecting structures in N-glycans 
of CD147 [55]. In addition, these glycans can be fucosylated and sialylated. It is noteworthy that native 
CD147 from human lung cancer tissue contained a high percentage of core fucosylated structures 
(28.8%) [53]. Miyauchi et al. discovered that Lotus tetragonolobus agglutinin (LTA) bound to CD147 
from embryonal carcinoma cells and Kato et al. found that CD147 served as a ligand for  
E-selectin which recognizes sialylated glycans, such as Lewis X (sLex), both implying the sialyl Lewis 
X structure, namely, Galβ1, 4Fucα1,3GlcNAc, in N-glycans of CD147 [27,29]. In addition, a further 
study by Yang et al., who identified sialoglycoproteins in the cell surface of prostate cancer cell ML-2 
by mass spectrometry analysis, also revealed that CD147 was one of the metastasis-related sialylated 
proteins [56]. Thus far, the existence of β1,2-branching structures in CD147 glycosylation has not been 
reported. In-depth mass spectrometry analysis, such as to characterize glycans on all the three  
N-glycosylation sites on CD147 and to disclose the differences of N-glycosylation between the CD147 
from normal tissues versus tumor tissues will improve our understanding of the biological role of 
aberrant N-glycans on CD147 during cancer progression. 

4. Glycosyltransferases Involved in the Modulation of CD147 N-Glycans  

Branched N-glycans are biosynthesized by glycosyltransferases, such as GnTs  
(N-acetylglucosaminyltransferases), Futs (fucosyltransferases), GalTs (galactosyltransferases) and STs 
(sialytransferases) in the ER and the Golgi apparatus. Based on the N-glycan profiles of CD147 
described above, many glycosyltransferases have been considered to play important roles in the 
biological functions of CD147 (Figure 3). 

The absence or redundancy of glycosyltransferases may produce abnormal carbohydrate chains. 
The modulation of the N-glycans of cancer-associated proteins by these enzymes alters cell behaviors, 
such as cell signaling and cell adhesion, which are implicated in tumor invasion and metastasis [60].  
In terms of CD147’s functions during tumor progression, the colorectal carcinoma progression is 
owing to the up-regulation of CD147 without the alteration of its glycosylation [61]; however, in  
other conditions, researchers observed the anomalous glycosylation or the combination of the two 
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changes [57,62–64]. Considering this, both the quantity and the quality of CD147 should be taken into 
consideration, and the aberrant glycosylation of CD147 by corresponding enzymes may deserve more 
attention during tumor metastasis.  

Figure 3. Potential glycan structures of CD147 and corresponding enzymes. In the  
medial-Golgi compartment, GnT-IV catalyzes β1-4 branch on complex N-Glycan 
structures, while GnT-III and GnT-V catalyze the formation of bisecting structure and β1-6 
branch, respectively. The core fucose structure is catalyzed by FUT8. Then CD147 enters 
the trans-Golgi apparatus and receives sialic acid modification by sialyl transferase [53,55,56]. 

 

4.1. GnTs 

As key glycosyltransferases regulating the formation of periphery multi-antennary structures, 
members of GnT family facilitate the formation of the N-linked oligosaccharides from the high 
mannose type to the complex type through the hybrids type by adding N-acetylglucosamine (GlcNAc) 
antennaes in the medial-Golgi apparatus [65]. The roles of GnT-III, GnT-IV, and GnT-V in CD147 
glycosylation will be discussed in the following part, but it has not been reported yet whether GnT-I 
and GnT-II both catalyzing β1,2GlcNAc branch formation, GnT-VI catalyzing β1,4GlcNAc branch 
formation, and GnT-IX catalyzing β1,6GlcNAc branch formation [52] participate in CD147 glycosylation.  

GnT-V, located in the medial/trans Golgi, catalyzes the formation of β1,6GlcNAc branch on  
the trimannosyl terminus of N-glycans, the product of which can be further extended with  
poly-N-acetylgalactosamine (GalNAc) chains and then terminally modified with sialylated structures [66]. 
Overexpression of GnT-V in tumor cells leads to aberrant β1,6-branching, which contributes to tumor 
progression [67]. To be specific, increased β1,6-branching of N-linked glycans is highly associated 
with various biological functions of some molecules, thereby affecting cancer metastasis. E-cadherin, 
integrins, matriptase and TIMP-1 (tissue inhibitor of matrixmetalloproteinase-1) are representative 
molecules glycosylated by GnT-V [68–71]. In a recent study, it was evidenced that GnT-V is crucial 
for the function of CD147 in SMMC-7721 cells. Functional studies in GnT-V over-expressing cells 
showed a significant increasing in MMP-2 activity. Moreover, the results also indicated that CD147 is 
a target protein of GnT-V through which GnT-V promotes tumor metastasis [53].  

GnT-III catalyzes the addition of bisecting GlcNAc structures to N-glycans via β1,4-linkage, the 
product of which suppresses the action of GnT-V, thus preventing the metastatic capability [72].  
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A previous study suggested the existence of bisecting structures in N-glycans of CD147 in mouse 
hepatoma cells, indicating that GnT-III may be involved in the glycosylation of CD147 [55], so its role 
in the biological functions of the protein merits further exploration. 

GnT-IV transfers the β1,4GlcNAc branch on the core structure of N-glycans, the product of which 
is a substrate for GnT-III and GnT-V [73,74]. Both hepatoma and choriocarcinoma tissue represented 
an up-regulated GnT-IV activity, and human chorionic gonadotropin (hCG) from choriocarcinoma 
exhibited aberrant β1,4GlcNAc branch, suggestive of the role of GnT-IV during tumorigenesis [75–77]. 
Fan et al. found that up-regulated expression of GnT-IVa (an isoenzyme of GnT-IV) in Hepa1-6 cells 
increased the antennary branches and reduced bisecting branches of the N-glycans of many proteins, 
thus enhancing tumor migration. Overexpression of GnT-IVa also increased the HG/LG ratio of CD147 
and changed the antennary oligosaccharide structures on CD147 in mouse hepatoma cell lines, suggesting 
that CD147 may be a target protein through which GnT-IVa modulates tumor metastasis [55]. 

4.2. FUT8 

Core fucosylation (α1,6-fucosylation) is catalyzed by fucosyltransferase 8 (FUT8) which  
adds a fucose residue to the reducing terminal GlcNAc of the core structure on N-glycans via α-1,6 
linkage. Core fucosylated proteins play an essential role in tumorigenesis, tumor invasion and 
angiogenesis [78,79]. The α1,6-fucosylation is essential for integrin α3β1 and E-cadherin mediated cell 
migration and enhances epidermal growth factor receptor (EGFR) mediated cell invasion by promoting 
its dimerization and phosphorylation [80–82]. The aberrant α1,6-fucosylation of molecules, such as 
CK8, annexin I, and annexin II, is involved in the metastasis of hepatocellular carcinoma [83]. The 
results from NSI-MS analysis of the N-glycans of CD147 revealed a high percentage of core fucose 
structure in human non-small cell lung cancer (NSCLC) tissue [53], suggesting a plausible role of 
fucosylated CD147 in tumor invasion, which could be a potential indicator for the prognosis  
of NSCLC. 

4.3. Sialyltransferase 

Sialic acid is a kind of acidic monosaccharide typically found at the terminus of N-glycans, 
catalyzed by sialyltransferase in the trans-Golgi apparatus. Sialyltransferase catalyzes structures of 
numerous antigens, such as Tn (sTn), polysialic acid (PSA), and sLex, which have been adopted as an 
effective indicator in the clinical diagnosis of tumor [84–86]. As the ligand of selectin, sialyl acid 
modified antigens mediated the adhesion between tumor cell and other cell types, such as platelet, 
leukocyte, and vascular endothelial cell [87]. As mentioned above, N-glycans of CD147 contain sialyl 
Lewis X structure [27,29,56]. Functional importance of CD147 sialylation and fucosylation in cancer 
progression should be further explored.  

5. Proteins Regulating the Glycosylation of CD147 

The unique structure characteristic of CD147 facilitates its interactions with various proteins  
such as cyclophilins, MCTs, presenilins, and caveolin-1. Some proteins have been well accepted as 
regulators in the process of CD147 maturation and translocation to cell surface (Figure 2). 
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As a scaffolding protein, caveolin containing cholesterol and glycosphingolipid components within 
the plasma membranes mediates processes such as caveolae biogenesis, transmembrane transport, 
signal transduction, and tumorgenesis [88]. Intriguingly, its role in regulating the conversion of  
LG-CD147 to HG-CD147 is inconsistent. By binding to the IgI domain of CD147, caveolin-1 
associates with LG-CD147 during glycosylation process in the Golgi apparatus and escorts it to the 
plasma membrane, thus inhibiting the conversion of LG-CD147 to HG-CD147 and CD147 
oligomerization at the cell membrane [32,89]. Furthermore, caveolin-1 associates with GnT-III and 
regulates its localization within the Golgi complex, which enhances GnT-III’s activity and, hence, 
prevents the action of GnT-V [90]. However, there is no direct evidence indicative of functional 
interaction between caveolin-1 and CD147 in normal and bleomycin-induced rat fibrotic alveolar  
cells [91]. In addition, Jia et al. has demonstrated that caveolin-1 enhances the HG/LG ratio  
and invasive ability of mouse hepatoma cells [57], suggesting the dual character of caveolin-1 in  
tumor migration. Apart from enhancing β1,6-branching in complex and hybrid N-glycans [57], 
caveolin-1 also up-regulates α-2,6-sialyltransferase I (ST6Gal-I) expression and then promotes the  
α2,6-sialylation of integrin, thus increasing tumor cell adhesion to extracellular matrix (ECM) [88,92]. 

Apart from caveolin-1, MCTs are also regarded as regulators of the glycosylation and trafficking  
of CD147. Tumor cells exhibit a high rate of glycolysis under both oxygen deficit and enriched 
circumstances to guarantee continuous energy supply and immoderate tumor growth, respectively. The 
metabolic byproducts of glycolysis, for example, lactic acid, accumulate in the cytoplasm and trigger 
apoptosis. MCTs mediate proton-coupled transportation of monocarboxylic acids and glycolytic 
byproducts out of the cells. The secreted lactates contribute to an acid microenvironment, which 
promotes invasion, metastasis and drug resistance of tumor cells [93]. As a chaperone, CD147 tightly 
binds to MCTs (MCT1, MCT3, and MCT4) in the ER during their trafficking to the cell surface, and 
forms a functional complex with them on the membrane by which MCTs mediate the transportation of 
monocarboxylic acids [58,94–96]. On the other hand, CD147 maturation is also dependent on its 
association with MCTs. Knocking down MCT4 in breast cancer cells and MCT1 in intestinal epithelial 
cells both led to the reduction in the expression of fully glycosylated CD147 and the accumulation of 
core-glycosylated CD147 in the ER, implicating that MCTs (MCT1, MCT4) regulate the maturation 
and trafficking of CD147 [58,59]. Above all, MCTs and CD147 cooperate with each other to enhance 
tumor progression through creating acid microenvironment and the degradation of ECM.  

In addition, it is reported that cyp60, a member of the cyclophilin family serving as receptors for the 
immunosuppressive drug cyclosporin A (CsA) and regulating protein trafficking [26], is a chaperone 
during the transportation of CD147 from the lumen of Golgi to the plasma membrane by binding to the 
Pro211 at the interface between the transmembrane and extracellular domains of CD147 [35,97].  

Amyloid β-peptide (Aβ) sedimentation is significantly implicated in the progression of Alzheimer’s 
disease (AD). It is produced from amyloid precursor protein (APP) after sequential proteolytic 
processes by β- and γ-secretase. γ-Secretase is a multimeric aspartyl protease consisting of at least four 
subunits, among which presenilin-1 or -2 (PS1 or PS2) provides the catalytic aspartyl residue [98]. 
Recent studies showed that as a γ-secretase associated protein, CD147 was up-regulated in several 
brain tissues of AD patients. Moreover, intracellular trafficking of CD147 was affected by  
PS2 [99,100]. The results of immunofluorescence staining suggested that in PS2-deficient cells, 
CD147 located around the nucleus instead of expressing on the cell surface, which was involved in the 
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mechanisms of AD [100]. On one hand, the inhibition of CD147 maturation may reduce the production 
of MMPs and subsequent clearance of Aβ by proteolysis; on the other hand, since CD147 is a 
regulating subunit of γ-secretase, immature CD147 may attenuate γ-secretase activity and lead to Aβ 
sedimentation [99,100]. Detailed mechanisms underlying CD147’s association with γ-secretase in AD 
remain to be investigated.  

6. Biological Role of CD147 Glycosylation  

6.1. The Implication of HG/LG Ratio in Physiological and Pathological Processes  

As an inducer of MMPs, CD147 participates in numerous physiological processes, and the 
glycosylation level of CD147 is regulated by the rhythm of hormones secretion. The HG/LG ratio 
significantly increases in chorio-decidua and amnion during term labor compared with nonlabor stage, 
with the total amount of CD147 remaining unchanged. CD147 together with subsequent MMPs 
production facilitates the placenta and fetal membranes to separate from the maternal uterus [101]. 
During the menstrual cycle, the expression and the glycosylation of CD147 in human endometrium 
exhibit a cyclical fluctuation and are enhanced by progesterone to degrade endometrial ECM in the 
secretion phase, which is an essential mechanism of menstrual endometrium remodeling [102].  

Researchers have been concerned about its role in non-tumor diseases. The glycosylation of CD147 
mediates IL-13 induced MMPs expression in epithelial airway cells through interaction with caveolin-1, 
triggering the development of asthma [103]. Different glycosylated forms of CD147 produce different 
types of MMPs, thus, determining the stability degree of atherosclerotic plaque, and HG-CD147 is 
associated with unstable plaque phenotype [104]. HG-CD147, together with MMP-1 expression, is 
also up-regulated in chronic periodontitis tissue [105]. 

Apart from non-tumor diseases, the HG/LG ratio also carries significant implications in neoplastic 
disease. Jia et al. found hepatoma carcinoma cell lines with higher lymphatic metastasis ability 
exhibited a higher HG/LG ratio than those with low or no lymphatic metastasis ability [106]. 
Moreover, Beesley and co-authors also found that HG-CD147 was closely related to acute 
lymphoblastic leukaemia and its relapse [62]. Aberrant glycosylation of CD147 is also involved in the 
multidrug resistance in human leukemia [107]. 

6.2. CD147 Glycosylation and MMPs Induction Activity 

The role of N-glycosylation in CD147-dependent MMP production is controversial. Both purified 
glycosylated recombinant CD147 from CHO cells and purified native CD147 from tumor cells directly 
promoted MMPs production [31,108]. In addition, Sun et al. found that purified deglycosylated 
CD147 by tunicamycin treatment from HT1080 cells failed to produce MMP-1 and MMP-2 [31]. 
However, in contrast to Sun’s result, the unglycosylated recombinant CD147 obtained by Belton could 
bind to the CD147 on the surface of uterine fibroblasts, and then induce MMPs expression. This  
homo-interaction of CD147 was not dependent upon the glycosylation of CD147 ligand [109]. In a 
recent study, we compared the efficacy of glycosylated and unglycosylated CD147, and found that 
both produced MMPs, but eukaryotic native CD147 stimulated MMPs production more efficiently than 
prokaryotic recombinant CD147, convincing that carbohydrates do contribute to CD147’s activity [53].  
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The synthesis technique of peptide thioester carrying N-linked core pentasaccharide by Toole BP 
and co-authors provided an effective way to elucidate the role of CD147 glycosylation [110,111] and 
they demonstrated that IgC2 synthesized by the thioester method substituted with a chitobiose unit, 
IgC2-(GlcNAc)2, instead of IgC2 alone or the chitobiose unit alone, mimicked CD147’s MMP-2 
induction capability in human fibroblast cells, with the underlying assumption that the hydrogen bonds 
between amino acids and the chitobiose unit may help preserve an active molecular conformation [112]. 
Toole also suggested another possible mechanism through which the glycosylation of CD147 engaged 
in MMPs production, that is, carbohydrate lateral chains of CD147 may be involved in its binding to 
the fibroblast receptor and subsequent signal transmission into the cell [113]. A recent study performed 
by Papadimitropoulou et al. comparing the MMP-2 induction ability of ECD, domain 1 and domain 2 
of CD147 in both glycosylated and unglycosylated forms demonstrated that only glycosylated forms 
were able to stimulate MMP-2 production, further verifying N-glycosylation is a prerequisite for the 
activity of CD147 [114].  

CD147, like other Ig-containing molecules, interacts homotypically. The role of glycosylation  
in the oligomerization of CD147 remains unsettled. Previous studies indicated that HG-CD147  
instead of LG-CD147 became self-associated, which was demonstrated by anti-CD147 mAb 
immunoprecipitation, caveolin-1 treatment and covalent cross-linking agent treatment [32,89]. 
However, Yoshida et al. believed that N-glycosylation was not involved in homophilic  
cis-interaction of CD147 [30]. The crystal structure resolved by our lab revealed that the recombinant 
CD147 in crystal formed oligomers and the three glycosylation sites were distant from the dimer 
interface [42], suggesting a rare possibility that glycosylation participates in the oligomerization 
process. We further proved that Lys63 and Ser193 instead of the glycosylation sites were essential to 
CD147 dimerization [45]. Furthermore, the recombinant prokaryotic CD147 in solution were also 
oligomers [109]. However, Schlegel et al. demonstrated that extracellular domains of CD147 were 
monomeric in solution [115]. The results in our previous study proved that although prokaryotic 
CD147 could form oligomers in a glycan-independent manner at a low level, glycosylation could 
enhance the oligomerization of eukaryotic CD147 and all the native eukaryotic CD147 in solution 
formed oligomers [53]. The mechanism how glycosylation enhances the oligomerization of CD147 is 
unknown, and we reason that glycans stabilize the advanced protein conformation of CD147, which is 
an active state to induce MMPs production. 

6.3. Role of N-Glycosylation in CD147 Maturation  

N-linked glycosylation plays important roles in many aspects of intracellular protein biosynthesis, 
such as protein folding, quality control, oligomerization and transport. However, the molecular 
mechanisms remain unclear. Exploring the role of the conserved glycosylation sites leads to a better 
understanding of the underlying mechanisms. Importance of certain N-glycosylation sites in protein 
maturation and activity was found in Tyrosinase related protein (TRP) family and α5 subunit of 
integrin [69,116]. 

As a transmembrane protein, both CD147 on plasma membrane and a small fraction of extracellular 
secreted CD147 are capable of inducing MMPs. Current studies suggest two possible mechanisms 
through which CD147 are secreted from cell surface: vesicle shedding and proteolytic cleavage, which 
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produce full-length soluble CD147 and CD147 lacking transmembrane or cytoplasmic domain, 
respectively [117–120]. As mentioned above, CD147 on the plasma membrane and in cell conditioned 
medium are fully glycosylated mature form [30,53], implying that the glycosylation of CD147 may be 
essential for its translocation to the cell surface. Site-specific mutagenesis experiment verifies that only 
initial N-glycans on Asn152 play a vital role in the quality control of CD147 in the ER and determine 
its cell surface expression and activity. We reason that N-glycans on Asn152 may directly participate 
in the protein folding or is significant for the interaction between CD147 and partner proteins in 
protein folding, such as calnexin, calreticulin, and BiP [53]. Considering the high conservative 
property of the three sites across species, we believe that all the glycosylated sites may be vital for 
CD147. The functional diversities of each site remain to be clarified in the future.  

Aberrant glycosylated CD147 by mutating the glycosylated site Asn152 retained in the ER are 
degraded through ER associated protein degradation (ERAD) pathway [53]. However, under normal 
circumstances, LG-CD147 is also superabundant owing to its continuous transcription [121]. This 
noticeable overproduction of CD147 ensures the interaction of CD147 and other proteins and the 
exertion of protein functions. For example, the association between CD147 and MCTs facilitates 
MCTs assembly and trafficking to the cell surface, which are only up-regulated during cell adaptation 
to glycolysis [58,94,121]. Tyler et al. further elaborated the ERAD pathway of the excessive  
LG-CD147. By mass spectrometry analysis they identified endogenous LG-CD147 in the ER as a 
substrate of proteasome, which was degraded via OS-9/SEL1L/Hrd1 pathway, a possible fundamental 
degradation manner of CD147 [54].  

6.4. Role of N-Glycosylation in the Interaction of CD147 and Other Proteins  

Glycosylation is involved in protein interaction. For example, the N-glycosylation of CD44 is 
crucial for its binding to E-selectin, and the O-glycosylation of P-selectin glycoprotein ligand-1 
(PSGL-1) enhances the binding of PSGL-1 to E-selectin and P-selectin [122,123]. It has been 
discussed previously that many molecules regulate the maturation of CD147. On the other hand, 
CD147 glycosylation also regulates its association with its partner molecules. Kato and co-authors 
reported that CD147 on the cell surface of neutrophils bound to E-selectin during leukocyte infiltration 
in the renal inflammation, and CD147 glycosylation is essential for the interaction since tunicamycin 
treatment to inhibit the N-glycans of CD147 from HL-60 cells reduced this interaction [27]. However, 
Tang’s study demonstrated that deglycosylation of CD147 resulted in increased interaction  
between CD147 and caveolin-1, suggesting that CD147 glycosylation interferes its interaction with 
caveolin-1 [32]. The possible role of the N-glycosylation of CD147 in its interaction with other 
proteins, such as integrins, MCTs, and cyclophilins, remains to be investigated. 

As shown in the crystal structure of CD147 [42], the unique domain arrangement, which is 
responsible for the flexibility to interact with different ligands and diverse dimerization manners, is 
one structure basis for its multifunction character. At present, we conclude that another contributing 
factor is the distinct glycosylation feature of the molecule. Post-translational modification of CD147 
modulates its biological functions in many aspects, including affecting protein maturation and 
translocation to the cell membrane, facilitating oligomerization and, hence, promoting MMPs 
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production and tumor metastasis. In addition, N-glycans of CD147 also participate in the interaction 
with other proteins and exert corresponding biological effects. 

7. Conclusions  

As a highly glycosylated transmembrane adhesion molecule, CD147 plays a comprehensive role in 
many physiological and pathological processes. The applications of NMR, X-ray diffraction and 
structure-function studies by site-directed mutagenesis have illustrated the structure of CD147 and the 
mechanisms of the interaction of CD147 and other molecules, as well as CD147 itself, which underlies 
its various functions. Meanwhile, in this post-genomic era the studies on the characteristics of CD147 
N-glycosylation highlight its importance. Given that the structure of the oligosaccharides and their 
functions have only been partly unveiled, further studies are required to elucidate molecular 
mechanisms underlying the effects of N-glycans on the functions of CD147 in cancer biology, to 
disclose the distinct oligosaccharides structures on its three glycosylation sites and their respective 
functions and to confirm whether aberrant glycans on CD147 could be used as a marker to predict 
clinical prognosis of cancer or drug resistant response of cancer therapy. We envision that this 
knowledge will provide direct and convincing evidence for the development of novel therapeutic 
perspectives, such as antibody drugs and small molecule antagonists targeting aberrant N-glycan 
structures in the treatment of CD147-associated diseases. It is noteworthy that Licartin, the 131  
I-labeled CD147 mAb developed in our laboratory, has been applied safely and effectively in the 
treatment of patients with hepatocellular carcinoma [124,125]. It is reported that 41% of antibodies to a 
cancer cell recognized carbohydrate epitopes [126], thus, whether the sialyl Lewis structures and other 
carbohydrate components of CD147 glycosylation are involved in the interaction between Licartin and 
CD147 awaits investigation. More innovative drugs specifically targeting CD147 with higher efficacy 
will be discovered in the future. 
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