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Abstract: This paper describes methodology for direct and indirect detections of a  

specific oligonucleotide for Epstein-Barr virus (EBV) using electrochemical techniques.  

The sequence of oligonucleotide probe (EBV1) revealed a high sequence identity (100%) 

with the EBV genome. For the development of the genosensor, EBV1 was grafted to the 

platform sensitized with poly(4-aminothiophenol). After that, the hybridization reaction 

was carried out with the complementary target (EBV2) on the modified electrode surface 

using ethidium bromide as DNA intercalator. The oxidation peak currents of ethidium 

bromide increased linearly with the values of the concentration of the complementary 

sequences in the range from 3.78 to 756 µmol·L−1. In nonstringent experimental 

conditions, this genosensor can detect 17.32 nmol·L−1 (three independent experiments) of 

oligonucleotide target, discriminating between complementary and non-complementary 

oligonucleotides, as well as differentiating one-base mismatch, as required for detection of 

genetic diseases caused by point mutations. The biosensor also displayed high specificity 

to the EBV target with elimination of interference from mix (alanine, glucose, uric acid, 

ascorbic acid, bovine serum albumin (BSA), glutamate and glycine) and good stability 

(120 days). In addition, it was possible to observe differences between hybridized and  

non-hybridized surfaces through atomic force microscopy. 
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1. Introduction 

Epstein-Barr virus (EBV) is a DNA virus of the γ-herpes subfamily. It infects around 90% of the 

world’s population and may be asymptomatic during the life of the host. Its latent state could be 

regarded as the causative agent of infectious mononucleosis and has been associated with several 

malignancies including Burkitt’s lymphoma, oral and gastric carcinomas (particularly nasopharyngeal 

carcinoma), Hodgkin’s disease, lymphoproliferative disorders in immunodeficient individuals, such as 

post-transplant lymphoproliferative diseases and a subset of T and NK cell lymphomas [1–5]. 

EBV was discovered 40 years ago from examining electron micrographs of cells cultured from 

Burkitt’s lymphoma that indicated a viral etiology and became the first of an unexpectedly wide range 

of associations discovered between this virus and tumors [6]. It is currently being correlated to 

autoimmune diseases such as multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis 

and primary Sjögren’s syndrome; these are complex disorders with a genetic background and the 

involvement of environmental factors, including viruses [7,8]. 

Currently, the detection of the virus can be made by means of several techniques, such as PCR 

(polymerase chain reaction), in situ hybridization, immunohistochemistry and electron microscopic 

immunocytochemistry. These techniques have a high cost, demanding skilled labor and time-consuming 

analysis [9–12]. Other recent technologies, such as the development of biosensors, are emerging and 

may revolutionize the disease diagnosis [13]. Generally, electrochemical biosensors have high sensitivity 

and low-cost, having superior properties when compared to alternative analytical techniques [14–16]. 

Electrochemical DNA sensing is a promising technique of nucleic acid analysis because of its fast 

response time, high sensitivity and low cost. This technique employs immobilized DNA sequences on 

the sensor surface as recognition element and sequence-specific hybridization can be monitored and 

analyzed [17,18]. The signal of the hybridization can be detected directly, produced by nucleotide 

oxidation of the DNA probe (label-free detection) [19,20] or indirectly, using an indicator of the 

hybridization process [21,22]. 

The use of conducting polymeric films can improve the interaction of the electrode with the 

biomolecular probe by modification of electrode surfaces, in addition to protecting the electrode 

against adsorption of nonspecific analytes [23–27]. 

Our research group has reported modifications of electrode surfaces with functionalized polymers, 

derived from aminophenols [28–31], tyramine [32], hydroxybenzoic acid [33], hidroxyphenylacetic 

acid [34] and methoxyphenethylamine [27], as well as application of the modified electrodes in the 

immobilization and detection of biomolecules [35–37]. 

The success of biomolecules immobilization onto these polymeric matrices is due to the presence of 

functional groups (amino, hydroxyl and/or carboxylic acid), facilitating electropolymerization and 

increasing the retention of biomolecules [31]. 

This work describes a genosensor based on a platform sensitized with poly(4-aminothiophenol)/ 

specific single-strand DNA for EBV. The linear response range, sensitivity, selectivity, repeatability and 

stability were investigated. 
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2. Results and Discussion 

2.1. Electrochemical Behavior of 4-Aminothiophenol (4-ATP) 

The 4-aminotiophenol (4-ATP) electropolymerization was carried out through potential scanning 

(Figure 1A). The electrochemical characterization was carried out in H2SO4 solution (Figure 1B). 

Figure 1. (A) Cyclic voltammogram in 4-aminotiophenol (4-ATP) solution (15 mmol·L−1) 

onto graphite electrode. Supporting electrolyte: H2SO4 0.5 mol·L−1; Scan rate 50 mV·s−1; 

100 scans. The arrows indicate the influence of the current response with the increasing  

of the number of scans; and (B) Cyclic voltammograms of bare graphite electrode (a)  

and graphite electrode functionalized with poly(4-ATP) (b). Supporting electrolyte:  

H2SO4 0.5 mol·L−1; Scan rate: 50 mV·s−1. 

  

Figure 1A shows a gradual increase in current response between 0.0 and +0.7 V, where the two 

peaks of oxidation and reduction are observed, indicating the formation of electroactive material. 

A decrease in the oxidation peak from +0.7 to +1.0 V is attributed to oxidation of the monomer 

(Figure 1A). The modification of the graphite electrode surface was confirmed in aqueous H2SO4  

0.5 mol·L−1 (Figure 1B). 

2.2. Electrochemical Characterization of the Modified Electrodes 

The modified graphite electrodes were studied in aqueous solution containing [Fe(CN)6]
4−/[Fe(CN)6]

3− 

or Ru(NH3)6
2+ (Figure 2). 

In aqueous solution containing [Fe(CN)6]
4−/[Fe(CN)6]

3−, the current of the modified electrode 

decreases, as well as a larger separation of the peak potentials is observed, denoting difficulty and, 

eventually, hindrance of the electron transfer to the [Fe(CN)6]
4−/[Fe(CN)6]

3− system. Such behavior is also 

seen in other polymer layers [38,39]. The current response of the electrode modified with poly(4-ATP) is 

higher in presence of Ru(NH3)6
2+, when compared with bare graphite electrode. 

This model of electrostatic interaction promotes the transport of the ruthenium complex to the 

electrode surface, resulting in the increase of the peak current. This may be emphasized when the 

behavior of poly(4-ATP) towards the redox couple potassium ferrocyanide/potassium ferricyanide  
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is evaluated, being obtained opposite results. These results indicate that the polymer has an  

anionic nature. 

Figure 2. Cyclic voltammograms of bare graphite and graphite electrode modified with 

poly(4-ATP): (A) in aqueous solution containing K4Fe(CN)6/K3Fe(CN)6 (5.00 mmol·L−1) 

and KCl (0.10 mol·L−1); (B) in aqueous solution containing Ru(NH3)6Cl2 (5.00 mmol·L−1) 

and KCl (0.10 mol·L−1). Bare graphite electrode (a) and modified graphite electrode with 

4-ATP (b) Scan rate: 50 mV·s−1. 

Sonmez et al. [40] described similar studies using hexaammineruthenium (III) chloride  

and sulfonated polyelectrolyte as dopant. Cation exchange properties were observed with 

hexaammineruthenium (III) chloride as an active electrolyte. An increase in the amplitude of the current 

signal was observed when compared to non-modified electrodes. 

2.3. Immobilization and Hybridization 

The electrochemical oxidation of natural and synthetic nucleic acids has also been widely studied on 

pyrolytic graphite electrodes, spectroscopic graphite impregnated with paraffin and glassy carbon [41]. 

Figure 3 shows the response of the immobilization of the EBV1 probe and the hybridization by 

direct detection with the complementary target EBV1:EBV2 onto modified graphite electrode.  

The anchor of the DNA onto the surface of the modified electrode is not well known but, in agreement 

with literature [42], the presence of amine groups favors the formation of covalent binding with 

oligonucleotides by linkages carboxamide or phosphoramidate. 

The potential peaks at +0.95 and +1.22 V are attributed to guanosine and adenosine, respectively. 

These peaks decreased after 20 min at 57 °C, in agreement with Oliveira-Brett et al. [43], who reported 

that hydrogen bonds are formed between complementary sequences during the hybridization of 

oligonucleotides, leading to a duplex, inside of which it is more difficult to oxidize the bases, 

decreasing the peak current of the guanosine and adenosine, after the hybridization. 

Another reason for the higher current values obtained for single-stranded DNA is that the latter 

presents higher proximity and a higher degree of adsorption onto the electrode surface, due to its 

higher conformational flexibility, facilitating the charge transfer between the nitrogenous bases and the 

electrode [42–44]. 
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Figure 3. Differential pulse voltammograms of graphite electrode modified with poly(4-ATP) 

prepared in pH 0.5 (baseline-corrected), 100 scans, containing [EBV1, (oligonucleotide probe) 

126 µmol·L−1]: before hybridization (a) and after 20 min of incubation with complementary 

target (EBV2, 378 µmol·L−1) (b). Electrolyte: phosphate buffer (0.10 mol·L−1), pH 7.4. 

Modulation amplitude: 0.05 mV. Pulse interval: 0.2 s. Scan rate 5 mV·s−1. 

 

Ethidium bromide [(3,8-diamino-5-ethyl-6-phenyl phenatridinium bromide)] is one of the best 

known intercalating agents, first synthesized in 1952 by Watkins and Woolfe [45]. This intercalator is 

largely used to visualize the nucleic acids through agarose gel electrophoresis, due to formation of a 

fluorescent complex. Ethidium bromide does not require changes on the DNA structure, it is a cheap 

product, the system can be easily constructed and the intercalation is immediate [46]. 

Planar aromatic organic compounds, which also include ethidium bromide, are redox-active 

markers used in DNA hybridization biosensors [47]. Ethidium bromide is electroactive and its 

electrochemical behavior was studied in several electrodes (glassy carbon [48], graphite [49],  

boron-doped diamond [50] and carbon nanotube [51]). Differential pulse voltammetry studies of 

ethidium bromide on graphite electrode modified with poly(4-aminotiophenol) were carried out by our 

group; this intercalator was observed to be electroactive in this modified electrode, presenting a 

oxidation peak in +0.75 V vs. Ag/AgCl. 

Figure 4 shows differential pulse voltammograms of indirect detection of target for EBV1, using 

ethidium bromide as electroactive indicator, in presence of complementary and non-complementary 

targets, as well as oligonucleotide containing one-base mismatch. 

The results showed an increase in the current signal amplitude, in presence of complementary 

target, indicating the accumulation of ethidium bromide on the surface of the modified electrode 

containing duplex (Figure 4d). This accumulation indicates occurrence of hybridization process  

that causes intercalation of the mediator in the double-strand DNA, where a hydrophobic aromatic 

molecule is attracted to hydrophobic environment of nitrogenous base pairs of DNA from the 

hydrophilic aqueous environment [52]. 

Figure 4 also showed that the amplitude of the peak oxidation current for ethidium bromide is  

about four times higher for the complementary target, compared to the non-complementary target  

(see voltammograms b and d, as well as bar chart in Figure 4), indicating that the genosensor  

poly(4-ATP)/EBV1 discriminates complementary target from non-complementary target. 
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Figure 4. Differential pulse voltammograms of ethidium bromide (1 × 10−6 mol·L−1) onto 

graphite electrode modified with poly(4-ATP) prepared in pH 0.5 (baseline-corrected),  

100 scans, containing EBV1/probe (126 µmol·L−1) before hybridization (a) and after 

hybridization with: non-complementary target (189 µmol·L−1) (b); oligonucleotide 

containing one-base mismatch EBV2Mis1 (378 µmol·L−1) (c); and complementary target 

(EBV2, 378 µmol·L−1) (d). Electrolyte: phosphate buffer (0.10 mol·L−1), pH 7.4. Modulation 

amplitude: 25 mV. Pulse interval: 0.2 s; Scan rate 20 mV·s−1. Inset: Bar chart of differential 

pulse voltammograms responses using the oxidation signal from ethidium bromide. 

 

In addition, the current peak for the complementary oligonucleotide (EBV2, Figure 4d) is about 

35% higher (see bar chart, inset Figure 4), when compared to oligonucleotide containing one-base 

mismatch (EBV2Mis1, Figure 4c), indicating that the device has potential to differentiate mismatches, 

as required for detection of diseases caused by point mutations. The higher potential values observed 

after hybridization with the complementary target are due to the higher charge transfer resistance 

caused by formation of the duplex. 

2.4. Interference Studies 

Blood is a complex biological fluid formed by substances such as ascorbic acid, uric acid, urea, 

albumin and others that can affect the response of the biosensor [52]. In the literature, it is reported that 

interferences can influence the accuracy of biosensors [53–55]. 

The substances studied as potentially interfering with the electrochemical biosensor were: alanine, 

glucose, uric acid, ascorbic acid, BSA, glutamate, glycine and a mixture of these compounds (Figure 5). 

With exception of the uric acid and alanine, the results indicate that the response of the biosensor is 

not significantly affected in the presence of interfering compounds, since the mixture containing all 

compounds studied also retained the selectivity for the detection of EBV1 (Figure 5) confirmed by 

mean selectivity coefficient (SC), calculated using the equation SC = Ic+i/Ic, where Ic+i and Ic are the 

bioelectrode response for the EBV2 target, in the presence and absence of each compound [53]. 
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Figure 5. Selectivity coefficient for graphite electrode/poly(4-ATP)/EBV1 in the detection 

of complementary target in absence or presence of the interfering compounds: uric acid 

(UA) 1 mg·dL−1; ascorbic acid (AA) 3.6 mg·dL−1; glycine (Gly) 1 mmol·L−1; alanine (Ala) 

1 mmol·L−1; glucose (Glu) 1 mmol·L−1; bovine serum albumin (BSA) 5 g·dL−1; glutamate 

(Glut) 1 mmol·L−1 and mixture. Electrolyte: phosphate buffer (0.10 mol·L−1), pH 7.4. 

Modulation amplitude: 25 mV. Pulse interval: 0.2 s; Scan rate 20 mV·s−1. Ethidium 

bromide (1 × 10−6 mol·L−1) was used as indicator of the hybridization. 

 

The selectivity studies were carried out in deionized water (pH 7). Based on the fact that the 

phosphate groups of the oligonucleotides are not protonated in this medium, as well as based on the 

pKa of the compounds studied, (alanine: 2.34 and 9.69; uric acid: 5.40 and 10.3; glycine: 2.34 and 

9.60; glutamic acid: 2.16, 4.32 and 9.67; ascorbic acid: 4.17 and 11.57) [56] it is possible suggest that 

uric acid (positively charged) interacts with the phosphate groups, interfering with the formation of the 

duplex, while glutamic acid (dianion in pH 7), ascorbic acid (anion in pH 7) and BSA (isoeletric point: 

4.85, negatively charged at pH 7) suffer repulsion of the phosphate and do not interfere. 

The amino acids alanine and glycine show opposite behavior, although they have similar pKa and 

isoelectric points. The causes for this fact are not very clear, but a plausible hypothesis is that the 

slightly higher organic chain of alanine favors the interaction with the nitrogenous bases of the 

oligonucleotides, by van der Waals’ interaction, hindering the formation of the double strand. Another 

factor is the lower solubility of alanine in water (167.2 g·L−1 at 25 °C), when compared with glycine 

(249.9 g·L−1 at 25 °C), which is derived from a greater carbon chain, favoring its interaction with the 

nonpolar part of the oligonucleotides and competing with the formation of double-strand. The high 

water solubility of glucose (909 g·L−1, 25 °C) also suggests that the solubility is an important factor for 

a low interference in the formation of the duplex. 

2.5. Calibration Curve 

Figure 6 shows the calibration curves generated using the EBV-genosensor system. The current is 

proportional to concentrations of EBV2 in the range from 3.78 to 756 µmol·L−1, with correlation 

coefficient of 0.998, and detection limit of 17.32 nmol·L−1 (three independent experiments). 
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Figure 6. Electrochemical response for the oxidation signal of ethidium bromide  

(1 × 10−6 mol·L−1) obtained after the hybridization of modified electrode containing the 

probe EBV1 (126 µmol·L−1) with different concentrations of EBV2 (0, 0.0010, 0.010, 0.10, 

1.89, 3.78, 37.8, 378 and 756 µmol·L−1). Inset shows linear range of current peak vs. 

concentration of EBV2. 

 

2.6. Genosensor Stability 

In order for commercialization of a biosensor to be feasible, it should have good selectivity and 

stability during storage to assure reproducibility of measurements. Long-term lifetime is not only 

beneficial to biosensor transport and storage, but it also helps decrease per measurement costs,  

of critical importance in pharmaceutical and industrial applications [57]. 

The stability study of the biological sensor poly(4-ATP):EBV1 is shown in Figure 7. For this 

analysis, the electrodes were at a temperature of 8 °C for 120 days. During this time, assays using 

ethidium bromide were performed. 

Figure 7. Storage stability profile of genosensor at 8 °C. The biosensors were stored in 

refrigerators when not in use. 
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Figure 7 shows that the sensor response remains stable, without loss in biological activity during 

120 days, indicating that the electrode modified with poly(4-aminothiophenol) contributed to this 

stability. Infrared spectroscopy studies of poly(4-aminothiophenol), conduced by our group, indicate 

that the electropolymerization occurs by formation of a ring-NH-ring bond, with the aromatic thiol 

being preserved in the polymer. The chemisorption of aromatic thiols at the carbon surface is known in 

the literature [58], and the presence of amine groups favors the formation of covalent binding with 

oligonucleotides, indicating that a modification of the electrode surface with poly(4-aminothiophenol) 

favors the stability and maintenance of biological activity of the device. 

2.7. Morphological Characterization of the Genosensor Using Atomic Force Microscopy 

Analyses of the surface for bare graphite electrode and graphite modified with poly(4-ATP) in 

absence or presence of the complementary target, are shown in Figure 8. 

Figure 8. Atomic force microscopy (AFM) images of (A) graphite; (B) graphite/poly 

(4-ATP); (C) graphite/poly(4-ATP)/EBV1; and (D) graphite/poly(4-ATP)/EBV1:EBV2. 

 

Roughness values obtained by AFM were: 102.3 ± 4.5 nm (bare graphite electrode), 69.7 ± 6.2 nm 

[modified electrode with poly(4-ATP)], 13.2 ± 3.5 nm [modified electrode with poly(4-ATP)/EBV1] and 

31.8 ± 5.2 nm [modified electrode with poly(4-ATP)/EBV1:EBV2]. 

As shown in Figures 8B,C, the immobilization of EBV1 produces a decrease in the height and  

size of the clusters when compared to modified electrode with poly(4-ATP) without biomolecules  
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(Figure 8A), indicating that the oligonucleotide was successfully incorporated on the electrode surface. 

Both modified electrodes containing poly(4-ATP)/EBV1 (Figure 8C) and poly(4-ATP)/EBV1:EBV2 

(Figure 8D) showed topographies with globular aspect, but the latter is less homogenous, presenting 

larger clusters. These modifications in the electrode surface can be justified based on the fact that 

double strand DNA molecules are more elongated and inflexible than single strand DNA, and can form 

larger structures, suggesting the occurrence of the hybridization event, in agreement with the results 

obtained in the electrochemical studies. It was demonstrated in the literature that DNA can penetrate 

conducting films of polypyrrole [59]. 

3. Experimental Section 

3.1. Reagents 

All reagents used were of analytical grade and used without further purification. Ultra-high  

purity water (Master System, Gehaka, Brazil) was used for the preparation of aqueous solutions.  

4-Aminothiophenol (Acros Organics, Geel, Belgium) (15 mmol·L−1) was prepared in ethyl alcohol 

(PA) and H2SO4 solution (0.5 mol·L−1) immediately before use. Phosphate buffer solution 0.1 mol·L−1  

was prepared at pH 7.4. All experiments were conducted at room temperature (25 ± 1 °C).  

The oligonucleotides were synthesized by Invitrogen Life Technologies (São Paulo, Brazil) with the 

following sequences: probe: (EBV1): 5'-AGGGATGCCTGGACACAAGA-3', complementary target 

(EBV2): 5'-TCTTGTGTCCAGGCATCCCT-3', non-complementary target: 5'-ACAACCCGTTGG 

ACTAAC-3' and (EBV2Mis1): TCTTGTCTCCAGGCATCCCT-3'. Stock solutions of the  

3.15 × 10−4 mmol·L−1 probe and 9.45 × 10−4 mmol·L−1 target oligonucleotides were prepared in SSC 

6× buffer (0.9 mol·L−1 NaCl, 90 mmol·L−1 sodium citrate, pH 7.0) and stored in a freezer until use. 

Buffer components (CH3COOH and CH3COONa or Na2HPO4 and NaH2PO4) were purchased from  

Sigma-Aldrich Chemical (St. Louis, MO, USA) (ACS purity) and prepared at pH 4.5 or 7.45, 

respectively. All reagents were used as received. The experiments were conducted at room temperature 

(25 ± 1 °C). 

Analysis of the nucleotide sequence (Table 1) was performed using the Blast program (Basic Local 

Alignment Search Tool, obtained in http://www.ncbi.nlm.nih.gov/blast). 

Table 1. The sequence of EBV1 has identity with Epstein-Barr virus. 

Organism 
BLASTn 

Query cover E value Max ident Access number 

Epstein-Barr virus (EBV) genome, strain B95-8 100% 0.079 100% V01555.2 

Epstein-Barr virus (B95-8 isolate) 100% 0.079 100% K03333.1 

Epstein-Barr virus (AG876 isolate) 100% 0.079 100% K03332.1 

Epstein-Barr virus, artifactual joining of B95-8 100% 0.079 100% M80517.1 

E value (Expectation value): number of different alignments with scores equivalent to or better than the score 

that is expected to occur in a database search by chance. The lower the E value, the more significant is  

the score. 
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3.2. Apparatus 

Electrochemical polymerization and voltammetric measurements were performed using a potentiostat 

(CH Instruments, model 460C, Austin, TX, USA), with a graphite disk (6 mm diameter) cut from a 

graphite rod (99.9995%, Alfa Aesar) as working electrode. Platinum was used as counter electrode.  

All potentials are referred to the silver-silver chloride reference electrode (Ag/AgCl). The graphite 

surface, prior to electropolymerization, was mechanically polished with alumina slurry (0.3 µm diameter), 

ultrasonicated, washed with distilled water and dried in the air. All solutions were degassed by 

nitrogen bubbling. Film morphology in absence or presence of biomolecules was assessed through 

atomic force microscopy (AFM) (Park System, model XE-70, Suwon, Korea). 

3.3. Electrochemical Polymerization 

The monomer solutions were degassed with N2 prior to electropolymerization. Poly(4-aminothiophenol) 

films were electrodeposited onto the graphite electrodes from a solution containing 4-aminothiophenol 

(15 mmol·L−1). The electrochemical experiments were conducted at room temperature (25 ± 1 °C),  

50 mV·s−1, −0.4 and +1.0 V, 100 scans in three-compartment cell. 

3.4. Electrochemical Characterization 

The evaluation of ion transport was carried out in K4Fe(CN)6/K3Fe(CN)6 solution (5.0 mmol·L−1) 

containing KCl 0.10 mol·L−1 (negative probe) or Ru(NH3)6Cl2 solution (5.0 mmol·L−1) containing KCl 

0.10 mol·L−1 (positive probe). 

3.5. Oligonucleotide Immobilization onto Graphite Electrode/Poly(4-ATP) 

The immobilization of oligonucleotide was carried out by applying two consecutive layers of 13 μL 

of 3.15 × 10−4 mmol·L−1 of the probe (EBV1) on the modified electrode surface and dried at the 

temperature of 37 ± 1 °C. Then the electrode was immersed in 10 mL phosphate buffer with agitation 

(0.1 mol·L−1, pH 7.4) and dried in N2. The blocking of the binding of non-specific biomolecules on 

electrode surface was done with BSA 0.5% (w/v) for 3 h, then the electrode was immersed in 10 mL 

phosphate buffer with agitation (0.1 mol·L−1, pH 7.4) and dried in N2. After that, differential pulse 

voltammetry (DPV) measurements in one-compartment electrochemical cell connected to a potentiostat 

were obtained by using 1 mL phosphate buffer (0.1 mol·L−1, pH 7.4) as electrolyte to evaluate the 

electrochemical sign of modified electrode with the probe. 

3.6. Investigation on the Hybridization of Oligonucleotide Immobilized onto Poly(4-Atp) Using 

Guanine and Adenine Monitoring or Ethidium Bromide as Redox Indicator 

For the direct detection, 26 μL of target (EBV2, 378 µmol·L−1) were applied to the modified 

electrode with EBV1, 126 µmol·L−1. The hybridization was carried out at 57 °C for 20 min. Then the 

electrode was immersed in phosphate buffer (0.1 mol·L−1, pH 7.4) and dried in N2. The annealing 

temperature of the oligonucleotide (EBV1) was obtained by gene runner software (version 3.01, 

obtained in http://www.softpedia.com/get/Science-CAD/Gene-Runner.shtml). 
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For the indirect detection, after the immobilization of the oligonucleotide probe (EBV1), 26 μL of 

target (EBV2, 378 µmol·L−1) were applied on modified electrode. Hybridization was carried out at  

57 °C for 20 min. Then the electrode was immersed in phosphate buffer (0.1 mol·L−1, pH 7.4) and 

dried in N2. In sequence, 18 μL of 1 µmol·L−1 ethidium bromide solution (3,8-diamino-5-ethyl-6-

phenylphenatridinium bromide) from Merck Millipore (Darmstadt, Germany) in ultra-high purity water 

were applied on the electrode surface during 5 min. Ethidium bromide binds nucleic acids via 

intercalative mode and causes major changes to DNA. To evaluate electrochemical sign of ethidium 

bromide, differential pulse voltammetry measurements were conducted using phosphate buffer  

(0.1 mol·L−1, pH 7.4) as electrolyte for the evaluation of electrochemical sign of electrode modified 

containing EBV1:EBV2. 

3.7. Specificity of the Biosensor 

DNA hybridization is based on the ability of the probe to recognize its corresponding 

complementary target. To verify the specificity of the probe, 26 μL of the non-complementary target  

(5'-ACAACCCGTTGGACTAAC-3', 378 µmol·L−1) or one-base mismatch (EBV2Mis1: TCTTGT 

CTCCAGGCATCCCT-3', 189 µmol·L−1) were added on surface of the sensor subjected to the same 

process of the complementary target. The hybridization was carried out at 57 °C for 20 min. Detection 

of complementary target was done indirectly through the use of a mediator. 

3.8. Analysis of Interfering Compounds 

For this study, we added the complementary target concentration normally found in the blood to  

the solution of the interfering compounds (3.6 mg·dL−1 ascorbic acid, 1 mg·dL−1 uric acid, 1 mmol·L−1 

alanine, 1 mmol·L−1 glutamate, 1 mmol·L−1 glucose, 1 mmol·L−1 glycine, 5.0 g·dL−1 albumine and 

mixture of these compounds). All experiments were conducted at room temperature (25 ± 1 °C). 

3.9. Stability Studies 

To evaluate the biosensor stability, the modified electrodes containing DNA probe (EBV1) were 

stored at 4 °C, protected from light and oxygen during 120 days. 

3.10. Calibration Curve 

To evaluate the sensitivity of genosensor, 26 µL of different concentrations of complementary 

target (EBV2), 0, 3.78, 37.8, 378 and 756 µmol·L−1 were added to the genosensor. Hybridization was 

carried out at 57 °C, for 20 min. For the detection, ethidium bromide (1 µmol·L−1, 18 µL) was added to 

the electrode surface, for 5 min. 

4. Conclusions 

The results showed that functionalized surfaces with poly(4-ATP) are interesting platforms for the 

development of a genosensor. The produced genosensor shows interesting properties, such as good 

stability, selectivity and sensibility. This is a promising technique of molecular analysis of a specific 
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biomarker for Epstein-Barr virus. Further studies will extend the system to determination of EBV in 

serum, plasma, and saliva samples. 
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