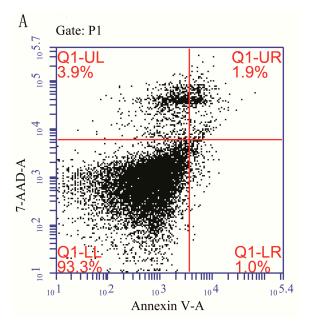
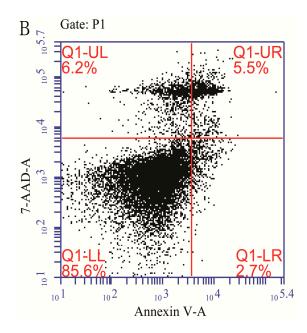
Supplementary Information

Table S1. The viability (RLU \times 10³) of BMMNCs 18 h after exposure to radiation.

XBJ (μL/mL)	0 Gy	1 Gy	4 Gy
0	77 ± 4	57 ± 1	41 ± 1
1	89 ± 5 **	$61 \pm 1 **,#$	$47 \pm 3 * ^{,\#}$
5	88 ± 2 *	57 ± 2 ##	42 ± 2 ##
10	79 ± 2	50 ± 3 ##	38 ± 2 ##
25	64 ± 2 *	$40 \pm 2 **,#$	$33 \pm 1 **, ##$
50	37 ± 2 **	26 ± 1 ##	$23 \pm 1 **, ##$
100	15 ± 1 **	$14 \pm 0 **,#$	$12 \pm 0 **, ##$
200	4 ± 0 **	$3 \pm 0 **, ##$	$3 \pm 0 **, ##$


Bone marrow mononucleated cells were exposed to 0, 1 and 4 Gy of radiation after treatment with XBJ for 0.5 h. The viability of the cells was determined at 6 h after radiation exposure. The data are expressed as the means \pm SEM (n = 4 for each group). *p < 0.05, **p < 0.01 vs. control group; *p < 0.05, **p < 0.01 vs. the IR alone group.


Table S2. The ROS levels of BMMNCs 6 h after exposure to radiation.

XBJ (μL/mL)	0 Gy	1 Gy	4 Gy
0	3429 ± 44	3494 ± 104	3564 ± 56
1	3584 ± 75	3488 ± 116	3249 ± 111 *
5	3232 ± 41 *	$3842 \pm 157 * ^{,\#}$	$4291 \pm 135 **, ##$
10	3142 ± 83 *	3330 ± 129	3518 ± 12 [#]
25	2711 ± 24 **	$2927 \pm 51 **, ***$	$3346 \pm 79 * ^{,\#}$

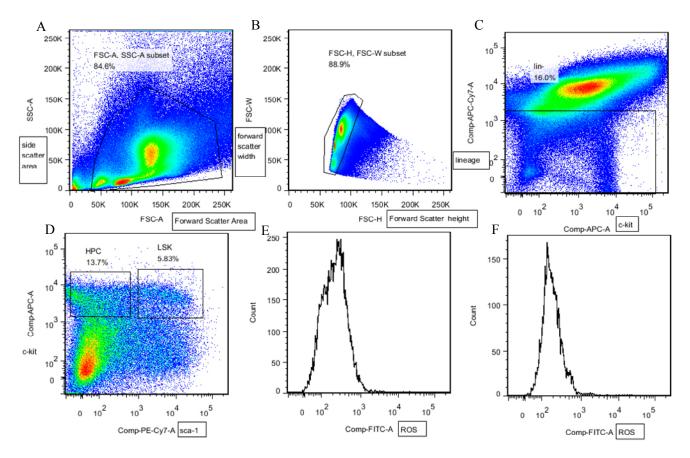

Bone marrow mononucleated cells were exposed to 0, 1 and 4 Gy irradiation after treated with XBJ for 0.5 h. Then, the ROS levels of cells were detected by flowcytometry at 6 h after irradiation exposure. The data were expressed as mean \pm SEM (n = 3 for each group). *p < 0.05, **p < 0.01 vs. the control group; *p < 0.05, **p < 0.01 vs. the IR alone group.

Figure S1. Representative graph for apoptosis analysis. Mice were treated with i.p. injection of the vehicle or XBJ after exposure to 2 Gy TBI, as described in the Experimental Section. BMMNCs were collected from the mice after euthanization nine days after 2 Gy TBI and incubated with FITC-Annexin V and 7-AAD, as per the manufactures instructions. Then, the BMMNCs were detected by flowcytometry and analyzed by the requisite software. **(A)** Apoptosis of control cells; **(B)** apoptosis of |IR cells.

Figure S2. Representative ROS measurement. Mice were treated with i.p. injection of the vehicle or XBJ after exposure to 2 Gy TBI, as described in the Experimental Section. BMMNCs were collected from the mice after euthanization nine days after 2 Gy TBI and incubated antibodies, such as biotin-lineage (CD5, B220, Ter-119, CD11b, Gr-1), APC-c-kit, PE-cy7-Sca-1 and streptavidin-APC-cy7, as per the manufactures' instructions. Then, the cells were detected by flowcytometry and analyzed by the requisite software. (A) Bone marrow mononucelated cells (gated); (B) adhesion cells removement; (C) lineage negative cells gated; (D) HSC and HPC gated; (E) representative HSC ROS detection; (F) representative HPC ROS detection.

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).