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Abstract: In chronic liver disease leading to fibrosis, hepatic stellate cells (HSC) differentiate 

into myofibroblasts. Myofibroblastic HSC have taken center stage during liver fibrogenesis, 

due to their remarkable synthesis of extracellular matrix proteins, their secretion of 

profibrogenic mediators and their contribution to hypertension, due to elevated contractility. 

MicroRNAs (miRNAs) are small, noncoding RNA molecules of 19–24 nucleotides in 

length. By either RNA interference or inhibition of translational initiation and elongation, 

each miRNA is able to inhibit the gene expression of a wide panel of targeted transcripts. 

Recently, it was shown that altered miRNA patterns after chronic liver disease highly affect 

the progression of fibrosis by their potential to target the expression of extracellular matrix 

proteins and the synthesis of mediators of profibrogenic pathways. Here, we underline the 

role of miRNAs in the interplay of the profibrogenic cell communication pathways upon 

myofibroblastic differentiation of hepatic stellate cells in the chronically injured liver.  
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1. Introduction 

MicroRNAs are small, 19–24 nucleotides-long, non-coding RNA molecules. They are transcribed by 

RNA polymerase II as primary transcripts (pri-miRNA). Pri-miRNAs are subsequently processed by  

the RNase III enzyme, Drosha, forming stem-loop structured miRNA precursors (pre-miRNAs) of  

about 80 nucleotides. After the export of pre-miRNAs into the cytoplasm, the highly conserved RNase 

III enzyme, Dicer, releases the pre-miRNAs to form the mature miRNAs, which then are incorporated 

into the RNA-induced silencing complex (RISC). The interaction of the miRNA/RISC complex by 

complementary annealing of the mostly seven nucleotide-long, so-called miRNA seed sequence with the 

untranslated region (UTR) of mRNA, leads to the inhibition of translation [1–3]. In total, more than 

2500 human miRNAs have been discovered [4]. Since one miRNA might target hundreds of different 

mRNA transcripts [2], it is suggested that miRNAs regulate more than one third of the human  

genes [5,6].  

Due to their high impact on gene regulation, miRNAs are involved in most cellular alteration 

processes, such as cell proliferation, migration and differentiation. Thus, many previous reports 

recognized miRNAs as central players in the oncogene and tumor suppressor networks, contributing to 

the initiation and progression of many human malignancies [7,8]. Furthermore, miRNA-mediated gene 

regulation is also an important feature in acute and chronic inflammatory diseases [9–12]. Recent studies 

on chronic liver diseases of different etiologies revealed a prominent dysregulation of many miRNAs, 

leading to an altered gene expression profile and progression of liver fibrosis, previously summarized by 

references [13–18]). In the present short review, we summarize recent findings on the role of miRNAs in 

the pathophysiology of fibrosis after chronic liver injury.  

2. Altered miRNA Expression upon Liver Fibrosis 

Liver fibrosis has become one of the most serious problems for human health, which can lead to 

hepatocellular carcinoma. It is characterized by the hepatic accumulation of biomatrix as a 

pathophysiological response to chronic liver injuries independently of the causative noxa [19–21]. In 

addition to viral infections, such as chronic hepatitis B (HBV) and C (HCV) infections or excessive 

alcohol abuse, in the recent past, fatty liver disease leading to steatohepatitis is also a frequent agent of 

chronic liver injury and fibrosis, primarily due to altered food habits in Western countries [22]. 

Extracellular matrix (ECM) accumulation during liver fibrogenesis is mainly distinguished by a 

dramatically enhanced deposition of collagen I and collagen III. Especially TGF-β triggers the 

interstitial ECM accumulation by an induced synthesis, but also by a decreased ECM turn-over after 

repression of matrix-metalloproteinases [19–21]. In addition, the function of TGF-β as a central 

mediator of fibrosis is strongly manifested by its evoked stimulation of profibrogenic growth factor 

profiles, including TGF-β itself, the platelet-derived growth factors (PDGF), connective tissue growth 

factor (CTGF), endothelin (ET) and many others [23]. 

During liver fibrogenesis caused by different etiologies, an altered miRNA expression was  

observed [24–27]. miR-122 is the most abundant miRNA in normal liver, highly enriched in the liver 

parenchyma, accounting for more than 70% of the total miRNA population in hepatocytes [28,29]. 

However, the progression of fibrosis after chronic liver disease, such as chronic HCV infection or 
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non-alcoholic liver disease, is accompanied by a predominant decrease of miR-122 [24,26,30]. These 

reduced miR-122 levels after fibrosis are suggested to be based on hepatocyte injury followed by 

miR-122 release into the blood stream, on one hand, and by transcriptional repression, due to the  

loss of liver-specific transcription factors, such as HNF1a and HNF4a, controlling miR-122 gene  

expression [31], on the other. Of special interest is the downregulation of miR-122 after chronic HCV 

infection, because miR-122 was shown to be involved in HCV replication. miR-122 triggers HCV 

replication by interaction with the 5´UTR of HCV RNA genome, resulting in the high stability of the 

HCV RNA [29,32,33]. These data impose miR-122 as a first target of a novel therapeutic strategy to 

treat chronic HCV infection [34]. Indeed, a recent clinical trial has demonstrated the successful 

application of miR-122 antagonists for HCV repression [35]. 

Furthermore, many other miRNAs are downregulated after liver fibrosis. Hence, a predominant 

repression of the miR-29 family members, miR-29a and miR-29b, was found in experimental fibrosis 

after liver intoxication or cholestasis [27]. Additionally, downregulation of miR-29c was also 

demonstrated in a dietary non-alcoholic steatohepatitis (NASH) mouse model [36] or in human liver 

fibrosis of chronically HCV-infected patients [37]. Previous findings have shown that the members of 

the miR-29 family act as tumor suppressor miRNAs, inhibiting the synthesis of the anti-apoptotic 

proteins, Bcl-2 and Mcl-1, and the DNA methyltransferases, 3A and 3B, involved in the epigenetic 

methylation machinery of epithelial cell types [38,39]. Most notably, the members of the miR-29 family 

also function as antifibrotic miRNAs, first described in cardiac fibrosis by their inhibitory role on 

collagen I and III, elastin and fibrillin-1 expression [40]. Inhibition of ECM synthesis and its 

downregulation during fibrogenesis was additionally shown in pulmonary fibrosis [41] and systemic 

sclerosis [42]. Furthermore, the findings of Cushing et al. suggested that miR-29 inhibits expression of a 

wide variety of fibrosis-associated genes and confirmed that numerous components of ECM are 

negatively regulated by miR-29, including fibrillin-1, follistatin, nidogen 1 and laminin [41]. 

Moreover, since the loss of miR-133 in liver fibrosis after TGF-β exposure causes prominent 

enhancement of collagen 1A1 and collagen 5A3 deposition, Roderburg et al. suggested miR-133 as a 

main antifibrotic miRNA [43]. 

On the contrary to these downregulated miRNAs, others are upregulated during fibrogenesis. Thus, 

miR-34a, miR-199/200 and miR-221/222 are known to be increased during liver fibrosis with different 

pathogenesis, such as non-alcoholic and alcoholic steatohepatitis (NASH/ASH), HCV infection or 

experimental fibrosis, including CCl4 intoxication and a fat diet mouse model [36,44–46]. The role of 

the miR-200 family members in liver fibrogenesis is still not completely understood. Although 

Murakami et al. have shown that miR-200a/b were positively associated with the progression of liver 

fibrosis in chronic hepatitis C patients [45], Sun et al. have reported that miR-200a is downregulated 

during hepatic stellate cell activation, as well as after CCl4 intoxication-based experimental fibrosis [47]. 

However, in agreement with Murakami et al., miR-200c levels were found to be increased in the fibrotic 

liver after HCV-infection and NASH [48]. These opposing results may be due to diversity in disease 

progression or etiology. 

Though the role of increased miR-34a levels upon liver fibrogenesis is not yet studied in detail, in 

cancer, miR-34a was shown to repress the deacetylase SIRT1 expression, leading to a marked increase of 

acetylated p53, followed by elevated apoptosis [49,50]. Interestingly, miR-34a is also involved in 

ethanol-induced apoptosis and in hepatic remodeling by targeting matrix metalloproteinases, MMP2 and 
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MMP9 [44]. In addition, the increase of miR-199 during fibrogenesis is suggested to contribute to 

hepatic remodeling by targeting the expression of ECM turnover-involved genes, like collagen Col1A1, 

the tissue inhibitor of metalloproteinase (TIMP-1) and the matrix metalloproteinase, MMP13. 

3. Linkage of miRNA Alteration to Myofibroblastic Transition 

During liver fibrogenesis, myofibroblastic cells are the central fibrotic cell type responsible for ECM 

accumulation. They derive from different cell types, but most of the myofibroblasts originate from 

hepatic stellate cells (HSCs) [51,52]. HSCs account for approximately one-third of the non-parenchymal 

cells and 15% of the total number of resident cells in the healthy liver [53,54]. They store around 80% of 

the vitamin A of the human body. However, in response to liver injury, HSCs undergo phenotypical and 

functional changes, including the loss of vitamin A storage, proliferation, cytoskeleton alteration and 

synthesis of ECM, leading to a myofibroblast phenotype with enhanced matrix deposition and 

contractility [51,52,55]. This transition process of HSC into a myofibroblastic cell type is accompanied 

by an altered growth factor profile, resulting in autocrine and paracrine profibrotic stimulation by, e.g., 

TGF-β, PDGF-BB, endothelin, chemokines and cytokines, and in the enhancement of fibrosis [51,52]. 

Importantly, previous reports have shown that several miRNA species are involved in the 

transdifferentiation process of quiescent HSC into a myofibroblastically activated cell type [56–62] 

(Figure 1). First, Guo et al. and Ji et al. assumed that miRNAs may be involved in the altered gene 

expression profile of myofibroblastic HSC [57,59]. 

Figure 1. Altered expression pattern of microRNAs during myofibroblastic activation of 

hepatic stellate cells (HSCs).  

 
Quiescent hepatic stellate cells (HSCs) store 80% of the body vitamin A in fat droplets. In response 

to chronic liver injury, HSCs undergo myofibroblastic transition. During this process, the phenotype 

and function of HSCs is considerably changed, including loss of vitamin A storage, proliferation, 

cytoskeleton alteration and synthesis of ECM, leading to a myofibroblast phenotype with enhanced 

matrix deposition and contractility. This process is accompanied by an altered miRNA expression 

pattern. miRNAs, prominently downregulated (blue arrow), and miRNAs shown to be upregulated 

(red arrow) during myofibroblastic activation are indicated. 
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Whereas the antifibrotic miRNAs, such as the members of the miR-29 family, miR-19, miR-150  

and miR-133, repressing the myofibroblastic features, such as collagen synthesis or smooth muscle  

actin (SMA) synthesis, decrease after myofibroblastic transdifferentiation [25,43,63–65], others,  

such as miR-221/222, the neuronal miRNAs, miR-9, miR-125b, miR-128 or the miR-214, are  

increased [46,61,66]. Particularly, miR-221/222 expression is increased in cultivated primary HSC upon 

induction by the NF-kb activator, which is suggested to be a potential biomarker of stellate cell 

activation and linked to increased Col1A1 expression during fibrosis [46]. Interestingly, miR-214 

upregulated in activated HSC was shown to be controlled by the master transcription factor,  

Twist-1, [66]. miR-214 has to be considered as a main therapeutic target, because genetically or 

therapeutically silencing resulted in highly efficient inhibition of renal fibrosis [67]. Recent data of 

Noetel et al. could demonstrate a prominent upregulation of the neuronal miRNAs, miR-9, miR-125, 

and miR-128 in HSC upon myofibroblastic activation. These miRNAs were suggested to target several 

members of the chemokine and the chemokine receptor family [61]. 

Lakner et al. identified 55 miRNAs that are divergently expressed in quiescent versus activated HSCs 

by microarray analyses. Hereby, miR-19b was proven to repress TGF-β signaling by targeting TGF-β 

receptor type II expression, which, in turn, resulted in a decrease of TGF-β signaling followed by 

reduced expression of collagen subunits (Col1A1 and ColA2) [25]. Furthermore, the miR-29 and miR-21 

function is closely linked to the profibrogenic TGF-β pathway [27,65,68,69]. Hence, miRNAs definitely 

contribute to the profibrogenic changes during fibrogenesis, not only by targeting ECM production, but 

also by interaction with the TGF-β signaling pathway (Figure 2). 

4. miRNA in the Interplay of Profibrogenic Pathways 

miR-29 expression is strongly regulated by TGF-β, as well as oppositionally by the TGF-β antagonist, 

hepatocyte growth factor (HGF). Whereas TGF-β inhibits epithelial proliferation, HGF exerts high 

mitogenic potential on epithelial cells and strong antifibrogenic functions on fibroblasts. Thus, the 

studies of Kwiecinski et al. revealed that HGF mediates antifibrogenic effects by induction and restoring 

of miR-29 expression, which, in turn, is followed by a significant decrease of collagen I and collagen IV 

subtypes [64]. However, miR-29 is not only regulated by the interplay of TGF-β and HGF, but also by 

other factors involved in inflammation and fibrosis, like PDGF-BB [65] and interferon-α [70]. 

In addition to its role in ECM repression, miR-29 regulates the growth factor profile of HSC by 

targeting profibrogenic mediators, such as IGF-I and PDGF-C [71]. Moreover, Sekyia et al. collected 

evidence that also the PDGF-β receptor is targeted by miR-29 regulation [65]. This is of special interest, 

because miR-29 itself is downregulated in HSC after PDGF-BB stimulation [65]. 

Additionally to miR-29, miR-146 is also decreased by TGF-β. TGF-β mediates its profibrogenic 

functions mainly by the smad pathway. In particular, after ligand binding and TGF-β receptor I 

phosphorylation, smad-3 activation and its interaction with smad-4 is crucial for HSC activation [58]. 

After smad-3/-4 transduction into the nucleus, the smad complexes are involved in the transcriptional 

control of a wide range of genes. While miR-146 is repressed by TGF-β signals, it suppresses TGF-β 

signals by targeting smad-4 expression. Furthermore, TGF-β signaling is also inhibited by the 

antifibrotic microRNAs, miR-150 and miR-200a, which, in addition to their function in ECM regulation, 

target the expression of the signal transducer, smad-3, as well as of TGF-β2 [47,63] (Figure 2). 
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Figure 2. miRNAs in the interplay of signaling in quiescent and activated HSCs after 

chronic liver injury.  

 
In quiescent HSCs, antifibrotic miRNAs, like miR-19, miR-146, miR-29, miR-133, miR-150, 

miR-126 and miR-200, are highly expressed. High levels of these miRNAs, in turn, lead to reduced 

synthesis of the TGF-β receptor II or smad-4 (1) of ECM, mainly the collagen subunits (2); or 

synthesis of profibrogenic mediators, e.g., VEGF-A, TGF-β2, IGF-I, PDGF-C (3); After chronic 

liver injury, HSCs get activated and transduce into a myofibroblastic phenotype. Myofibroblastic 

transition and autocrine TGF-β stimulation changes the miRNA profile, as shown in Figure 1. In 

response to TGF-β exposure, miR-29, miR-126, miR-150 and miR-200 are downregulated, resulting 

in the abolished repression of profibrogenic mediators (4); The reduced miR-29/133/150 levels then 

contribute to enhanced synthesis and deposition of ECM. Whereas some miRNAs are reduced by 

TGF-β, others, such as miR-21/214-5p/199/221/222, are stimulated and elevate ECM synthesis via 

an unknown pathway (5); TGF-β induced miR-21 expression results in a decrease of the TGF-β 

inhibitory smad-7 protein (6) (Dashed arrow lines indicate the suppression of pathways and gene 

expression, whereas solid arrow lines indicate stimulation). 

miR-126 is closely linked to the vascular endothelial growth factor (VEGF) signaling, which is a 

crucial in angiogenesis, but affects fibrosis by the induction of HSC proliferation and ECM synthesis. 

During myofibroblastic HSC transition, miR-126 is lost, causing an increased synthesis of ECM proteins, 

but also of VEGF-A [72,73] (Figure 2). 

Whereas the antifibrotic miRNAs are repressed by TGF-β, others, such as miR-214-5p and miR-21, 

are induced [74] in agreement with their enrichment during liver fibrosis [66,75]. Especially miR-21 was 

shown to be positively regulated in cancer cells by the TGF-β/smad pathway on both, the transcriptional 

and the miRNA processing level [68]. miR-21 further triggers the TGF-β/smad pathway by targeting the 

inhibitory smad protein, smad-7 (Figure 2). Furthermore, in stellate cells, the profibrogenic function of 

miR-21 is suggested to be also mediated by Pten inhibition, which, in turn, leads to Akt activation [76]. 
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In conclusion, the altered expression of a wide panel of miRNAs affects fibrosis progression by its 

inhibition of ECM synthesis and its influence on central signaling pathways in HSC. 

5. Perspectives 

The high impact of miRNAs on the progression of fibrosis by the inhibition of ECM or by interfering 

with profibrogenic pathways announces the promising potential of miRNAs as biomarkers and targets of 

novel antifibrotic therapeutic strategies. Although, presently, miRNAs are not yet used as diagnostic 

biomarkers for fibrosis, in liver cancer, the diagnostic potential of miRNAs is already demonstrated by 

the low levels of miR-26, indicating the successful response to interferon-a therapy [77]. However, since 

miRNAs are released into the blood stream, circulating miRNA levels might serve even more efficiently 

as indicators of fibrosis [78,79]. Furthermore, the important function of many miRNAs acting as anti- or 

pro-fibrogenic factors emphasizes their role as therapeutic targets. The successful inhibition of miR-122 

by antagonizing oligonucleotides [35] has successfully illustrated the proof of principle of this novel 

therapeutic strategy. However, whereas drug delivery to liver parenchyma is highly efficient, organ and 

cell-type specific miRNA targeting has to be achieved in liver fibrosis. Thus, in order to avoid cell 

unspecific side effects of antifibrotic therapies, that target miRNAs involved in liver fibrosis, an HSC- or 

myofibroblast specific approach of drug delivery is needed. 
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