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Abstract: Aqueous carbonation of Ca(OH)2 is a complex process that produces calcite 

with scalenohedral calcite phases and characterized by inadequate carbonate species  

for effective carbonation due to the poor dissolution of CO2 in water. Consequently,  

we report a solid-liquid-gas carbonation system with an ionic liquid (IL),  

1-butyl-3-methylimidazolium bromide, in view of enhancing the reaction of CO2 with 

Ca(OH)2. The use of the IL increased the solubility of CO2 in the aqueous environment and 

enhanced the transport of the reactive species (Ca2+ and CO3
2−) and products. The presence of 

the IL also avoided the formation of the CaCO3 protective and passivation layer and ensured 

high carbonation yields, as well as the production of stoichiometric rhombohedral calcite 

phases in a short time. 
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1. Introduction 

Calcium carbonate (CaCO3) is an inorganic chemical that occurs in different crystalline polymorphs 

at ambient pressure. These are anhydrous phases of vaterite, calcite and aragonite and hydrated phases 
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of monohydrocalcite and hexahydrocalcite (ikaite) [1]. Anhydrous CaCO3 is generally classified as 

rhombic calcite, needle-like aragonite or spherical vaterite, among which calcite is the most stable 

phase under normal atmospheric conditions [2]. The formation of any of the polymorphs is strictly 

guided by the temperature, supersaturation and pH of reaction solution [3]. However, chameleonic 

phase transformation was found between calcite, aragonite and vaterite, normal to abnormal and  

vice versa, in a CO2 expanded ethanol-water solution system applied for the solid-liquid-gas 

carbonation (SLGC) of Ca(OH)2 [4]. CaCO3 is used for several industrial applications and by living 

organisms for bone development [5]. For instance, it is used as an extender and to meliorate stability 

and exposure to resistance in paints [6,7]. As such, global consumption and demand for CaCO3 continues 

to increase [8,9]. Industrially, calcite is usually produced by the SLGC route, where CO2 is bubbled 

through a Ca(OH)2 slurry or slake lime [10–13]. Although the mechanism for the precipitation of CaCO3 

from SLGC is debated, many investigators have shown that the absorption of CO2 is the rate 

determining step in the SLGC with a Ca(OH)2 suspension [10,11]. Current synthesis procedures are 

slow, energy intensive and less efficient, leading to low conversion yields. Several methods for 

synthesizing CaCO3 effectively and with various properties using additives and surfactants [14,15], 

block copolymers [16,17] and acids [18,19] have been explored. 

The excellent role of ionic liquids (ILs) as reaction media and catalysts is common knowledge, 

among which, imidazolium-based ILs are the most researched group. Studies have shown that the 

solubility of CO2 in this group of ILs increases with increased pressure [20,21]. For example, Sudha 

and Khanna [22] in a molecular modeling of the solubility of CO2 in several ILs reported the solubility 

of CO2 in 1-butyl-3-methylimidazolium bromide, Bmim[Br], to be a 0.31 molar fraction. Once the 

absorption of CO2 is a rate determining step in the SLGC with the Ca(OH)2 suspension and CO2 is 

very soluble in ILs, coupling an SLGC system with an IL will enhance the absorption of CO2 and lead 

to higher conversion yields. 

Previously, we conducted systematic research on a solid-gas carbonation (SGC) involving a dry 

Ca(OH)2 system with a solid ionic liquid (SIL) and high-pressure/supercritical CO2 and achieved the 

complete conversion of Ca(OH)2 to CaCO3 in 5 min [23,24]. The SIL served as the catalyst carrier and 

facilitated the effective dissolution of CO2, leading to the syntheses of stoichiometric rhombohedral 

calcite phases [23,24]. In the current study, we report an SLGC involving a Ca(OH)2 slurry system 

using an imidazolium-based IL in view of enhancing carbonation efficiency. The study searches for 

rapid carbonation for the production of nano-CaCO3 and the capture of CO2, since CO2 capture is an 

important industrial application [23]. The IL was used in the current work as a reaction media to 

increase the solubility of CO2 and to enhance the kinetics of the reaction in the liquid phase. Note that 

the IL is very miscible with water and can easily be recovered. 

2. Results and Discussion 

Precipitation of CaCO3 from aqueous carbonation of Ca(OH)2 is an exothermic and complex 

process with an overall reaction equation as [5,7]: 

2( ) 2( ) 3(s) 2 ( / )Ca(OH)  + CO CaCO H Oaq aq l v    (1)
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Traditionally, SLGC produces calcite with a scalenohedral lattice {2 1 −1} [25,26] and is 

characterized by excess calcium species (Ca2+) as a result of the limited solubility of CO2 in  

water [27–29], leading to inadequate carbonate species (CO3
2−) necessary for producing the 

stoichiometric rhombohedral phase [24,27]. Thus, any process that enhances the solubility of CO2 and 

the dissolution of Ca(OH)2 can positively affect the reaction rate and result in higher conversion yields. 

Therefore, increasing the solubility of CO2 using an IL to facilitate the effective dissolution of 

Ca(OH)2 will not only enhance carbonation yields, but also facilitate and produce the stoichiometric 

rhombohedral calcite phase [24,27]. 

2.1. Effect of Temperature 

The effect of temperature on SLGC is well-known [7], and lower temperature is commonly adopted 

to increase the solubility of CO2 in water. We investigated the effect of temperature (25.0, 30.0, 40.0, 

50.0 and 60.0 °C) at atmospheric pressure (0.1 MPa) in 5 min with 0.5 g Bmim[Br]/5.0 g Ca(OH)2 and 

10 mL water. X-ray diffractometry (XRD) patterns of the produced samples and the corresponding 

conversions of Ca(OH)2 at the different temperatures are shown in Figure 1. As can be seen, the 

conversion increased from 44.1% at 25.0 °C to only 45.9% at 40.0 °C and then decreased slightly to 

37.8% at 60.0 °C, revealing that temperature did not have an obvious effect on the system and that the 

IL took effect. The highest conversion (47.7%) for the 0.1 MPa reactions, although not complete, is 

about the best value reported for identical systems with shorter reaction times in the literature, 

indicating the availability of the IL. 

Figure 1. XRD (X-ray diffractometry) patterns and corresponding conversions (in 

brackets) for samples produced with 1-butyl-3-methylimidazolium bromide (Bmim[Br]) at 

various temperatures with 0.1 MPa in 5 min. 

 

The samples were also characterized by scanning electron microscope (SEM) to investigate their 

morphology (typically shown in Figure 2). The SEM images revealed that irregular rhombohedral 

calcite (ICCD-PDF-2: 01-086-2334) particles were produced at the conditions investigated. 

Additionally, there was no unique and distinct difference between the particles produced. 
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Figure 2. SEM (scanning electron microscope) images of samples produced at (a) 40.0 °C 

and (b) 60.0 °C with 0.1 MPa in 5 min.  

 

2.2. Effect of Pressure 

Figure 3 shows the effect of pressure on the conversion at 30.0 °C in 5 min with 0.5 g Bmim[Br]/5.0 g 

Ca(OH)2 and 10 mL water. At 0.1 MPa, there was incomplete conversion, because a 47.7% conversion 

was realized. This was evidenced by the presence of the characteristic peaks for both the starting 

material (at 18.0° and 34.2°) and the product (at 29.4°). A similar phenomenon was witnessed for the 

reaction at 1.0 MPa, resulting in a 64.7% conversion. However, at 5.0 MPa, the major peaks of the 

starting material almost disappeared, leading to pronounced major peaks of the product and substantial 

conversion (99.1%). Yet, a further increase of the pressure reduced the conversion slightly (Figure 3). 

The presence of the Bmim[Br] increased the conversions at 0.1 and 1.0 MPa (Figure 3). The quantity 

of dissolved CO2 needed to produce CO3
2− species for carbonation is restricted by the low solubility of 

CO2 in water at low pressures [5], but the Bmim[Br] enhanced the availability of the CO3
2− species, 

due to the high solubility of CO2 in the IL [22] and led to the high conversion yields. 

Figure 3. XRD patterns and corresponding conversions (in brackets) for samples produced 

with Bmim[Br] at various pressures at 30.0 °C in 5 min. 
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Figure 4 shows typical SEM images of the samples produced at various pressures. The images 

confirmed the rhombohedral, but agglomerated, nature of the particles produced. A comparison of the 

particles produced at 5.0 MPa with Bmim[Br] (Figure 4c) and without Bmim[Br] (Figure 4d) revealed 

that the former sample consisted of the majority of less agglomerated and irregular, but smaller  

(≈60 nm) particles with a minority of bigger (≈300 nm) rhombohedral ones, while the latter sample 

had almost uniform, but highly agglomerated and bigger (≈100 nm) rhombohedral particles. Note that 

the conversion without the IL at 5.0 MPa and 30.0 °C in 5 min was 52.7%. 

Figure 4. SEM images of samples produced with Bmim[Br] at (a) 0.1 MPa; (b) 1.0 MPa; 

(c) 5.0 MPa and without Bmim[Br] at (d) 5.0 MPa in 5 min at 30.0 °C.  

 

2.3. Effect of Reaction Time 

The extent of carbonation reaction is a function of time; hence, the effect of reaction time on the  

rate of conversion was investigated. Figure 5 shows the effect of reaction time on the conversion  

of Ca(OH)2 with 0.5 g Bmim[Br]/5.0 g Ca(OH)2 and 10 mL water at 30.0 °C for 0.1 and 5.0 MPa.  

At 0.1 MPa, the slow reaction led to low conversion (26.3%) after 5 min without Bmim[Br]. The 

conversion increased to 34.6% in 30 min and 65.3% in 60 min without the IL. However, it was 47.7% 

in 5 min when the IL was introduced, but increased to 93.9% in 30 min and then 99.7% after 60 min. 

Obviously, the effect of the IL on the conversion at this low pressure was significant especially, within 

30 min. The conversion increased from 34.6% in 30 min without the IL to 93.9% (≈59.3% increment) 

when the IL was added. 
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Figure 5. XRD patterns and corresponding conversions (in brackets) for samples produced 

with Bmim[Br] with different reaction times at (a) 0.1 MPa and (b) 5.0 MPa.  

 

Among other parameters, increasing the working pressure of CO2 increases its solubility and, by 

extension, the availability of CO3
2− species in the SLGC for better yield [5]. In this regard, several 

experiments were carried out at 5.0 MPa with the Bmim[Br] to investigate the effect of time. For these 

cases, the reactions were very fast (almost complete conversions) within 5 min. Even so, when the 

reaction was monitored over a very short time (2 min), the positive influence of the IL was evident. 

The reaction resulted in a 75.2% conversion demonstrating the ability of the IL to facilitate faster 

reaction in the initial stages of the carbonation at medium pressure (5.0 MPa). Furthermore, a 47.7% 

conversion was obtained at 0.1 MPa in 5 min, whereas the conversion was 99.3% at 5.0 MPa, 

confirming the fast nature of the reaction in the presence of the IL at the medium pressure. 

Representative SEM images for the samples produced at selected times are shown in Figure 6. 

Generally, and as expected, the samples produced with the Bmim[Br] exhibited well-defined particles 

(Figure 6a,c,e) compared to those produced without the IL (Figure 6b,d,f). Additionally, the effect of 

time on morphology was clearly visible. For instance, whereas the sample produced with the IL in  

5 min consisted of a mixture of flower-like calcite (≈50 nm) and bundle-like hexagonal (inset) Ca(OH)2 

particles (≈50 × 900 nm; Figure 6a), those produced in 30 min showed a perfect mixture of smaller  

(≈50 nm) and larger (≈400 nm) rhombohedral calcites (Figure 6c). However, the SEM images  

(Figure 6) indicated the obvious increase of particle size following the reaction time. Note that  

Figures 4a and 6a are different images of the same sample; Figure 6a was deliberately taken to show 

both Ca(OH)2 and calcite particles, whereas Figure 4a showed only calcite particles. 
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Figure 6. SEM images of the samples produced at 30.0 °C and 0.1 MPa. (a) with Bmim[Br] 

and (b) without Bmim[Br] in 5 min; (c) with Bmim[Br] and (d) without Bmim[Br] in  

30 min; (e) with Bmim[Br] and (f) without Bmim[Br] in 60 min.  

 

2.4. Effect of Amount of Water 

Water is very vital for carbonation reactions, and the role of water has been reported accordingly [5,23]. 

The influence of the amount of water on conversion was thus investigated at 0.1 MPa and 30.0 °C in  

5 min with 0.5 g Bmim[Br]/5.0 g Ca(OH)2. For the zero-milliliter (0 mL) water, the IL was dried under 

vacuum for 36 h to remove traces of adsorbed water, and no additional water was added into the 

reactor during the reaction; so it was a dry carbonation (SGC) system [23]. The conversion results are 

shown in Figure 7, revealing increased conversion with an increasing amount of water. A conversion 

of 40.0% was obtained using 5.0 mL as opposed to 1.3% for the reaction without water (0 mL), but the 
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conversion increased to 63.6% with 20.0 mL of water. Note that these were slurry systems and, as such, 

suspensions; hence the mentioning of the presence of water instead of concentrations or solutions. 

Figure 7. XRD patterns and corresponding conversions (in brackets) for samples produced 

with the Bmim[Br] and various amounts of water at 0.1 MPa and 30.0 °C in 5 min.  

 

2.5. Effect of Amount of Bmim[Br] 

The presence of Bmim[Br] was shown to have a significant effect on the conversion at the low  

(0.1 MPa) and medium (5.0 MPa) pressures in 5 min (see Sections 2.2 and 2.3). Therefore, we investigated 

the effect of the mass ratio of the IL to Ca(OH)2 on the conversion at 0.1 MPa within 5 min at 30.0 °C. 

Figure 8 shows the conversion results of the samples produced, revealing increased conversion from 

28.2% at 0.06 g IL/g Ca(OH)2 to 94.4% at 1.0 g IL/g Ca(OH)2. We are mindful of the comparatively 

expensive nature of ILs. However, about a 30% conversion of Ca(OH)2 at 0.1 MPa with just 6%  

(0.06 g IL/1 g Ca(OH)2) of the IL and a 99.1% conversion at 5.0 MPa with 10% (0.5 g IL/5 g Ca(OH)2) 

of the IL in 5 min, perhaps, justify the use of the IL in terms of cost. 

Figure 8. XRD patterns and corresponding conversions (in brackets) for samples produced 

with 10 mL water and various amounts of Bmim[Br] in 5 min. 
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2.6. Significance of Bmim[Br] and the Mechanism 

Enhanced dissolution of CO2 is among the key parameters that control carbonation reactions, and 

for SLGC, enhancing the solubility of CO2 in water is particularly important. As such, the use of the IL 

was expected to enhance the production of the CO3
2− from the effective dissolution of CO2 in the IL [22] 

and affect conversion yields. The influence of the IL on conversion was evident at lower pressure. For 

example, with 0.1 MPa at 30.0 °C in 5 min, the reaction without the IL gave a conversion of 26.3% 

against about 50% with the IL (Figure 8). Furthermore, the effect of the IL on the particle size and 

degree of agglomeration at the medium pressure (5.0 MPa) was noticeable. The sample produced with 

the IL was a mixture of smaller (≈60 nm) and bigger (≈300 nm) rhombohedral particles with less 

agglomeration (Figure 4c), whereas the particles synthesized without the IL were bigger rhombohedrals 

(≈100 nm) with more agglomeration (Figure 4f). The IL also had a positive influence on the conversion 

(99.1%) in 5 min at the medium pressure, however; its availability was prominent when the reaction 

was monitored for 2 min (75.0% conversion), indicating that it induced a faster reaction within the 

initial stage of the carbonation. On the other hand, reaction with 0.10 g IL/g Ca(OH)2 in 5 min resulted  

in a conversion of 47.7%. A decreased amount of the IL (0.06 g IL/g Ca(OH)2 in 5 min), as expected, 

only worsened the conversion yield (28.2%), while an increased amount of the IL (1.0 g IL/g Ca(OH)2 

in 5 min) gave a conversion (94.4%) greater than 90.0%. Considering the cost implications of ILs,  

1.0 g IL/g Ca(OH)2 in 5 min for a 94.4% conversion may not be industrially prudent, although the IL 

may be recovered. Therefore, we suggest an optimum of 0.10 g IL/g Ca(OH)2 (10% IL), but in 30 min, 

because a conversion of 93.9% was obtained in this case, even though a 99.7% conversion was realized 

in 60 min. 

The mechanism of the current SLGC system with Bmim[Br] is therefore similar to that of the SGC 

system with the solid ionic liquid previously reported [23,24]. Briefly, the Bmim[Br] absorbs water 

and CO2 to initiate the reaction by forming hydrated layers. These layers promote the dissolution of 

Ca(OH)2 to produce Ca2+ species and the conversion of CO2 to CO3
2− species. Because of the relatively 

high solubility of CO2 in Bmim[Br], there is enough CO3
2− avoiding the formation of the usual 

protective and passivation CaCO3 layer, and this led to the formation of stoichiometric rhombohedral 

calcite particles. 

2.7. Brunner-Emmet-Teller (BET) Surface Area and Thermogravimetric Analysis (TGA) 

BET analysis was done to study the specific surface area and pore structure of the sample synthesized 

with the IL at 5.0 MPa and 30 °C in 5 min, since this gave almost complete conversion (99.1%). A 

surface area of 13.0 m2/g was obtained. This result is comparable with values reported for SLGCs with 

similar conditions [4,30], but better than values reported for some SGCs [27]. The highest surface area 

for a similar system, but with a rotating disc reactor unit at ambient conditions, was reported to be 

between 20.4 and 23.3 m2/g; however, the products were filtered through a 0.1-μm membrane [31]. 

The thermal stability of the samples produced at the lower and medium pressures was studied with 

a thermogravimetric analyzer. As shown in Figure 9, the total weight loss was 47.7% for the sample 

produced at 5.0 MPa, whilst a total weight loss of 34.6% was noticed for the sample produced at  

0.1 MPa. The TGA results enabled the validation of the Rietveld whole pattern refinement of the XRD 
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analysis (see Table 1). For this case, the weight loss due to the release of physically adsorbed water, 

the release of water from Ca(OH)2 and the release of CO2 from CaCO3 as a result of thermal decomposition 

were recorded, and the weight percent of CaCO3 in the sample was calculated with Equation (2). 

  3

2

L
3

T

CaCO wt %  = 100CaCO

CO

MW

W n M
 


 (2)

where WT denotes the total weight of the sample (g), WL denotes the weight loss (g), n denotes the 

number of moles of CO2 eliminated and M denotes molecular weight (g/mol). 

Figure 9. Thermogravimetric curves for the CaCO3 produced: (a) 5.0 MPa and (b) 0.1 MPa 

in 5 min at 30.0 °C.  

 

Table 1. Validation of XRD Rietveld refinements by TGA. 

Sample Rietveld (wt %) TGA (wt %) Difference (wt %) 

5.0 MPa 99.1 96.2 2.9 
0.1 MPa 47.7 49.7 2.0 

The endothermic peak at about 740.6 °C for the sample produced at 5.0 MPa led to about  

96.2% (mass) CaCO3. Similarly, the endothermic peaks at about 428.6 °C attributed to decomposition 

of Ca(OH)2 and at about 716.6 °C assigned to the decomposition of CaCO3 for the sample produced at 

0.1 MPa correspond to about 49.7% CaCO3. These percentage values are in agreement with the results 

from the Rietveld refinements for the XRD patterns (Table 1). 

3. Experimental Section 

3.1. Materials 

Analytical grade Ca(OH)2 with 95% purity was purchased from Sinopharm Chemical and Reagents 

Co., Ltd, Shanghai, China. Carbon dioxide (99.99% purity) was sourced from Linde Gas, Xiamen 

Corporation Ltd., Xiamen, China, and 1-butyl-3-methylimidazolium bromide, Bmim[Br] with 99% 

purity was purchased from Shanghai Cheng Jie Chemical Co., Ltd., Shanghai, China. 
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3.2. Procedure 

The setup for the process is shown in Figure 10, consisting of a CO2 compressor (G447-400, 

Beijing HuiZhi M&E Facilities Co., Ltd., Beijing, China), a self-modified back pressure regulator 

(±0.1 MPa), a preheater, a check valve and a high pressure reactor (100 mL) with a maximum internal 

working pressure of 30 MPa, a temperature of 300 °C and outlet and inlet valves arranged, such that 

CO2 could be bubbled straight into the bulk of the slurry and discharged immediately after the reaction. 

The reactor is equipped with a mechanical stirrer (about 500 rpm), thermocouple, a pressure meter and 

a temperature controller (±0.1 °C). 

Figure 10. Illustration of the experimental setup: 1, CO2 cylinder; 2, compressor; 3, back 

pressure regulator; 4, preheater; 5, check valve; 6, mechanical stirrer; 7, reactor; 8, outlet 

valve; TC, temperature controller; P, pressure indicator. 

 

Typically, an amount of distilled water (mL) was added to 5.0 g of Ca(OH)2 to produce a slurry. To 

this, Bmim[Br] of mass ratios of 0.5 g/5 g Ca(OH)2 was loaded into the reaction vessel and heated 

under stirring (500 rpm) until thermal equilibrium (°C). CO2 was fed into the vessel, brought to the 

desired pressure (MPa) and reacted for a set time (min). CO2 was deliberately released after the 

reaction; the product was collected, washed to recover the ionic liquid and dried in an oven (Jinhong, 

DZF-6020, Shanghai, China) at 100 °C for 12 h. 

3.3. Characterization 

The phase purity and quantity of the samples were analyzed with X-ray diffractometry (XRD), and 

the crystallite size was determined using Jade 5.0 from XRD patterns. Measurements of the XRD were 

carried out using X’Pert Pro (PANalytical B.V, Ea Almelo, The Netherlands) with a Cu anode 

operated at 40 kV, 30 mA and a wavelength (λ) of 1.540598 A. A continuous scan from 16° to 60° 

with a 2-theta step scan of 0.016711° and a step length of 10 s was employed. Calcite has a 

characteristic major peak at 29.41° corresponding to the {1 0 4} reflection plane, while Ca(OH)2 has a 

major peak at 34.11°, matching the {0 0 1} reflection plane, followed by the peak at 18.08° [24].  

In our case, however, the Ca(OH)2 peak at 18.08° was the highest. Phase analysis and quantification 

was achieved by Rietveld whole pattern refinements using X’Pert HighScore plus (2.0) and the  

ICDD-PDF-2 database [24]. Specific surface area and pore size were determined by BET (Micrometric 

TRISTAR-3000, Micromeritics Instrument Corporation, Norcross, GA, USA), and isotherms were 

obtained by performing isothermal physical sorption with N2 gas at 77.3 K. SEM (S4800, Hitachi, 

Tokyo, Japan) was employed to study the morphology of the samples by dispersing samples 
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ultrasonically in absolute ethanol for 30 min and depositing on a silicon wafer. Thermal stability was 

studied by thermogravimetric analysis (NETZSCH TG 209 F1, Selb, Germany) under N2 from 30 to 

900 °C with a heating rate of 10 °C/min. 

4. Conclusions 

We investigated the effect of several variables on an SLG carbonation system using Ca(OH)2 slurry 

with an imidazolium-based IL, Bmim[Br]. Based on the results, we conclude that: (1) the use of the IL 

positively influenced the carbonation reaction at relatively low pressure (0.1 MPa), such that with  

1 g IL/1 g Ca(OH)2, a conversion higher than 94.4% was achieved within 5 min; (2) the optimum 

condition (0.10 g IL/1 g Ca(OH)2 in 30 min) at the lower pressure gave a conversion of 93.9%;  

(3) medium pressure (5.0 MPa) led to almost complete conversion (99.6%) in 5 min; (4) 5.0 mL of 

water or more was necessary for the rapid conversion of 5.0 g Ca(OH)2, yet the removal of water from 

the system gave very low conversion; (5) the samples exhibited rhombohedral calcite structures with a 

high specific surface area; and (6) the amount of CaCO3 obtained from the Rietveld refinement of 

XRD patterns was very close to that obtained from TG analysis. 

Acknowledgments 

This work was supported by National Nature Science Foundation of China (NSFC) (No. 21276212) 

and Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP)  

(No. 20100121110009). 

Author Contributions 

A.-R.I. and J.B.V. conducted the experiments, analyses and calculations. Y.H. participated in the 

experiments. J.L. and H.T.W. conceived of and designed the research. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Gomez-Villalba, L.S.; Lopez-Arce, P.; de Buergo, M.A.; Fort, R. Atomic defects and their relationship 

to aragonite-calcite transformation in portlandite nanocrystal carbonation. Cryst. Growth Des. 

2012, 12, 4844–4852. 

2. Knez, S.; Klinar, D.; Golob, J. Stabilization of PCC dispersions prepared directly in the  

mother-liquid after synthesis through the carbonation of (hydrated) lime. Chem. Eng. Sci. 2006, 

61, 5867–5880. 

3. Montes-Hernandez, G.; Daval, D.; Chiriac, R.; Renard, F. Growth of nanosized calcite through 

gas-solid carbonation of nanosized portlandite under anisobaric conditions. Cryst. Growth Des. 

2010, 10, 4823–4830. 



Int. J. Mol. Sci. 2014, 15 11362 

 

4. Ibrahim, A.R.; Zhang, X.L.; Hong, Y.Z.; Wang, H.T.; Li, J. Instantaneous solid-liquid-gas 

carbonation of Ca(OH)2 and chameleonic phase transformation in CO2-expanded solution.  

Cryst. Growth Des. 2014, 14, 2733–2741. 

5. Domingo, C.; Loste, E.; Gomez-Morales, J.; Garcia-Carmona, J.; Fraile, J. Calcite precipitation 

by a high-pressure CO2 carbonation route. J. Supercrit. Fluids 2006, 36, 202–215. 

6. Ciullo, P.A. Industrial Minerals and Their Uses: A Handbook and Formulary; Noyes 

Publications: Westwood, NJ, USA, 1996; pp. 35–37. 

7. Montes-Hernandez, G.; Renard, F.; Geoffroy, N.; Charlet, G.; Pironon, J. Calcite precipitation 

from CO2–H2O–Ca(OH)2 slurry under high pressure of CO2. J. Cryst. Growth 2007, 308, 228–236. 

8. Harja, M.; Cimpeanu, C.; Bucur, R.D. The influence of hydrodynamic conditions on the synthesis 

of ultra-thin calcium carbonate. J. Food Agric. Environ. 2012, 10, 1191–1195.  

9. Juvekar, V.A.; Sharma, M.M. Absorption of CO2 in a suspension of lime. Chem. Eng. Sci. 1973, 

28, 825–837. 

10. Sada, E.; Kumazawa, H.; Lee, C.; Fujiwara, N. Gas-liquid mass transfer characteristics in a 

bubble column with suspended sparingly soluble fine particles. Ind. Eng. Process Des. Dev. 1985, 

24, 255–261. 

11. Xiang, L.; Xiang, Y.; Wen, Y.; Wei, F. Formation of CaCO3 nanoparticles in the presence of 

terpineol. Mater. Lett. 2004, 58, 959–965. 

12. Yagi, H.; Iwazawa, A.; Sonobe, R.; Matsubara, T.; Hikita, H. Crystallization of calcium carbonate 

accompanying chemical absorption. Ind. Eng. Chem. Fundam. 1984, 23, 153–158. 

13. Meldrum, F.C.; Hyde, S.T. Morphological influence of magnesium and organic additives on the 

precipitation of calcite. J. Cryst. Growth 2001, 231, 544–558. 

14. Qi, L.; Li, J.; Ma, J. Biomimetic morphogenesis of calcium carbonate in mixed solutions of 

surfactants and double-hydrophilic block copolymers. Adv. Mater. 2002, 14, 300–303. 

15. Colfen, H.; Qi, L. A systematic examination of the morphogenesis of calcium carbonate in the 

presence of a double-hydrophilic block copolymer. Chem. A Eur. J. 2001, 7, 106–116. 

16. Rudloff, J.; Antonietti, M.; Colfen, H.; Pretula, J.; Kaluzynski, K.; Penczek, S. Double-hydrophilic 

block copolymers with monophosphate ester moieties as crystal growth modifiers of CaCO3. 

Macromol. Chem. Phys. 2002, 203, 627–635. 

17. Mann, S.; Heywood, B.R.; Rajam, S.; Birchall, J.D. Controlled crystallisation of CaCO3 under 

stearic acid monolayers. Nature 1988, 334, 692–965. 

18. Naka, K.; Huang, S.C.; Chujo, Y. Formation of stable vaterite with poly(acrylic acid) by the 

delayed addition method. Langmuir 2006, 22, 7760–7767. 

19. Aki, S.N.V.K.; Mellein, B.R.; Saurer, E.M.; Brennecke, J.F. High-pressure phase behavior of 

carbon dioxide with imidazolium-based ionic liquids. J. Phys. Chem. B 2004, 108, 20355–20365. 

20. Anthony, J.L.; Maginn, E.J.; Brennecke, J.F. Solution thermodynamics of imidazolium-based 

ionic liquids and water. J. Phys. Chem. B 2001, 105, 10942–10949. 

21. Cadena, C.; Anthony, J.L.; Shah, J.K.; Morrow, T.I.; Brennecke, J.F.; Maginn, E.J. Why is CO2 

so soluble in imidazolium-based ionic liquids? J. Am. Chem. Soc. 2004, 126, 5300–5308. 

22. Sudha, S.Y.; Khanna, A. Evaluation of CO2-ionic liquid systems through molecular modeling. 

World Acad. Sci. Eng. Technol. 2009, 57, 539–542. 



Int. J. Mol. Sci. 2014, 15 11363 

 

23. Ibrahim, A.-R.; Vuningoma, J.B.; Hu, X.H.; Gong, Y.; Dan, H.; Hong, Y.Z.; Wang, H.T.; Li, J. 

High-pressure gas-solid carbonation route coupled with a solid ionic liquid for rapid synthesis of 

rhombohedral calcite. J. Supercrit. Fluids 2012, 72, 78–83. 

24. Ibrahim, A.-R.; Gong, Y.; Hu, X.H.; Hong, Y.Z.; Su, Y.Z.; Wang, H.T.; Li, J. Solid-gas 

carbonation coupled with solid ionic liquid for synthesis of CaCO3: Performance, polymorphic 

control and self-catalytic kinetics. Ind. Eng. Chem. Res. 2013, 52, 9515–9524. 

25. Lopez-Periago, A.M.; Pacciani, R.; Garcia-Gonzalez, C.; Vega, L.F.; Domingo, C.  

A breakthrough technique for the preparation of high-yield precipitated calcium carbonate.  

J. Supercrit. Fluids 2010, 52, 298–305. 

26. Chen, P.C.; Tai, C.Y.; Lee, K.C. Morphology and growth rate of calcium carbonate crystals in a 

gas-liquid-solid reactive crystallizer. Chem. Eng. Sci. 1997, 52, 4171–4177. 

27. Montes-Hernandez, G.; Pommerol, A.; Renard, F.; Beck, P.; Quirico, E.; Brissaud, O. In situ 

kinetic measurements of gas-solid carbonation of Ca(OH)2 by using an infrared microscope 

coupled to a reaction cell. Chem. Eng. J. 2010, 161, 250–256. 

28. Beruto, D.T.; Botter, R. Liquid-like H2O adsorption layers to catalyse the Ca(OH)2/CO2 solid-gas 

reaction and to form a non-protective solid product layer at 20 °C. J. Eur. Ceram. Soc. 2000, 20, 

497–503. 

29. Dickinson, S.R.; Henderson, G.E.; McGrath, K.M. Controlling the kinetic versus thermodynamic 

crystallisation of calcium carbonate. J. Cryst. Growth 2002, 244, 369–378. 

30. Lopez-Periago, A.M.; Pacciani, R.; Vega, L.F.; Domingo, C. Monitoring the effect of mineral 

precursor, fluid phase CO2-H2O composition, and stirring on CaCO3 crystallization in a 

supercritical-ultrasound carbonation process. Cryst. Growth Des. 2011, 11, 5324–5332. 

31. Kedra-Krolik, K.; Gierycz, P. Precipitation of nano-structured calcite in a controlled multiphase 

process. J. Cryst. Growth 2009, 311, 3674–3681. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


