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Abstract: Enamel matrix derivative (EMD) is widely used in periodontal tissue 

regeneration therapy. However, because the bioactivity of EMD varies from batch to batch, 

and the use of a synthetic peptide could avoid use from an animal source, a completely 

synthetic peptide (SP) containing the active component of EMD would be useful.  

In this study an oligopeptide synthesized derived from EMD was evaluated for whether 

it contributes to periodontal tissue regeneration. We investigated the effects of the SP 

on cell proliferation and osteoblast differentiation of human mesenchymal stem cells (MSCs), 

which are involved in tissue regeneration. MSCs were treated with SP (0 to 1000 ng/mL), 

to determine the optimal concentration. We examined the effects of SP on cell proliferation 

and osteoblastic differentiation indicators such as alkaline phosphatase activity, the production 

of procollagen type 1 C-peptide and osteocalcin, and on mineralization. Additionally,  

we investigated the role of extracellular signal-related kinases (ERK) in cell proliferation  

and osteoblastic differentiation induced by SP. Our results suggest that SP promotes these 

processes in human MSCs, and that ERK inhibitors suppress these effects. In conclusion, 

SP promotes cell proliferation and osteoblastic differentiation of human MSCs, probably 

through the ERK pathway. 
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1. Introduction 

Periodontal disease is a chronic inflammation that destroys the periodontal tissue [1]. Various 

therapies for regenerating periodontal tissue destroyed by periodontal disease have been tested.  

Some materials that have been used in periodontal tissue regeneration therapy include bone 

morphogenetic protein-2 (rhBMP-2) [2], platelet-derived growth factor (PDGF) [3], and enamel matrix 

derivative (EMD) [4]. EMD is composed of amelogenin, ameloblastin and tuftelin, and is produced  

by extraction from the tooth buds of juvenile swine [5]. EMD is widely used in periodontal tissue 

regeneration therapy, because it induces the regeneration of periodontal tissue lost in periodontal 

disease [6,7]. EMD promotes cell proliferation, osteoblastic differentiation and mineralization in 

mesenchymal stem cells (MSCs), periodontal ligament (PDL) cells, osteoblasts and cementoblasts, all 

of which are cells involved in periodontal tissue regeneration [8,9]. Although EMD clinically promotes 

periodontal tissue regeneration, this substance is derived from animal tissue and therefore contains 

unknown pathogens and a mixture of heterogeneous proteins [10]. Additionally, the activity of EMD 

can differ depending on lot number. Therefore, to best use the clinical data obtained regarding the 

regeneration effects and postoperative stability of EMD, a completely synthetic peptide containing the 

active component of EMD is required. 

In our previous study, we found that EMD administered underneath the skin on the backs of rats 

induced cartilage-like tissue formation and eosinophilic round bodies (ERBs) [11]. Analysis of the active 

sites for ERB binding in EMD-associated proteins was conducted using matrix-assisted laser desorption 

ionization time-of-flight mass spectrometry. This database analysis identified a seven amino acid 

sequence (WYQNMIR) in amelogenin that corresponds to a portion of the amelogenin exon 5 [11]. 

Based on this sequence, a synthetic oligopeptide (SP) was constructed. 

EMD has been reported to be antigenic and to induce the production of anti-EMD antibodies in the 

host [12]. Shinnick et al. and Lerner have suggested that only peptides of greater than ~10 residues  

(or over 5 kDa) can function as antigens [13,14]. Thus, because SP contains only seven amino acids and its 

molecular mass is 1118 kDa, it is less likely to elicit an immunological response, compared with EMD. 

We found that SP induced bone formation underneath the skin of rats [15], and that the regeneration 

of alveolar bone tissue was stimulated in artificial periodontal defects similarly to EMD [16]. 

Moreover, we have reported that SP promotes cell proliferation of human PDL fibroblasts [17] and rat 

bone marrow stromal cells [18]. SP also induced osteoblastic differentiation and hard tissue formation of 

PDL fibroblasts [19] and PDL stem cells [20]. These findings may contribute to the formation of new hard 

tissue and connective tissue, which is essential for periodontal tissue regeneration. 

MSCs are highly proliferative and have a high potential to undergo osteoblastic differentiation,  

and thus contribute to the regeneration of various tissues [21]. MSCs also contribute to periodontal tissue 

regeneration to induce the formation of alveolar bone and PDL tissue. Previous studies have reported that 
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transplantation of MSCs contributes to periodontal tissue regeneration [22–24]. However, no studies 

have demonstrated the effects of SP on human MSCs. Therefore, this area of investigation is meaningful. 

Mitogen-activated protein kinases (MAPKs) are important regulators of cell proliferation and 

osteoblastic differentiation [25]. The MAPK family comprises extracellular signal-related kinases 

(ERK) 1/2, p38 MAPKs (p38), and Jun amino-terminal kinases (JNK) [26]. Among the three different 

MAPK signaling molecules, ERK 1/2 regulates the cell proliferation and osteoblast differentiation 

induced by EMD and amelogenin peptides [27,28]. However, it is not clear whether SP induces the 

effects of this signaling pathway on cell proliferation and osteoblastic differentiation. 

The aim of this study was to investigate the effect of SP on cell proliferation and osteoblastic 

differentiation of human MSCs. Additionally, we examined ERK 1/2 signaling with regard to the 

interaction between SP and human MSCs using an ERK 1/2 inhibitor. 

2. Results and Discussion 

2.1. Results 

2.1.1. Cell Proliferation 

SP significantly promoted cell proliferation of MSCs cultured for 1, 3, 5 and 7 days in normal 

culture medium (Figure 1, days 1, 3, 5 and 7 * p < 0.05). Additionally, SP promoted the highest cell 

proliferation at a concentration of 10 ng/mL. 

Figure 1. Effect of synthetic peptide (SP) on cell proliferation. mesenchymal stem cells 

(MSCs) were seeded in 96-well plates at 2 × 103 cells/well in normal culture medium. After 

a 24-h culture for cell adherence, the medium was replaced with normal culture medium 

containing SP (0, 1, 10, 100 or 1000 ng/mL) and MSCs were incubated for 1, 3, 5 and 7 days. 

Cell proliferation was measured on days 1, 3, 5 and 7. * p < 0.05 vs. SP (0 ng/mL), at days 1, 

3, 5 and 7. 
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2.1.2. Alkaline Phosphatase (ALP) Staining and Measurement of ALP Activity 

The intensity of ALP staining was stronger in cultures containing SP (Figure 2A, days 7 and 14).  

SP also significantly promoted ALP activity in osteogenic medium at 7 and 14 days (Figure 2B day 7, 

and Figure 2C day 14, * p < 0.05). Additionally, SP promoted both the highest intensity of ALP 

staining and the highest ALP activity at a concentration of 10 ng/mL. 

Figure 2. Effect of SP on alkaline phosphatase (ALP) staining and ALP activity. (A) Confluent 

MSCs were stained using an ALP staining kit after 7 or 14 days of cultivation in osteogenic 

medium containing SP (0, 1, 10, 100 or 1000 ng/mL). Scale bar = 100 μm; (B,C) ALP 

activity was measured at 7 or 14 days. To normalize ALP activity, the amount of ALP was 

normalized to the amount of DNA; (B) day 7, * p < 0.05 vs. SP (0 ng/mL); and (C) day 14, 

* p < 0.05 vs. SP (0 ng/mL). 
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Figure 2. Cont. 

 
(C) 

2.1.3. Procollagen Type 1 C-Peptide (PIP) and Osteocalcin (OCN) Production 

SP significantly promoted Procollagen Type 1 C-Peptide (PIP) and Osteocalcin (OCN) production in 

osteogenic medium on days 7 and 14 of culture (Figure 3A day 7, and Figure 3B day 14, * p < 0.05). 

Additionally, SP promoted the highest production of both PIP and OCN at a concentration of 10 ng/mL. 

Figure 3. Effect of SP on the production of Procollagen Type 1 C-Peptide (PIP) and 

Osteocalcin (OCN). After the MSCs reached confluence, the culture medium was replaced 

with osteogenic medium containing SP (0, 1, 10, 100 or 1000 ng/mL) and the cells were 

cultured for 7 or 14 days. (A) day 7, * p < 0.05, vs. SP (0 ng/mL); and (B) day 14,  

* p < 0.05, vs. SP (0 ng/mL). 
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Figure 3. Cont. 

 
(B) 

2.1.4. Mineralization Assay (Alizarin Red Staining and Extracellular Calcium Deposition) 

The intensity of Alizarin staining became stronger after addition of SP (Figure 4A, days 7 and 14). 

The number of calcified nodules stained with Alizarin Red also increased. SP also significantly 

promoted extracellular calcium deposition at 7 and 14 days (Figure 4B day 7, and Figure 4C day 14,  

* p < 0.05). Additionally, SP promoted the highest intensity of Alizarin Red staining and the most 

extracellular calcium deposition at a concentration of 10 ng/mL. 

Figure 4. Effect of SP on mineralization. (A) Confluent MSCs were stained with Alizarin 

Red after 7 or 14 days of cultivation in osteogenic medium containing SP (0, 1, 10, 100 or 

1000 ng/mL). Scale bar = 100 μm; (B,C) The extracellular calcium deposition was 

measured at 7 or 14 days. (B) day 7, * p < 0.05, vs. SP (0 ng/mL); (C) day 14, * p < 0.05, 

vs. SP (0 ng/mL). 
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Figure 4. Cont. 

(B) 

 
(C) 

2.1.5. Effects of an Extracellular Signal-Related Kinases (ERK) 1/2 Inhibitor on SP-Induced Cell 

Proliferation and Osteoblastic Differentiation 

At 10 ng/mL SP had the strongest effect on cell proliferation and osteoblastic differentiation. 

Therefore, we added the ERK 1/2 inhibitor, PD98059 (10 μM), to the culture medium containing  

10 ng/mL SP to investigate the role of ERK 1/2 in the effects of SP. As shown in Figure 5,  

cell proliferation significantly decreased in cultures treated with both the inhibitor and SP. 

Additionally, as shown in Figures 6–8, the intensity of ALP staining, ALP activity, PIP production, 

OCN production, and mineralization (the intensity of Alizarin Red staining and extracellular calcium 

deposition) significantly decreased in cultures treated with the inhibitor and SP. 
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Figure 5. Effect of PD98059 on SP-induced cell proliferation. MSCs were seeded in  

96-well plates at 2 × 103 cells/well in normal culture medium. After a 24 h culture for cell 

adherence, MSCs were cultured in normal culture medium containing SP (0 or 10 ng/mL), 

or SP (10 ng/mL) with the ERK 1/2 inhibitor PD98059 (10 µM). Cell proliferation was 

measured on days 1, 3, 5 and 7. * p < 0.05, SP (0 ng/mL) vs. SP (10 ng/mL), † p < 0.05,  

SP (10 ng/mL) vs. SP (10 ng/mL) with PD98059 (10 µM). 

 

Figure 6. Effect of PD98059 on ALP staining and ALP activity induced by SP.  

(A) Confluent MSCs were stained using an ALP staining kit after 7 or 14 days of 

cultivation in osteogenic medium containing SP (0 or 10 ng/mL), or SP (10 ng/mL) with 

the ERK 1/2 inhibitor, PD98059 (10 µM). Scale bar = 100 µm; (B,C) ALP activity was 

measured at 7 or 14 days. To normalize ALP activity, the amount of ALP was normalized 

to the amount of DNA. * p < 0.05, SP (0 ng/mL) vs. SP (10 ng/mL), † p < 0.05,  

SP (10 ng/mL) vs. SP (10 ng/mL) with PD98059 (10 µM). 
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Figure 6. Cont. 

 
(B) 

 
(C) 

Figure 7. Effect of PD98059 on the production of PIP and OCN induced by SP. After the 

MSCs reached confluence, the culture medium was replaced with osteogenic medium 

containing SP (0 or 10 ng/mL), or SP (10 ng/mL) with the ERK 1/2 inhibitor, PD98059  

(10 µM) and the cells were cultured for 7 (A) or 14 (B) days. * p < 0.05, SP (0 ng/mL) vs. 

SP (10 ng/mL), † p < 0.05, SP (10 ng/mL) vs. SP (10 ng/mL) with PD98059 (10 µM). 
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Figure 7. Cont. 

 
(B) 

Figure 8. Effect of SP on mineralization. (A) Confluent MSCs were stained with Alizarin 

Red after 7 or 14 days of cultivation in osteogenic medium containing SP (0 or 10 ng/mL), 

or SP (10 ng/mL) with the ERK 1/2 inhibitor, PD98059 (10 µM). Scale bar = 100 µm;  

(B,C) The extracellular calcium deposition was measured at 7 or 14 days. * p < 0.05,  

SP (0 ng/mL) vs. SP (10 ng/mL), † p < 0.05, SP (10 ng/mL) vs. SP (10 ng/mL) with 

PD98059 (10 µM). 
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Figure 8. Cont. 

 
(C) 

2.2. Discussion 

The results of this study indicate that SP promotes cell proliferation, osteoblastic differentiation, 

and mineralization of MSCs that contribute to periodontal tissue regeneration. Moreover, an ERK 1/2 

inhibitor suppressed these SP-induced effects. 

EMD promotes cell proliferation of C2C12 cells [29], a typical pluripotent mesenchymal cell line. 

EMD also promotes cell proliferation of bone marrow stromal cells that contribute to the regeneration 

of various tissues [30]. In our previous studies, SP promoted cell proliferation of rat bone marrow 

stromal cells [18] and PDL fibroblasts [17,19]. SP also promoted cell proliferation of PDL stem 

cells [20]. In the current study, SP promoted cell proliferation of MSCs. Specifically, SP at a 

concentration of 10 ng/mL had the strongest stimulatory effect. In the process of periodontal tissue 

regeneration, the promotion of MSC cell proliferation is essential. Therefore, SP, which promotes cell 

proliferation of MSCs, contributes to periodontal tissue regeneration. 

ALP is a marker of the osteogenic phenotype and indicates the activity of mineralization and hard 

tissue formation processes [31,32]. EMD promotes ALP activity in osteoblasts [33] and C2C12 cells [29]. 
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mRNA expression of type I collagen [35,36]. SP also promotes the immunohistological expression of 

type I collagen after injection into tissues with artificial periodontal defects [16]. As shown in Figure 3A, 

SP promoted the production of PIP in human MSCs. Therefore, it is likely that SP promotes the 

production of PIP and induces an early stage of osteoblastic differentiation. 

OCN is a non-collagenous protein component of bone matrix and a late marker of osteoblastic 

differentiation [37]. EMD promotes OCN mRNA expression in C2C12 cells [29], and enamel matrix 
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stromal cells [38]. SP also promotes the production of OCN in PDL fibroblasts [19] and PDL stem 

cells [20]. In our study, SP promoted OCN production in MSCs. Subsequently, SP seemed to induce 

the differentiation of MSCs into mature osteoblasts, because OCN was secreted during the late stage of 

bone formation. 

We quantified the calcium deposition in cultured MSCs using a biochemical mineralization assay 

based on Alizarin Red staining and extracellular calcium deposition. Alizarin Red staining is used to 

ascertain the presence of mineralized nodules formed by cells of osteogenic lineages; these nodules are 

indicative of bone matrix calcification. 

Alizarin Red staining has also been employed to detect the mineralization of MSCs. EMD promotes 

the mineralization of rat bone marrow stromal cells [39,40]. The results of the current study suggest 

that SP promotes both the number of mineralized nodules stained with Alizarin Red, as well as the 

extracellular calcium deposition in MSCs. Mineralization is essential for regenerating periodontal 

tissue lost by periodontal disease. These findings suggest that SP promotes the mineralization of the 

extracellular matrix in MSCs and plays a role in the regeneration of periodontal tissue. 

ERK 1/2 is one of the MAPK family members and regulates both cell proliferation and osteoblast 

differentiation. It has been suggested that EMD and the other amelogenin peptides can regulate cellular 

functions through the ERK 1/2 signaling pathway [41,42]. We speculated that cell proliferation and 

osteoblastic differentiation of human MSCs are regulated by the ERK 1/2 signaling pathway as well as 

EMD. Therefore, using the ERK 1/2 inhibitor, PD98059, we examined the molecular mechanism by 

which SP affects cell proliferation and osteoblastic differentiation in human MSCs. The concentration 

of the inhibitor (10 µM) was set according to a previous report [41]. As shown in Figures 5–8,  

the inhibitor significantly suppressed cell proliferation and osteoblastic differentiation induced  

by SP. Therefore, we propose the hypothesis that SP promotes cell proliferation and osteoblastic 

differentiation thorough the ERK 1/2 signaling pathway. However, the detailed mechanism was not 

completely revealed. We think it is necessary to examine the mechanism by which SP induces cell 

proliferation and osteoblastic differentiation using other inhibitors of MAPKs involved in cell 

proliferation and differentiation, such as p38 and JNK. Thus, in future studies we will investigate more 

signaling pathways. 

In our previous study, SP had the strongest effect on cell proliferation and osteoblastic 

differentiation of PDL fibroblasts and PDL stem cells at a concentration of 100 ng/mL. In the current 

study, 10 ng/mL SP had the strongest effect on cell proliferation and osteoblastic differentiation of 

human MSCs. We suggest that at a high concentration of SP (100 ng/mL) cell proliferation and 

osteoblastic differentiation are induced in PDL fibroblasts and PDL stem cells, which directly 

construct periodontal tissues. However, a lower SP concentration (10 ng/mL) is the optimum for MSCs 

to induce indirect participation in periodontal tissue regeneration. Thus it appears that different cells  

have different optimal concentrations. In the present study, we found for the first time that the optimal 

concentration of SP is different depending on the type of cell. EMD has various effects on cells at various 

stages of cell proliferation and cell differentiation [43,44]. Thus, we speculate that SP also has various 

effects depending on cell type and cell maturation stage. However, the reasons behind the different optimal 

concentrations are not clear, yet. Hence, we intend to examine this question in future research. 

In the study of periodontal tissue regeneration, EMD and recombinant amelogenin peptides are used 

in vitro and in vivo. EMD is derived from animal tissue. Moreover, EMD has been reported to be 
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antigenic and to induce the production of anti-EMD antibodies. In contrast, SP can be artificially 

synthesized. Because its molecular mass is lower than that of EMD and other recombinant amelogenin 

peptides, it is less likely to elicit an immunological response. Therefore, we suggest that SP is 

advantageous because it can be artificially synthesized and is not likely to induce antibodies in the host. 

These benefits are very useful for clinical treatments. 

Miron et al. have suggested that EMD promotes cell clustering via connexin 43 molecules and that 

this cell clustering involves osteoblastic differentiation and mineralization of human osteoblasts [45]. 

In Figure 4A, SP appeared to cause cell clustering and calcified nodules seemed to form along 

with the cell clustering. Thus, we suggest that similarly to EMD, SP forms cell clustering and may  

involve mineralization. 

3. Experimental Section 

3.1. Preparation of Synthetic Oligopeptide and Cell Culture 

We synthesized SP based on the sequence, WYQNMIR, by traditional solid-phase peptide synthesis 

in conjunction with the “tea-bag” methodology using Boc/benzyl-based chemistry, as previously 

described [11]. SP was prepared at the concentrations of 0, 1, 10, 100 and 1000 ng/mL in culture 

medium. Human MSCs (Yub625) were purchased from the Riken Bioresource Center (Kobe, Japan). 

The origin of human primary MSCs was human cartilage. MSCs have high proliferative capacity  

and the potential of osteoblast differentiation. MSCs were cultured in normal culture medium in the 

presence of 10% fetal bovine serum (Gibco BRL, Life Technology, Grand Island, NY, USA),  

500 U/mL penicillin and 500 µg/mL streptomycin (Nacalai Tesque, Kyoto, Japan). MSCs were seeded 

onto T75 culture dishes (Falcon BD, Franklin Lakes, NJ, USA) and incubated at 37 °C in 5% CO2. 

MSCs at passage 5 (P5) were used for further experiments. In the osteoblastic differentiation assay,  

we used osteogenic medium containing 50 µM L-ascorbic acid 2-phosphate (Nacalai Tesque, Kyoto, 

Japan), 10 mM β-glycerophosphate (Wako Pure Chemical Industries Ltd., Tokyo, Japan), and  

10 nM dexamethasone (Wako Pure Chemical Industries Ltd., Osaka, Japan). 

3.2. Cell Proliferation Assay 

MSCs were seeded in 96-well plates at 2 × 103 cells/well in normal culture medium. After a 24 h 

culture for cell adherence, the medium was replaced with normal culture medium containing SP (0, 1, 

10, 100 or 1000 ng/mL) and MSCs were incubated for 1, 3, 5 and 7 days. The number of viable cells at 

each time point was determined by measuring the amount of formazan generated in six wells per group 

using the Cell Count Reagent SF (Nacalai Tesque, Kyoto, Japan). The absorbance of formazan was 

measured at 450 nm, and the data were analyzed with the SoftMax® Pro Microsuede Data Acquisition 

and Analysis software (Molecular Devices, Sunnyvale, CA, USA). 

3.3. Alkaline Phosphatase (ALP) Staining and Measurement of ALP Activity 

MSCs were seeded at 4 × 104 cells/well in 24-well plates and were cultured to confluence in normal 

culture medium. The medium was then replaced with osteogenic medium containing SP (0, 1, 10, 100 

or 1000 ng/mL). After 7 or 14 days, MSCs were washed with PBS and fixed. ALP staining was 
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performed using an Alkaline Phosphatase kit (Sigma-Aldrich, St. Louis, MO, USA) according to the 

manufacturer’s protocol. 

MSCs were cultured for 7 or 14 days, and then washed with PBS and lysed with 300 µL of 0.2% 

Triton X-100 (Sigma-Aldrich). ALP activity was measured by a 1-step pNPP substrate (Pierce 

Biotechnology, Inc., Rockford, IL, USA). The DNA content was measured using the PicoGreen dsDNA 

Assay kit (Invitrogen, Paisley, UK). To normalize ALP activity, the amount of ALP was normalized to 

the amount of DNA in the cell lysate. The data were analyzed with the SoftMax® Pro software. 

3.4. Measurement of Procollagen Type 1 C-Peptide (PIP) and Osteocalcin (OCN) Production 

MSCs were seeded at 4 × 104 cells/well in 24-well plates and were cultured to confluence in  

normal medium. The medium was replaced with osteogenic medium containing SP (0, 1, 10, 100 or  

1000 ng/mL) and MSCs were cultured for 7 or 14 days. The culture supernatant was collected,  

and then PIP and OCN levels were measured with a PIP EIA kit (Takara Bio Inc., Otsu, Japan) and 

Gla type Osteocalcin EIA kit (Takara Bio Inc., Otsu, Japan). 

3.5. Mineralization Assay (Alizarin Red Staining and Measurement of Extracellular  

Calcium Deposition) 

MSCs were seeded at 4 × 104 cells/well in 24-well plates and were cultured to confluence in normal 

medium. The medium was then replaced with osteogenic medium containing SP (0, 1, 10, 100 or  

1000 ng/mL) and MSCs were cultured for 7 or 14 days. The medium was removed, the cells were 

washed with PBS, and the MSCs were fixed in 70% ethanol for 10 min at −20 °C. MSCs were stained 

with a solution of 1% Alizarin Red S (Wako Pure Chemical Industries Ltd., Osaka, Japan) for 3 min  

at room temperature and washed three times with distilled water. 

Extracellular calcium deposition was measured after the calcium was dissolved in 10% formic acid 

(Nacalai Tesque, Kyoto, Japan). The calcium was quantified using a Calcium E-test kit (Wako Pure 

Chemical Industries Ltd., Osaka, Japan) according to the manufacturer’s protocol. The reaction 

product absorbance was measured at 610 nm and analyzed with the SoftMax® Pro software. 

3.6. Effect of Extracellular Signal-Related Kinases (ERK) 1/2 Inhibition on Cell Proliferation and 

Osteoblast Differentiation 

In this study, we treated MSCs with SP (0 to 1000 ng/mL) to investigate the optimal concentration. 

We determined the optimal concentrations at which SP had the strongest effect on cell proliferation and 

osteoblast differentiation. Using PD98059, an ERK 1/2 inhibitor, we investigated the role of ERK 1/2 in 

SP-induced (optimal concentration) effects on MSCs (Sigma-Aldrich, St. Louis, MO, USA). MSCs  

were treated with culture medium containing 10 µM PD98059 in the cell proliferation and osteoblast 

differentiation assays. 

3.7. Statistical Analysis 

In the present study, six wells were prepared for the cell proliferation assay, and three wells were 

prepared for the remaining experiments; each experiment was repeated three times. The statistical 
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analysis was performed using IBM SPSS Statistics Ver. 17 (IBM, Chicago, IL, USA). One-way 

analysis of variance (ANOVA) followed by Tukey’s post hoc test was used to determine significance. 

p values < 0.05 were considered significant. 

4. Conclusions 

In conclusion, the present study suggests that SP promotes cell proliferation, osteoblast differentiation, 

and mineralization in human MSCs. These results indicate that SP would be useful for periodontal 

tissue regeneration, because the promotion of cell proliferation and differentiation in MSCs is essential 

for this process. Moreover, our results suggest that SP promotes cell proliferation and osteoblast 

differentiation through the ERK 1/2 pathway. These results show for the first time the effects of SP on 

human MSCs. However, the molecular mechanisms of SP are not clear, yet, and it is necessary to 

investigate the detailed molecular mechanisms of SP in future studies. 
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