
Int. J. Mol. Sci. 2014, 15, 14427-14441; doi:10.3390/ijms150814427 
 

International Journal of 

Molecular Sciences 
ISSN 1422-0067 

www.mdpi.com/journal/ijms 

Article 

Low-Frequency High-Magnitude Mechanical Strain of 
Articular Chondrocytes Activates p38 MAPK and Induces 
Phenotypic Changes Associated with Osteoarthritis and Pain 

Derek H. Rosenzweig 1,2, Thomas M. Quinn 3 and Lisbet Haglund 1,2,* 

1 The Orthopaedics Research Lab, Department of Surgery, McGill University, Montreal,  

QC H3G1A4, Canada; E-Mail: Derek.Rosenzweig@mail.mcgill.ca 
2 McGill Scoliosis & Spine Group, Department of Surgery, McGill University, Montreal,  

QC H3G1A4, Canada 
3 Department of Chemical Engineering, McGill University, Montreal, QC H3A2B2, Canada;  

E-Mail: thomas.quinn@rychiger.com 

* Author to whom correspondence should be addressed; E-Mail: lisbet.haglund@mcgill.ca;  

Tel./Fax: +1-514-934-1934 (ext. 35380). 

Received: 14 April 2014; in revised form: 12 August 2014 / Accepted: 14 August 2014 /  

Published: 19 August 2014 

 

Abstract: Osteoarthritis (OA) is a debilitating joint disorder resulting from an incompletely 

understood combination of mechanical, biological, and biochemical processes. OA is often 

accompanied by inflammation and pain, whereby cytokines associated with chronic OA 

can up-regulate expression of neurotrophic factors such as nerve growth factor (NGF). 

Several studies suggest a role for cytokines and NGF in OA pain, however the effects of 

changing mechanical properties in OA tissue on chondrocyte metabolism remain unclear. 

Here, we used high-extension silicone rubber membranes to examine if high mechanical 

strain (HMS) of primary articular chondrocytes increases inflammatory gene expression 

and promotes neurotrophic factor release. HMS cultured chondrocytes displayed up-regulated 

NGF, TNFα and ADAMTS4 gene expression while decreasing TLR2 expression, as compared 

to static controls. HMS culture increased p38 MAPK activity compared to static controls. 

Conditioned medium from HMS dynamic cultures, but not static cultures, induced significant 

neurite sprouting in PC12 cells. The increased neurite sprouting was accompanied by 

consistent increases in PC12 cell death. Low-frequency high-magnitude mechanical strain 

of primary articular chondrocytes in vitro drives factor secretion associated with 

degenerative joint disease and joint pain. This study provides evidence for a direct link 

between cellular strain, secretory factors, neo-innervation, and pain in OA pathology. 

OPEN ACCESS



Int. J. Mol. Sci. 2014, 15 14428 

 

 

Keywords: articular cartilage; osteoarthritis; inflammation; pain; nerve growth factor; 

mechanical stretch; p38 MAPK 

 

1. Introduction 

Articular cartilage functions in load bearing and smooth gliding motion of synovial joints. This 

function is directly attributed to the composition of the extracellular matrix (ECM), mainly comprised 

of collagen type II and proteogylcans [1,2]. A sparse population of chondrocytes within the ECM is 

responsible for both matrix synthesis and degradation. Articular cartilage is an avascular tissue with 

limited self-repair properties, and joint overload can cause a catabolic shift in chondrocyte phenotype 

by increasing expression of matrix metalloproteinases (MMPs) and aggrecanases (a disintegrin and 

metalloproteinase with thrombospondin motifs—ADAMTSs) initiating osteoarthritis (OA) [1,3]. Studies 

have suggested a link between OA, inflammation, neurotrophic factors and chronic pain, yet the 

mechanisms linking inflammatory pain with OA progression remain unclear [4]. 

Toll-like receptors (TLRs) are part of the superfamily of interleukin-1 (IL-1) receptors. TLRs detect 

outer pathogen components such as peptidoglycan from Gram-positive bacteria and lipopolysaccaride 

from Gram-negative bacteria [5] as well as cartilage matrix fragments [6], initiating an innate immune 

response. TLR activation often leads to cytokine release which contributes to inflammatory responses [7]. 

Additionally, mechanical strain can promote increased TLR expression in chondrocytes [8]. Since 

increased mechanical strains in OA cartilage leads to protease up-regulation [3], probable increases in 

matrix fragments may further promote TLR signalling, cytokine release and inflammatory responses. 

Mechanical strain may also affect cell homeostasis through mitogen activated protein kinases (MAPK) [9]. 

MAPKs consist of extracellular related kinase (ERK), p38 MAPK and c-JUN N-terminal kinase 

(JNK). We have recently shown that p38 signaling is involved in chondrocyte dedifferentiation [10],  

a process thought to be linked to disease progression. Effects of high magnitude mechanical strain  

on chondrocyte TLR expression, MAPK activity and inflammatory cytokine production have not  

been established. 

We have developed a novel culture technique that facilitates more continuous growth of cells while 

limiting effects of contact inhibition and reducing the necessity for passaging [11,12]. Additionally,  

by using flexible silicone rubber dishes this culture device can apply low-frequency cyclic strain to 

modulate mesenchymal stem cell and C2C12 myoblast cell differentiation [13,14]. We also demonstrated 

that this device can apply high-magnitude near-injurious strain [15,16] to intervertebral disc (IVD) 

cells [17] resulting in increased NGF, TNF and inflammatory factor expression which may be related 

to low back pain. It is generally accepted that OA progression causes lower tissue compressive 

properties, resulting in higher tensile strains to resident cells—a process that can directly affect  

cell phenotype, metabolism and viability. Here, we use our dynamic culture device to apply  

high-magnitude stretch to primary chondrocytes at very low frequencies so as to avoid inducing  

cell detachment and death. We hypothesize that low-frequency high mechanical cyclical strain  

(20% at 0.0001 Hz) of primary articular chondrocytes can promote secretion of inflammatory and 

nociceptive factors associated with OA and joint pain. 
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2. Results 

2.1. Low-Frequency Dynamic Culture Modulates Inflammatory and Matrix Remodelling Gene Expression 

We have previously established that cultures of primary cells, including chondrocytes, on chemically 

modified silicone surfaces alone do not influence physiological cell homeostasis [11–14,18]. High 

mechanical strain (HMS—20% stretch at 0.0001 Hz) was applied to primary chondorcytes for 8 h, 

followed by 16 h of rest and an additional 8 h of cyclic stretch (8–16–8, Figure 1). This was compared 

to cells cultured on static silicone surfaces, which were not subject to HMS. Cyclical dynamic HMS 

strain applied to the primary chondrocytes did not cause any dramatic effects to gross cell morphology 

(Figure 2A). Gene expression analysis revealed significantly increased levels of the neurotrophic and 

inflammatory factors NGF (2.93 ± 0.67 fold; p = 0.008) and TNFα (1.96 ± 0.48 fold; p = 0.034) 

compared to static cultured controls (Figure 2B). There was a strong trend for increased ADAMTS4 

expression (3.51 ± 1.27 fold; p = 0.06). TLR2 expression was significantly decreased 2.03 ± 0.17 fold 

(p = 0.0071). No significant changes were detected for TLR4, MMP3, MMP13 or ADAMTS5 

expression in dynamic versus static cultured chondrocytes (Figure 2B). 

Figure 1. Cell stretching device and stretch protocol. Schematic representation of mechanical 

stretching device (A) used to apply low-frequency high-magnitude strains; (B) Graphical 

representation of the 8–16–8 and stretch protocol applied to primary chondrocytes. 
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Figure 2. Application of the 8–16–8 stretch protocol to primary articular chondrocytes.  

(A) Representative morphological images of static and HMS cultured primary articular 

chondrocytes. Scale bar: 200 μm; (B) Gene expression analysis immediately after stretch 

protocol ended. Error bars: ±SEM, n = 6 (TLR2, TLR4, NGF and TNF); n = 3 (MMP3, 

MMP13, ADAMTS4 and ADAMTS5). Student’s t-test. * indicates p < 0.05; ** indicates  

p < 0.01; # indicates p = 0.06. 

 

2.2. Low-Frequency Dynamic Culture of Primary Chondroctyes Increases p38 Activity 

Since alterations in MAPK signaling are associated with chondrocyte dedifferentiation and  

HMS increased expression of genes associated with degenerative joint disease, we analyzed p44/42  

(ERK) and p38 activity in HMS and static cultures. Western blot analysis showed no changes in  

phospho-ERK levels, yet revealed a consistent increase in phospho-p38 in the HMS culture cells 

(Figure 3A). Densitometry analysis of normalized MAPK activity (Figure 3B) from three individual 

experiments revealed a significant (4.22 ± 1.90)-fold increase in phospho-p38 in HMS cultured cells 

compared to static cultured cells (p = 0.0241) (Figure 3B). These data strongly indicate increased p38 

activity in chondrocytes subjected to low-frequency high-magnitude strain. 

2.3. Low-Frequency Dynamic Culture Drives Chondrocyte Secretion of Neurotrophic Factors 

The PC12 cell line is derived from rat pheochromocytoma, responds to NGF by sprouting axon-like 

neurites, and has been used extensively to study neuronal differentiation. To assess potential secretion 

of neurotrophic factors by HMS cultured chondrocytes, collected conditioned media from HMS and 

static cultures were applied to PC12 cells. After 4 days in culture, PC12 cells exposed to both vehicle 

or static culture conditioned media did not appear to have many neurites (Figure 4A). PC12 cells 

treated with both 50 ng/mL of NGF and HMS culture-conditioned media displayed a multitude of cells 
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sprouting axon-like neurites (Figure 4A). Vehicle treated controls had a proportion of 20.38% ± 2.48% 

cells with neurites. NGF-treated PC12 cells displayed a significantly greater proportion of neurite 

containing cells (80.8% ± 2.62%, p = 0.00061). HMS conditioned media-treated cells also displayed a 

significantly higher proportion of neurite containing cells (54.72% ± 2.46%, p = 0.0079) as compared 

to vehicle controls. Static conditioned media-treated cells did not show any statistical difference in the 

proportion of neurite containing cells (24.19% ± 3.61%, p = 0.301) compared to controls (Figure 4B). 

Figure 3. Western blot analysis. (A) Images acquired from immunoblots probing cell lysates 

from 3 donor animals (Donor A–C) probing for phosphorylated p44/42 (ERK), total p44/42 

(ERK), phosphorylated p38, and for α-tubulin as a loading control; (B) Densitometry analysis 

of pERK normalized to total ERK and p-p38 normalized to α-tubulin; (C) Mean fold-difference 

in high mechanical strain (HMS) induced p-ERK and p-p38 activity versus static culture 

chondrocyte controls. Error bars: ±SEM, n = 3. Student’s t-test. * indicates p < 0.05.  

ST, static; HMS, high mechanical strain. 

 

Figure 4. Conditioned media from HMS-cultured chondrocytes promotes neurite outgrowth 

in PC12 cells. (A) Representative phase images showing conditioned media from static and 

HMS cultured chondrocytes applied to PC12 cells and neurite outgrowth was observed and 

compared to vehicle (−NGF) and NGF treated controls. White arrows in phase images 

indicate noticeable cell debris on dish bottoms. Scale bar: 200 μm; (B) Quantification of 

neurite outgrowth. Error bars: ±SEM, n = 6, Student’s t-test. ** indicates p < 0.01;  

*** indicates p < 0.001. All samples were compared to −NGF controls. 
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2.4. Low-Frequency Dynamic Chondrocyte Culture Drives Secretion of Cell Death-Promoting Factors 

In a parallel study on effects of low-frequency high-magnitude strain on human intervertebral disc 

cells, conditioned media from HMS intervertebral disc cell cultures caused significantly increased cell 

death when applied to PC12 cells [17]. Here, PC12 cells exposed to HMS chondrocyte cultured media 

consistently displayed traces of cell debris in culture dishes (Figure 4A, white arrows). Compared to 

vehicle treated control PC12 viability (93.2% ± 1.34%), Live/Dead assay revealed a consistently small, 

but significant reduction in viability (90.3% ± 0.79%, p = 0.016) when PC12 cells were exposed to the 

dynamic media (Figure 5). NGF treatment displayed 92.7% ± 1.21% viable cells. PC12 cells treated 

with static culture media displayed 93.7% ± 0.56% viable cells, which was also significantly higher 

than cells treated with the dynamic conditioned media (p = 0.0065) (Figure 5). 

Figure 5. Conditioned media from HMS-cultured chondrocytes causes increased PC12 cell 

death. (A) Representative Live/Dead images showing conditioned media from static and 

HMS cultured chondrocytes applied to PC12 cells; viability was assessed and compared to 

vehicle (−NGF) and NGF treated controls. Green cells (Calcein AM) represent live cells, 

and red cells (Ethidium homodimer) indicate dead cells. Scale bar: 200 μm; (B) Quantification 

of viability. Error bars: ±SEM, n = 6, Student’s t-test. * indicates p < 0.05; ** indicates  

p < 0.01. All samples were compared to −NGF controls. 

 

3. Discussion 

Changing biomechanical properties within degenerating joints can influence and promote 

inflammatory and cytokine responses, increasing factors that have been associated with joint pain in 

OA. To elucidate the cellular and molecular effects of high mechanical strain, primary bovine chondrocytes 

were subjected to HMS culture in our unique dynamic culture device coupled to high-extension 

silicone rubber (HESR) culture dishes. Gene expression, MAPK activity, and conditioned media were 

analyzed revealing suppressed TLR gene expression and an up-regulation of NGF, TNF, MMP and 

ADAMTS gene expression. The altered gene expression was associated with increased p38 activity. 

Furthermore, conditioned media from dynamically cultured cells was able to induce significant neurite 

outgrowth in PC12 cells. The conditioned media, however, also caused an increase in cell death 

compared to static, NGF- and vehicle-treated controls. These data indicate that adverse mechanical 
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strain can cause isolated chondrocytes to assume a more degenerate-like phenotype and secrete factors 

(NGF, TNF) which have been associated with cartilage degeneration and pain. 

Several clinical and animal studies have shown that excessive mechanical loading can disrupt 

matrix composition [9], alter cell metabolism and gene expression [19] and change overall mechanical 

properties in articular cartilage [20,21]. It is quite possible that such changing biomechanics within 

early degenerate tissue applies higher mechanical strains to drive inflammatory and catabolic gene 

expression in vivo. Several reports have suggested that increased TNFα and IL1β (among other 

inflammatory factors) are increased in synovial tissue of OA patients. Additionally, nociceptive agents 

NGF and brain-derived neurotrophic factor (BDNF) have also been observed in OA patients. In the 

functionally similar intervertebral disc tissue, we have observed these same factors in surgical samples 

from patients suffering chronic axial back pain [22]. Moreover, HMS applied to isolated healthy IVD 

cells induced NGF and TNF production, which stimulated PC12 cell neurite sprouting. Taken together, 

our data suggest that adverse mechanical stretch promotes the production of factors associated with 

tissue degeneration and pain. 

TLR signalling has recently been implicated in osteoarthritis, cartilage degeneration and pain. TLR2 

and TLR4 receptors are both expressed by osteoarthritic chondrocytes [23,24] as well as in synovial 

tissue of rheumatoid arthritis patients [25]. TLR signalling results in increased production of 

inflammatory factors associated with chronic arthritis pain [26,27]. We have reported that HMS strain 

applied to human intervertebral disc cells can increase TLR2 and TLR4 gene expression [17]. 

Interestingly, the exact same HMS strain applied to primary bovine articular chondrocytes had no 

effect on TLR4 expression and significantly reduced TLR2 transcript levels. This may be a unique 

difference between IVD cells and chondrocytes of the knee, or it may be due to species differences 

between bovine and human samples. Future experiments will evaluate the effects of HMS strain on 

isolated human articular chondrocytes. 

In addition to probing for TLR receptor expression, the present study probed HMS cultured 

chondrocytes for gene markers often associated with cartilage degeneration and pain. TNFα has been 

strongly associated with both joint degeneration [28,29] and pain [30,31]. HMS caused a significant 

up-regulation of TNFα in primary chondrocytes, suggesting a biomechanical role for increased TNF in 

OA. HMS culture also caused significantly increased expression of the neurotrophic factor NGF. 

Increases in the active form of NGF have been directly linked with progression of degenerative  

joint [32] and degenerative disc disease [22,33], and anti-NGF therapies have had some success in pain 

alleviation [34]. HMS culture of primary chondrocytes also caused a trend for increased expression of 

the matrix metalloproteinase 3 (MMP3) and the aggrecanase ADAMTS4, both of which are classically 

involved in joint degeneration [35,36]. Combined with recent findings in HMS culture of IVD cells [17], 

our present findings also suggest a mechanical role for increased expression of factors involved in a 

degenerate phenotype in isolated articular chondrocytes. 

The MAP kinases, among other signal transduction proteins, can transmit cellular stress signals to 

alter cell phenotype and behavior. Modulation of ERK and p38 activities has been shown in models of 

both mechanically strained cartilage and early OA [37–39]. When an adverse cyclical strain of 20% 

was applied to primary chondrocytes in this study, increased p38 activity was observed possibly due to 

mechanical activation of integrins [40]. This data strongly correlates with our previous findings in an 

acute mechanical injury model in osteochondral explants [9], suggesting that increased p38 activity 
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may contribute to phenotypic changes of chondrocytes under high mechanical strains. Interestingly, 

p38 activity is also involved in chondrocyte dedifferentiation [10] a cellular process that has been 

linked to degenerative disease. Similar to OA progression, both p38 and ERK signalling have been 

implicated in intervertebral disc degeneration and inflammation [41]. Here, HMS culture of primary 

chondrocytes showed significantly increased p38 activity, which may indicate a phenotypic switch of 

the cells. Further studies on the exact mechanism through which mechanical strain-induces p38 

activity and drives these phenotypic changes in chondrocytes may yield important insights for novel 

therapeutics to combat joint degeneration and pain. 

Healthy articular cartilage tissue is avascular and aneural. Degradation of the tissue and remodeling 

of the underlying bone during disease progression can lead to neo-vascularization and nerve fiber  

in-growth [42] to the tissue and surrounding synovium. This sets the stage for inflammation and pain 

in OA. We investigated the ability of HMS cultured chondrocytes to produce factors which can 

stimulate innervation. PC12 cells have been used in a variety of studies for neuronal differentiation and 

neurite outgrowth including HMS cultures [17]. Here, HMS conditioned media was able to drive 

significant neurite outgrowth in PC12 cells while the static culture conditioned media did not. This 

data suggests that HMS culture not only causes increased NGF gene expression but also produces 

enough protein levels of NGF to stimulate PC12 cell differentiation towards a neuronal phenotype.  

The HMS conditioned media also contained factors which promoted a slight, but consistent increase in 

PC12 cell death. This may be due to the observed increase in factors such TNFα, which is known to 

induce PC12 cell death [43]. HMS culture has also been shown to cause increased inflammatory factor 

secretion in human IVD cells, which also may play a role in the observed cell death [17]. Taken 

together, these in vitro findings indicate that changes in mechanical properties in OA cartilage can 

drive articular chondrocytes to produce factors, including NGF, which can potentially stimulate 

neuronal ingrowth, cell death and pain in vivo. 

Our culture device was initially used to culture large populations of phenotypically enhanced 

primary chondrocytes for tissue engineering applications [11]. Another advantage of this device is the 

application of high magnitude cyclical strains at very low frequencies, thereby avoiding induced cell 

death. Application of mechanical strains over 20% combined with frequencies above 0.5 Hz have  

been associated with apoptosis and cell death [44]. A recent report showed that cyclic mechanical 

compression of cartilage explants causes secretion of NGF [45], however the frequency of cyclic strain 

was 0.5 Hz (1 MPa) while no viability analysis was performed and no functional assessment was made 

with the collected conditioned media. Also, explants used in that study were dissected from the murine 

rib cage. That type of mechanical strain used may have caused trauma and cell death. We have 

successfully used low frequency cyclical strain to modulate mesenchymal stem cell [14] and C2C12 

myoblast cell line [13] differentiation and lineage specification. The exact HMS strain protocol used  

in this study was also used to drive similar effects of increased NGF and other factors described  

here in human nucleus pulposus and annulus fibrosus cells isolated from intervertebral discs [17]. 

Interestingly, HMS culture of IVD cells promotes release of factors which can drive significant PC12 

cell death, whereas conditioned media from HMS culture of chondroctyes in this study did not produce 

this result in PC12 cells. This demarcation in stretch-bearing capacities between disc cells and 

chondrocytes suggests that cartilage may resist HMS more than IVD tissue. Future studies will focus 

on mechanisms by which HMS exerts its effects on chondrocyte phenotype. Also, more in-depth 
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studies will examine high mechanical strain to cells cultured in 3D matricies which may yield 

important insights to the biomechanical role in OA disease progression, inflammatory factor secretion, 

tissue innervation and pain. 

4. Experimental Section 

4.1. Chondrocyte Isolation 

Primary bovine chondrocytes were isolated as described previously [11,12]. Briefly, knee joints from 

freshly slaughtered skeletally mature cows were obtained from a local slaughterhouse. Approximately 5 g 

of tissue was washed in sterile phosphate buffered saline (PBS) supplemented with antibiotics and cut 

into 1–2 mm pieces. The tissue was digested overnight in a T-75 flask containing 30 mL of chondrocyte 

growth medium (high-glucose DMEM; 0.1 mM Nonessential Amino Acids; 10 mM HEPES; 1 mM 

sodium pyruvate; 10% fetal bovine serum; and 1% penicillin–streptomycin–glycine solution) supplemented 

with 1.5 mg/mL collagenase type II (Invitrogen/Gibco, Burlington, ON, Canada). The digest was 

passed through a 100 µm filter (BD Biosciences, Mississauga, ON, Canada) and centrifuged at 300× g 

for 5 min. Pelleted chondrocytes were washed with sterile PBS and centrifuged again at 300× g for  

5 min. Cells were resuspended in 10 mL of chondrocyte growth medium and counted. 

4.2. Static Silicone and High Mechanical Dynamic Strain 

All silicone surfaces were salinized and coated with collagen type I to promote cell adhesion 

exactly as described previously [11–14,17,46]. Primary chondrocytes (200,000 cells) were seeded on 

high-extension silicone rubber (HESR) dishes (28 cm2 initial surface area) and static control 60 mm 

polystyrene culture dishes coated with approximately 500 µm of silicone rubber termed static silicone 

(Static Culture) (Factor II—surface area 28 cm2). Both static and HESR dishes were cultured for 48 h 

with cells in their respective medium prior to starting stretch protocols, as described above 

supplemented with 10% FBS. All silicone rubber culture surfaces were chemically modified and 

coated with rat tail collagen type I (50 µg/mL; Sigma-Aldrich, Oakville, ON, Canada) to promote cell 

adhesion as previously described [12,14,18,46,47]. 

After 48 h of seeding cells, the growth surface was rinsed twice with sterile PBS and respective 

culture media were replaced with serum-free medium supplemented with 1× ITS solution  

(Insulin–Transferrin–Selenium, Gibco Invitrogen, Burlington, ON, Canada). With static culture 

(surface area 28 cm2) as control, HESR cultures were subjected to 8 h high mechanical strain  

(HMS—20% cyclical strain at frequency of 0.0001 Hz) followed by 16 h of intervening rest and 

another 8 h of cyclic dynamic strain using an iris-like stretching device coupled to the HESR dishes 

(Figure 1A,B). After the “8–16–8” stretch protocol, the resulting conditioned media was collected 

immediately after the final stretch period ended. At the same time, cells were immediately lysed 

directly in TRIzol or cell lysis buffer for RNA and protein isolation. 

4.3. RNA Isolation and Real Time qPCR 

Cells were lysed directly on culture surfaces using 1ml TRIzol (Invitrogen) reagent and collected in 

nuclease-free tubes. Following RNA extraction according to the manufacturer’s protocol, 500 ng of 
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total RNA was subject to cDNA synthesis using the qScript cDNA synthesis kit following the 

manufacturer’s instructions (Quanta Biosciences, Gaithersburg, MD, USA). RNA concentrations and 

purity were determined by measuring A260 by calculating the A260/A280 ratio using a nano-drop method 

(Infinite M200 Pro, TECAN, Mannedorf, Switzerland). Standard recommended PCR protocols were 

performed (50 °C for 2 min, 94 °C for 10 min, 95 °C for 30 s, 60 °C for 1 min, with steps 3 and 4 

repeated for 40 cycles) using the ABI STEP ONE Real-Time PCR System (Applied Biosystems, 

Carlsbad, CA, USA). The average cycle count for each target gene was normalized to mammalian 18 s 

to give the average delta count (∆Ct) using RQ SDS manager software (Applied Biosystems). 

Commercially available Taqman array primers were used, and genes analyzed were TLR-2 (Cat No. 

Bt03223212_m1), TLR-4 (Cat No. Bt03251670_m1), NGF (Cat No. Bt03817604_s1) and TNF  

(Cat No. Bt03259154_m1), MMP3 (Cat No. Bt04259490_m1), MMP13 (Cat No. Bt03214050_m1), 

ADAMTS4 (Cat No. Bt03224693_m1), ADAMTS5 (Cat No. Bt04230785_m1), and with 18S  

(Cat No. Hs99999901_s1) as the endogenous control. Gene expression was calculated using the ∆∆Ct 

method [48]. For TLR2, TLR4, NGF and TNF assessment, n = 6. For MMP3, MMP13, ADAMTS4 and 

ADAMTS5 assessment, n = 3. 

4.4. Induction of Neurite Outgrowth Using Conditioned Media 

For all experiments, 2 × 105 PC12 cells/well (passage 2) (ATCC, Manassas, VA, USA) were seeded 

on 6-well culture dishes coated with 50 µg/mL of collagen type I and 0.1% Poly-L-Lysine (70–150 kD; 

Sigma). Cells were allowed to attach to culture surfaces for 24 h in RPMI 1640 medium supplemented 

with 1% Antibiotic-Antimycotic solution, 5% FBS and 10% Horse serum (all from Gibco/Invitrogen). 

After 24 h, control wells were changed to 0.1% serum chondrocyte growth medium supplemented with 

50 ng/mL of recombinant human β-NGF (nerve growth factor—Bioshop, Burlington, ON, Canada)  

or sterile water vehicle. Remaining wells received 1.5 mL of conditioned media collected from 

experiments above (Static and HMS-cultured chondrocytes). Neurite outgrowth was monitored for  

4 days. Three random phase images per sample were taken from each individual experiment (n = 6) 

and the proportion of cells with neurites was quantified. Phase images were captured using a Zeiss 

Axiovert 40C microscope equipped with a Canon Powershot A640 digital camera attached to a Zeiss 

MC80DX 1.0× tube adapter. Cell viability was assessed by Live/Dead® (Invitrogen) assay according 

to the vendor’s instruction and total dead (red) and live (green) cells were counted from 3 random 

positions from 6 independent experiments (i.e., 18 images total for static-cultured conditioned media 

treated PC12 cells; 18 images total for HMS-cultured conditioned media treated PC12 cells, etc.).  

The percentage of live cells was calculated and averaged. An Olympus IX81 inverted fluorescence 

microscope was used, and all images were captured using a 10× objective with MAG Biosystems 

Software 7.5 (Photometrics, Tucson, AZ, USA). 

4.5. Western Blot 

Protein concentration was determined by Bradford assay using a TECAN Infinite M200 Pro  

for static and HMS chondrocytes lysates (20 mM Tris (pH 7.4), 150 mM NaCl, 1 mM EDTA, 0.5% 

Triton X-100, 1 mM β-glycerophosphate, supplemented with complete EDTA-free protease inhibitor 

cocktail). Twenty micrograms total protein of each sample was subjected to 12% SDS-PAGE gel 
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electrophoresis and then transferred to nitrocellulose membranes. Membranes were blocked in 5% 

BSA for 45 min and probed with rabbit polyclonal antibodies against p-p44/42 (p-ERK) (1:1000;  

Cell Signaling #4370, Danvers, MA, USA), p44/42 (total ERK-1:1000; Cell Signaling #4695) and  

p-p38 (1:2000; Cell Signaling #9211), and mouse monoclonal antibodies against α-tubulin (1:1000; 

Abcam Ab7291). Membranes were washed three times in TBST followed by incubation with either 

anti-rabbit HRP-conjugated secondary antibody (1:5000, Santa Cruz Biotechnology, Santa Cruz,  

CA, USA) or anti-mouse HRP-conjugated secondary antibody (1:3000, Santa Cruz Biotechnology). 

Membranes were then washed three times in TBST for 10 min, and developed using Western Lightning 

Plus-ECL (Perkin Elmer, Waltham, MA, USA) and an Image Quant LAS 4000 (GE Healthcare  

Bio-Sciences, Baie d’Urfe, QC, Canada) was used to capture images and perform densitometry 

analysis within the linear exposure range. Phospho-ERK bands were normalized to total ERK bands, 

and phospho-p38 bands were normalized to α-tubulin. 

4.6. Statistical Analysis 

All values are represented as means ± standard error of the mean of three to six independent 

experiments with at least three different animal donors for each experiment. All comparisons were 

made between the two experimental groups, HMS and static cultures. No multiple comparisons were 

made. Differences between HMS and static groups were assessed using a paired two-tailed Student’s  

t-test with post hoc Bonferroni correction. Differences were considered significant for p < 0.05. 

5. Conclusions 

Changing mechanical properties within degenerate cartilage tissue will gradually apply higher strain 

to resident chondrocytes which is thought to cause a more catabolic environment, thereby contributing 

to OA progression. High mechanical strain applied to primary chondrocytes in this study caused  

p38 MAPK activity and up-regulated expression of inflammatory factors known to drive catabolic 

processes. Conditioned media from HMS cultures caused significant neurite sprouting in PC12 cells 

indicating sufficient factor secretion to drive neurogenesis. Taken together, these data suggest that high 

mechanical strain can promote an inflammatory and degenerate phenotype in chondrocytes in vitro. 

Since OA progression is a slow process typically taking years to develop, this low-frequency  

high-magnitude strain may therefore be related to OA matrix degradation, inflammation and pain  

in vivo. 
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