
Int. J. Mol. Sci. 2014, 15, 15456-15474; doi:10.3390/ijms150915456 
 

International Journal of 

Molecular Sciences 
ISSN 1422-0067 

www.mdpi.com/journal/ijms 

Article 

Mechanical Forces Induce Changes in VEGF and  
VEGFR-1/sFlt-1 Expression in Human Chondrocytes 

Rainer Beckmann 1,†, Astrid Houben 1,2,†, Mersedeh Tohidnezhad 1, Nisreen Kweider 1, 

Athanassios Fragoulis 1,3, Christoph J. Wruck 1, Lars O. Brandenburg 1,  

Benita Hermanns-Sachweh 4, Mary B. Goldring 5, Thomas Pufe 1,† and Holger Jahr 3,†,* 

1 Department of Anatomy and Cell Biology, Rheinisch–Westfälische Technische Hochschule 

(RWTH) Aachen University, 52074 Aachen, Germany;  

E-Mails: rbeckmann@ukaachen.de (R.B.); astrid.houben@ukmuenster.de (A.H.); 

mtohidnezhad@ukaachen.de (M.T.); nkweider@ukaachen.de (N.K.);  

afragoulis@ukaachen.de (A.F.); cwruck@ukaachen.de (C.J.W.);  

lbrandenburg@ukaachen.de (L.O.B.); tpufe@ukaachen.de (T.P.) 
2 Institute of Experimental Musculoskeletal Medicine, University Muenster, 48149 Muenster, Germany 
3 Department of Orthopaedic Surgery, RWTH Aachen University, 52074 Aachen, Germany 
4 Department of Pathology, RWTH Aachen University, 52074 Aachen, Germany;  

E-Mail: bhermanns@ukaachen.de 
5 Research Division, Hospital for Special Surgery, Weill Cornell Medical College, New York,  

NY 10021, USA; E-Mail: goldringm@hss.edu 

† These authors contributed equally to this work. 

* Author to whom correspondence should be addressed; E-Mail: hjahr@ukaachen.de;  

Tel.: +49-241-8085-585. 

Received: 30 June 2014; in revised form: 22 August 2014 / Accepted: 25 August 2014 /  

Published: 1 September 2014 

 

Abstract: Expression of the pro-angiogenic vascular endothelial growth factor (VEGF) 

stimulates angiogenesis and correlates with the progression of osteoarthritis. Mechanical 

joint loading seems to contribute to this cartilage pathology. Cyclic equibiaxial strains of 

1% to 16% for 12 h, respectively, induced expression of VEGF in human chondrocytes 

dose- and frequency-dependently. Stretch-mediated VEGF induction was more prominent 

in the human chondrocyte cell line C-28/I2 than in primary articular chondrocytes. Twelve 

hours of 8% stretch induced VEGF expression to 175% of unstrained controls for at least 

24 h post stretching, in promoter reporter and enzyme-linked immunosorbent assay (ELISA) 

OPEN ACCESS



Int. J. Mol. Sci. 2014, 15 15457 

 

 

studies. High affinity soluble VEGF-receptor, sVEGFR-1/sFlt-1 was less stretch-inducible 

than its ligand, VEGF-A, in these cells. ELISA assays demonstrated, for the first time,  

a stretch-mediated suppression of sVEGFR-1 secretion 24 h after stretching. Overall, 

strained chondrocytes activate their VEGF expression, but in contrast, strain appears to 

suppress the secretion of the major VEGF decoy receptor (sVEGFR-1/sFlt-1). The latter 

may deplete a biologically relevant feedback regulation to inhibit destructive angiogenesis 

in articular cartilage. Our data suggest that mechanical stretch can induce morphological 

changes in human chondrocytes in vitro. More importantly, it induces disturbed VEGF 

signaling, providing a molecular mechanism for a stress-induced increase in angiogenesis 

in cartilage pathologies. 

Keywords: VEGF-A; VEGFR-1/FLT-1; sVEGFR-1/FLT-1; cyclic stretch; strain; human 

chondrocyte; C-28/I2 

 

1. Introduction 

In joint cartilages, chondrocytes are constantly deformed as a result of loading due to normal daily 

activities. Guilak et al. estimated compression of chondrocytes resulting from physiological loading to 

be approximately 20% [1]. Normal physiological loading is generally regarded as a prerequisite for  

the maintenance of proper articular joint functioning, while injurious loading can lead to cartilage 

degeneration [2]. Other forms of mechanical stimulation like mechanical stretch also elicit a response 

in primary bovine chondrocytes [3,4]. In normal, healthy human chondrocytes, cyclic stretch has been 

reported to be anabolic [5], while others report differentiation stage-dependent detrimental effects in 

osteoarthritic cells [6]. Excessive mechanical stress causes deterioration of the cartilage metabolism 

through induction of catabolic factors, including matrix metalloproteinases (MMPs) [4,7,8]. 

However, mechanical loading is an important environmental factor that regulates articular cartilage 

homeostasis and influences the biosynthesis of matrix components in vivo [9,10]. Mechanical overload 

induces cartilage destruction and secondary osteoarthritis [11] as evident from acute traumatic injury, 

abnormal weight bearing (i.e., obesity [12,13]) or altered joint geometries [14]. Being composed of  

a network of extracellular matrix components and scattered chondrocytes, healthy mature articular 

cartilage is essentially devoid of vasculature [15]. In osteoarthritis (OA), pro-angiogenic factors are 

produced by chondrocytes [16] and expression of vascular endothelial growth factor (VEGF) has been 

shown in the superficial zone of the tibial plateau in OA patients with degenerative changes, but not in 

healthy cartilage [17]. Pro-angiogenic stimuli alone might be insufficient to overcome the resistance of 

normal articular cartilage to neovascularization, which is at least partly due to its matrix composition [18]. 

Cartilage from patients with OA is also less able to remain avascular than healthy cartilage [19]. 

Abnormal mechanical stress might “awaken” adult chondrocytes to produce VEGF in order to increase 

their catabolic activity [7]. While VEGF plays an essential role in cartilage vascularization and 

endochondral bone development [20], Wong et al. [21] also showed that VEGF is significantly  

up-regulated by cyclic tension and hydrostatic pressure in chondrocytes. Not surprisingly, recent 

investigations also revealed higher expression levels of VEGF and its receptors in diseased cartilage, 
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such as in OA and rheumatoid arthritis (RA) [16,22–24]. Pufe et al. [25] further showed that VEGFA 

significantly increased matrix metalloproteinase (MMP) levels in cultured immortalized human 

chondrocytic C-28/I2 cells. Nevertheless, the precise mechanism by which VEGF might be involved in 

the pathogenesis of OA is not clearly understood. 

Being composed of a network of extracellular matrix components and scattered chondrocytes, healthy 

mature articular cartilage is essentially devoid of vasculature [15]. The mechanisms by which articular 

cartilage might be maintained as avascular have not been fully clarified. Chondrocyte hypertrophy is 

one of the key physiological processes involved in the longitudinal growth of long bones, but also in the 

development of OA [17,26]. Hypertrophy is accompanied by an up-regulation of collagen X, MMPs, 

and VEGF [26]. 

The VEGF family comprises at least seven members [27] of which VEGF-A, or simply VEGF [28], 

is the founding member encoded by the VEGF gene and thought to be of singular importance [29]. 

Hypoxia facilitates the binding of hypoxia-inducible factor 1 (HIF-1) to the hypoxia responsive 

element (HRE) in the 5' promoter region of the VEGF gene to induce its expression [30]. While VEGF 

binds to all VEGF receptors, its affinity to VEGFR-1 (or fms-like tyrosine kinase-1, Flt-1) is 10-fold 

higher than to VEGFR-2 (or kinase domain region (KDR)/fetal liver kinase-1, Flk-1) [31,32]. 

Therefore, VEGFR-1 is usually considered to act as a sink for VEGF isoforms [33,34]. Alternative 

splicing of VEGFR-1 also generates a soluble form, sVEGFR-1 (synonym: sFlt-1), which acts as an 

extracellularly circulating decoy receptor to negatively regulate VEGF activity [34]. Although expression 

of VEGF is pro-angiogenic and a potential challenge for physiologically avascular tissues, little is 

known about its induction or about the regulation of its receptors, like sVEGFR-1. 

With the present study, we aimed to investigate the intersection between VEGF signaling pathways 

and mechanosensation in chondrocytes. Specifically, we wondered if VEGF, its high affinity receptor 

VEGFR-1 and its endogenous inhibitor sVEGFR-1 are differentially regulated by different magnitudes 

of stretch. 

2. Results and Discussion 

2.1. Results 

First, we subjected C-28/I2 cells and primary chondrocytes to a 12 h cyclic stretching regime using 

cyclic square waveforms. We correlated the amount of relative stretching of the BioFlex® silicone 

bottom membrane and its frequency to VEGF expression in these cells: a range of 1% to 16% of 

stretch at 0.5 or 1 Hz, respectively, was evaluated and normalized to the non-stretched controls. 

Using square waveforms, low frequency (0.5 Hz) stimulation strain dose-dependently induced 

VEGF secretion to 160% in C-28/I2 cells (Figure 1A) immediately after the stretching regime at 

maximal elongation (i.e., 16%). Under these conditions, modest stretching of only 1% already induced 

VEGF secretion by 25% and 4% stretch by 50%, respectively. 
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Figure 1. Strain-dependent vascular endothelial growth factor (VEGF) expression in  

C-28/I2 cells. Chondrocytes were strained in a FX-4000T system for 12 h. Using square 

waveforms and 0.5 Hz at 0%, 1%, 4%, 8%, 12% and 16% of strain (A and B, respectively), 

VEGF expression was quantified immediately (t0) (A and C, respectively) or 24 h post 

stretching (B and D, respectively) using a VEGFA-specific enzyme-linked immunosorbent 

assay (ELISA). The experiment was repeated at 1 Hz using only 0%, 1%, 4%, and 8% of 

strain (C and D, respectively). All values are normalized to the unstrained, parallel controls 

(set to 1). *, **, and *** indicate significance levels of p ≤ 0.05, p ≤ 0.01, and  

p ≤ 0.001 respectively, n = 5. 

 

Stretch-induced VEGF secretion continued in resting cells: 24 h after the cyclic stretching,  

strain-dependent VEGF secretion reached 220% (i.e., 206 pg/mL) of the control level at 16% 

elongation and increased to more than 150% in the 1% stretch condition (Figure 1B). Doubling the 

stretch frequency to 1 Hz initially suppressed VEGF secretion at very low elongation rates (i.e., 1% 

stretch), while 4% of stretch resulted in a similar, about 50%, induction of VEGF secretion as 

compared to 0.5 Hz. Surprisingly, while 0.5 Hz showed an almost linear dose-response between strain 

levels and VEGF secretion, VEGF secretion at 1Hz dropped already at 8% of stretch immediately after 

stretching (Figure 1C). Low end stretch of 1% did also not further induce VEGF secretion upon  

non-stretched incubation under these conditions. In contrast, VEGF secretion reached 240% of the 

control level upon 24 h of non-stretched incubation at only 4% stretch, indicating a continuous 

secretion of this pro-angiogenic cytokine beyond the point of direct straining (Figure 1C vs. 1D).  

This is also 29% more than at the highest stretch level of 16% at 0.5 Hz and about 65% more than at 

the 4% stretch at 0.5 Hz. Doubling the stretch level to 8% did not further increase the VEGF 

concentration in the culture medium. Rather, a relative drop of about 25% was observed, roughly 

mirroring the VEGF secretion pattern directly after stretching. At 1 Hz, VEGF secretion was maximal 

at 4% of stretch independent of the timing. 
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In primary articular chondrocytes (Figure 2), the strain-dose response with square waveforms at  

0.5 Hz was less linear than in C-28/I2 cells. While the VEGF secretion ascended in C-28/I2 with 

increasing stretch levels between 1% and 16%, in primary chondrocytes a plateau was reached at 4% 

of stretch immediately after stretching (Figure 2A). Between 4% and 16% of stretch, VEGF secretion 

appeared relatively independent of the applied strain level also upon 24 h of non-stretched incubation 

(Figure 2B). VEGF secretion in primary cells at 4% reached 128% and was thus virtually identical to 

the level in C-28/I2, immediately after straining (Figure 2A vs. 1A). Increasing the frequency to 1 Hz 

did not enhance VEGF secretion in primary chondrocytes (Figure 2A vs. 2C). No significant elevation 

of VEGF levels was found after 24 h of non-stretched incubation (Figure 2D). 

Figure 2. Strain-dependent VEGF expression in primary chondrocytes. Cells were strained 

for 12 h with cyclic waveforms and a variety of relative strains. VEGF expression was 

analyzed directly after straining (t0) (A and C, respectively) or 24 h post stretching (B and D, 

respectively). The figures show data obtained with square waveforms at 0.5 Hz (A,B)  

and 1.0 Hz (C,D). Relative percentages of stretching are indicated (i.e., 4%, 8%, 12% or 

16%, respectively). Unstrained controls (ctrl) were used to normalize data (set to 1). *, **, 

and *** indicate significance levels of p ≤ 0.05, p ≤ 0.01, and p ≤ 0.001 respectively, n = 3. 

 

Next, we used dual-luciferase-assays to verify stretch-induced VEGF biosynthesis; stretching human 

chondrocytes induced the VEGF promoter activity in these cells to 175% of the control level (Figure 3A). 

In comparison, upon 8% stretching at 0.5 Hz, VEGF secretion increased to 150% (Figure 1A). 
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Figure 3. Stretch-mediated activation of VEGF promoter activity. Dual luciferase reporter 

assays were used to screen VEGF promoter activation upon stretching. C-28/I2 chondrocytes 

were transfected with a VEGF-promoter specific reporter construct (pVEGF-KpnI), 

expressing inducible Firefly luciferase, and a constitutive active Renilla luciferase for 

normalization purposes. Cells were stretched (8%, 0.5 Hz, 12 h square waveforms (A) and 

the ratio of Firefly-to-Renilla signals is shown. The unstrained control (ctrl) is set to 100% 

(i.e., 1); HRE activity (B) was measured using a Hypoxia Responsive Element (HRE) 

reporter construct (pGL3-HRE). Unstrained controls (ctrl), stretched cells (strain). ** indicates 

p ≤ 0.01, n.s. = not significant; n = 5. 

 

Binding of HIF-1α to the HRE in the 5' promoter region of the Vegf gene can induce its expression [30]. 

For that reason, we used a pGL3: HRE-luc vector as a negative control. Under normoxic conditions, 

when HIF-1α is unstable, stretch alone is not able to activate transcription of this reporter  

(Figure 1B). Our data confirm a stretch-specific, HIF-1α independent, induction of Vegf transcription 

in human chondrocytes. 

Finally, we confirmed the induction of VEGF expression on cellular level in human C-28/I2 

chondrocytes. Upon 12 h of 8% cyclic square waveforms stretching at 0.5 Hz, increased green 

fluorescent signals indicated the induction of VEGF biosynthesis (Figure 4C vs. 4B). Non-strained 

control cells revealed only very faint VEGF signals, indicating a very modest basal expression level 

(Figure 4B). Controls lacking the primary antibody were only positive for nuclear counterstaining 

(blue, Figure 4A). VEGF has a predominant high affinity receptor: VEGFR-1. Therefore, we next looked 

into the strain-dependency of its expression, too. In contrast to its prime ligand, VEGFR-1-specific 

immunosignals were already quite prominent in non-stretched cells (Figure 4E) and appeared to be 

cytoplasmic as well as nuclear. Surprisingly, 8% of stretching hardly decreased VEGFR-1-specific 

staining intensity in these cells (Figure 4F). 

VEGFR-1 is considered to be a sink for VEGF isoforms and alternative splicing can give rise to its 

soluble form, sVEGFR-1. We therefore postulated that the latter may act as a potential extracellular 

decoy receptor to inhibit VEGF-induced angiogenesis in cartilage, and aimed at quantifying the 

amount of strain-induced sVEGFR-1 secretion. Using square cyclic waveforms at 0.5 Hz, sVEGFR-1 

secretion increased only about 20% immediately after 8% of stretching. Neither 1% nor 4% stress 

significantly increased its secretion level (Figure 5A). Of note, after 24 h, the trend in strain-induced 

sVEGFR-1 secretion reversed and revealed suppression for ≥4% of initial stretching (Figure 5B). 
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Figure 4. Expression of VEGF and VEGFR-1 in human chondrocytes. Representative 

immunofluorescent staining of VEGF and VEGFR-1 in C-28/I2 chondrocytes. Cells were 

strained for 12 h with cyclic square waveforms at 0.5 Hz and 8% relative stretching. Green 

Alexa Fluor® 488-specific signals for VEGF (top row) and VEGFR-1 (bottom row) are 

shown, while nuclei appear in blue (bisbenzimid). Staining control without primary antibody 

(immuno ctrl: A,E); unstrained cells (B,F), strained (i.e., stretched) cells (C,G). Scale bars 

represent 100 μm. Signal intensity of the anti VEGF staining (D) and VEGFR-1/Flt-1 (H) 

was quantified by ImageJ. Signal intensity of unstrained cells was set to 1. * indicates  

p ≤ 0.05, n = 3. 

 

Figure 5. Stretch dependency of sVEGFR-1 expression in C-28/I2. Cells were stretched 

for 12 h with cyclic waveforms and a variety of relative strains. Expression of soluble 

decoy VEGF receptor: sVEGFR-1 was analyzed directly after straining (t0) (A) or 24 h 

post straining (B), using cyclic square waveform at 0.5 Hz. Relative percentages of 

stretching are indicated (i.e., 1%, 4% or 8%, respectively). Unstrained controls (ctrl) were used 

to normalize data (set to 1). * and *** indicate significance levels of p ≤ 0.05 and p ≤ 0.001 

respectively, n = 3. 

 

To exclude strain-induced changes in C-28/I2 viability, we determined the metabolic activity of  

cells stretched with 8% at 1Hz, which resulted in a reduced VEGF expression as compared to 4%  

stretch (Figure 1C,D). Using cyclic square waveforms only marginally, but significantly, reduced 
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metabolic activity in C-28/I2 cells (Figure 6). The same trend was seen immediately after stretching as 

well as 24 h later. 

Figure 6. Effect of strain on cell viability. C-28/I2 chondrocytes were stretched (8%) for 

12 h with cyclic square waveforms at 1 Hz. Cell viability was assessed using CellTiter 

Blue® directly after straining (t0) or 24 h later, and is expressed as relative fluorescent 

signal (560 nm/590 nm ratio). Unstrained controls (ctrl), stretched cells (strain). * and ** 

indicate significance levels of p ≤ 0.05 and p ≤ 0.01, respectively, n = 3. 

 

Using scanning electron microscopy (SEM), we confirmed the typical polygonal morphology  

of C-28/I2 cells. Strained cells (Figure 7B,D) showed a more prominently pronounced nucleus as 

compared to non-stretched cells (Figure 7A,C). In addition, they revealed a higher averaged 

nucleus/cytoplasm ratio as the cytoplasm of strained cells appeared more condensed and cells revealed 

characteristic knot-like condensations at the cellular periphery (Figure 7D). The latter could be caused 

by adhesive structures. Furthermore, the cellular protrusions (i.e., filopodia) appear more directed, 

possibly aligned in the direction of the strain. Stretched cells also reveal characteristic knot-like 

condensations at the cellular periphery (Figure 7D). 

Figure 7. Morphological changes in stretched chondrocytes. C-28/I2 cells were stretched 

(8%) for 12 h using cyclic square waveforms at 0.5 Hz and immediately fixed on the 

silicone membrane. Shown are representative scanning electron micrographs of unstrained 

cells (strain ctrl: A,C) and stretched cells (strain: B,D). Scale bars represent 25 μm. n = 3. 
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2.2. Discussion 

Mechanical forces are believed to substantially contribute to the onset and progression of 

osteoarthritis [11,35,36], affecting about 2% of the population [37]. Expression of pro-angiogenic 

vascular endothelial growth factor (VEGF) stimulates angiogenesis and also correlates with OA [38]. 

This suggests an active role of this cytokine in this pathogenesis and has been confirmed in a murine 

model [37]. In the present study, we showed that cyclic stretch dose- and frequency-dependently 

induced VEGF expression in primary human articular chondrocytes as well as in a chondrocytic cell 

line. We did not investigate mRNA expression of hypertrophic markers, but rather focused on the 

expression of VEGF signaling molecules at the protein level. 

A 7% cyclic tensile strain of 0.5 Hz for 24 h did affect MMP-13 expression in rat chondrocytes [39], 

which is in line with the observed VEGF induction in our experiments, as MMP-13 and VEGF are 

both reported to be Runx-2 dependent [40]. Stretching chondrocytes at 0.5 Hz showed an almost linear 

dose-response between strain levels and VEGF secretion. Intriguingly, at 1 Hz, 4% of stretching 

induced the largest VEGF secretion (Figure 1C,D). Alternative splicing of the primary VEGF  

pre-mRNA transcript produces at least five different isoforms of which VEGF-121 is totally released 

into the supernatant, whereas 70% of VEGF 165 may remain trapped into the extra-cellular matrix 

(ECM) [41]. To our knowledge, only two other studies have investigated the effect of strain frequency 

on skeletal cells before: one study by our group [42] reported frequency-dependent VEGF-121 and  

-165 syntheses in tendon fibroblasts at 1 Hz, but not at 0.5 Hz. The other study [43] used ROS17/2.8 

rat osteosarcoma cells. Using our type of straining device and an ELISA assays from the same 

company, Faure et al. further found that low frequencies (≤0.25 Hz) increased VEGF secretion into  

the supernatant (1.5- and 1.2-fold, respectively), while higher frequencies (≥2.5 Hz) had no effect or 

decreased VEGF release, which is thus negatively correlated with the stretching frequency.  

The authors hypothesized that relaxed and pulse mode-driven alternative start codon usage shifts 

VEGF isoform expression in a stress-fiber dependent manner. Intriguingly, both VEGF and 

mechanical stimuli regulate stress fiber formation in skeletal cells [44]. As cytoskeletal integrity is a 

prerequisite to mechanosensitivity [45], we speculate that not only frequency, but also the magnitude 

of stretching can influence VEGF release in a similar way. 

Our stretch-mediated VEGF release is rather moderate. Others also reported plenty of evidence 

across cell types suggesting that even moderate changes in VEGF levels can be biologically 

meaningful with respect to stimulating angiogenesis [43,46,47], and that 10% cyclic stretch at 1 Hz 

can increase sprouting angiogenesis [48]. Interestingly, cyclic uniaxial stretch apparently is a  

pro-angiogenic stimulant, like VEGF itself, and a synergistic effect between stretching and VEGF was 

found for especially the low, not high, cytokine concentrations. A not even 2-fold increase in  

VEGF secretion (173.4 vs. 275.73 pg/mL) by keratinocytes was found to stimulate local blood  

vessel formation [49]. Stretching elicited a similar fold-change of VEGF secretion, with concentrations 

around 200 pg/mL, by chondrocytes. We therefore believe this may be sufficient to stimulate 

angiogenesis in vivo, too. 

In the present study we showed that different types of chondrocytes release VEGF upon mechanical 

stimulation. In vivo mechanical information is delivered to chondrocytes through various types of 

stimuli (i.e., compression, tension, and fluid-flow or piezoelectric currents) all characterized by various 
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amplitudes and frequencies. One limitation of our study is that we cannot easily translate our results to 

forces in situ. We found that relatively low strains are sufficient to induce VEGF in chondrocytes in 

monolayer culture, while others have described detrimental effects not below 16% of stretch at 0.5 Hz 

in other cells [50]. 

VEGF expression is known to be up-regulated through activation of ERK signaling, which is 

inducible by mechanical stretch [51]. Within the VEGF 5'-flanking region, negative and positive 

stretch-response elements have been identified [52]. Analysis of the human VEGF gene promoter 

sequence also revealed several consensus transcriptional response elements like AP-1, AP-2 and 

GATA-6, which are known molecular targets of MAPK signaling [53]. Of note, 5% of cyclic strain at 

1 Hz for 24 h induced ERK and activated a mechano-sensitive HIF-1α element in the VEGF promoter 

inducing VEGF and, subsequently, MMPs [54]. The latter may be a sign of “injurious” strain levels.  

In closely related skeletal cells, HIF1α trans-activates Vegf and mechanical strain also was shown 

earlier to induce both Hif1α and Vegf expression in related cell types [43]. Even normoxic myocardial 

cells under mechanical stress induced HIF1α, and subsequently VEGF [55]. Surprisingly, we could not 

demonstrate HRE activation by stretch, which makes HIF1α involvement in our experiments unlikely. 

That 7.5% of stretch at 1 Hz in a FlexerCell system induced MMP13 expression in articular 

chondrocytes [56] is supportive of our notion that a hypertrophic pathway (i.e., collagen X expression) 

may be activated by cyclic tension in our chondrocytes [57]. As key factors of mechanotransduction, 

NO donors may also contribute to the VEGF induction [58]. Likewise, VEGF receptor signaling also 

involves calcium release and MAPK activation [59], both of which are known to be regulated by 

stretch [60–62]. It would be interesting to study their contribution to VEGF signaling in future studies. 

The strain-mediated VEGF release of primary chondrocytes and immortalized cells slightly 

differed; C-28/I2 cells are immortalized using SV40 large T antigen, which binds cellular proteins such 

as Rb and p53. Different p53 levels in primary chondrocytes and C-28/I2 cells may thus contribute to 

the differences in stretch responsiveness on short and long-term effects on VEGF [63]. The VEGF 

regulation by the p53 family members is complex and involves several transcription factors able to 

induce or repress VEGF in a cell context-dependent manner [63]. From a biological point of view,  

it does not make sense that a physiological process like daily joint loading induces pro-angiogenic 

factors like VEGF in a naturally avascular tissue, unless there is a feedback system to secondarily 

inhibit VEGF’s unwanted action. The high-affinity receptor sVEGFR-1 may inhibit unwanted 

angiogenesis in articular cartilage through abolishing stretch-induced VEGF action; sVEGFR-1 is 

significantly induced immediately after stretching, but suppressed 24 h after stretching when VEGF is 

still maximally induced. Our data thus suggest that stretch may contribute to triggering pathological 

angiogenesis in cartilage and prompt caution with respect to unphysiological joint loading. The negative 

regulation of VEGF signaling is exerted, at least in part, by the alternatively spliced soluble VEGFR1 

variant and may be established to prevent VEGF from binding to VEGFR-1 or VEGFR2 [59]. Another 

interesting but yet unclear feature of VEGFR1 is that its different ligands (e.g., VEGFA, VEGFB) 

transduce distinct biological responses [59] and VEGFR1 might positively modulate VEGFR2 outputs. 

Whether these apparently opposing effects of VEGFR1 on VEGFR2 activity are strain-dependent and 

involved in chondrocyte differentiation at all also remains to be investigated. 

Another limitation of our study is that we stretched monolayer cells, whereas the 3D in situ loading  

mainly involves compression that leads to nuclear deformation of a potentially different order of 
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magnitude [64]. Despite our consistent responses, in vitro systems never accurately represent the  

in vivo situation. This limits the interpretation of our results towards the in vivo situation. An emerging 

pattern in many biological responses to VEGF is the contribution by more than one type of VEGF 

receptor, which shows the crucial role of balanced signaling. 

Unstrained cells showed a typical polygonal morphology, while strained cells showed a more 

prominently pronounced, very round nucleus (Figure 7). In addition, cellular filopodia appeared to be 

more pronounced in strained cells. Using uniaxial cyclic tensile strain, Greiner et al. [65] showed that 

initially cell protrusions are uniformly formed around cells. Upon de novo syntheses of ventral actin 

stress fibers, these protrusions line up perpendicular to the direction of the strain using similar tension 

system and 2%–8% strain [66]. We applied biaxial strain, which may explain the radial orientation of 

the filopodia. To our knowledge, this is the first report of scanning electron micrographs of strained 

chondrocytes. In vitro applied strains caused only marginally decreased mitochondrial metabolic 

activity in C-28I2 cells, while cell death in articular chondrocytes might already be in process when 

VEGF is re-upregulated by stress triggers in OA cartilage in vivo [67]. 

3. Experimental Section 

3.1. Cell Culture 

Human chondrocytes used in this study comprise the C-28/I2 cell line [68], a well-established 

model that has been shown to phenotypically resemble articular chondrocytes [69], and primary human 

articular chondrocytes. For the latter, after local ethical approval and informed consent, cartilage was 

obtained from the femoral head region of a young, non-arthritic patient undergoing reconstruction 

surgery. Briefly, full thickness cartilage was harvested, chopped into pieces, washed and subsequently 

digested overnight in Ham’s F-12 medium as reported earlier [6]. The following day, harvested cell were 

cultured in DMEM/F-12 with 10% of heat-inactivated FCS and 1% Penicillin–Streptomycin–

Amphotericin B. For all media and culture additives were purchased from Sigma–Aldrich (Steinheim, 

Germany). Experiments were performed at least in independent triplicates with, at least, technical 

duplicates. Sample sizes (n) are indicated per experiment in the legend. 

3.2. Mechanical Stimulation 

Upon seeding of 350,000 C-28/I2 cells and 300,000 primary chondrocytes on collagen type I 

(COL1) coated BioFlex® six-well plates (FlexCell® Int. Corp., Hillsborough, FL, USA), the mechanical 

stimulation of the chondrocytes was essentially performed as reported earlier by us [6], but with the 

following modifications: cells were statically pre-cultured in the BioFlex® plates overnight (20–24 h) 

in 2.5 mL culture medium in a FlexCell Strain Unit FX-4000 to facilitate adherence to the flexible 

membrane. Cells were stretched in an incubator (37 °C, 5% CO2) as previously described [61] and the 

medium was exchanged immediately prior to stretching. 

Briefly, a vacuum created under the six-well plates pulls the flexible-bottom membrane over a 

loading post, resulting in homogenous biaxial strain of up to 30% of substrate (i.e., membrane) 

elongation. The used Flexercell® Tension Plus™ unit FX-4000T setup has a minimum strain resolution 

capability of 0.7% to 20% elongation and delivers frequencies between 0.1 and 5 Hz with single  
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cycle strain rates as high as 6.9 s−1 with infinitely small creep strains. The system delivers multi-cyclic 

strain rates (0.2–10 s−1) using square cyclic waveform of which we used cyclic stretch at a frequency  

of 0.5 and 1 Hz, respectively, for 12 h, and stretching between 1% and 16%, respectively. Wells with 

FlexStop™ posts to prevent pressure-induced stretching served as internal controls [6]. 

3.3. Biochemical Analyses 

Two micro liters of culture medium were collected either immediately after the stretching regime 

(t0) or 24 h later. Samples were centrifuged (20,000 rcf, 5 min, 4 °C) and cell-free supernatants stored 

at −70 °C until further use. 

Commercially available enzyme-linked immunosorbent assay (ELISA) kits were used to quantify 

the amount of hVEGF and hVEGFR-1 (synonym: Flt-1) (both from R&D Systems, Minneapolis, MN, 

USA) according to the manufacturer’s instructions. Briefly, medium samples and standards were 

incubated overnight at 4 °C in the pre-coated wells. Washing steps, incubation of target-specific, 

biotin-coupled secondary antibody, and detection antibody (horseradish peroxidase conjugated) was 

according to supplier’s guidelines. Enzymatic substrate (3,3',5,5'-tetramethylbenzidine) oxidation was 

quantified using a Infinite® PRO reader (Tecan Germany GmbH, Crailsheim, Germnay) at 450 nm. 

3.4. Cell Viability Assay 

Cell viability assays were performed by using the CellTiter-Blue® assay (Promega, Madison, WI, 

USA) according to the manufacturer’s description. The assay relies on the conversion of resazurin into 

the highly fluorescent resorufin by metabolically active cells. Briefly, upon applying cyclic 1/2 shine 

and square waveforms at 1 Hz and 8% stretching for 12 h, cells were washed once with 2 mL of  

1× PBS and then incubated in culture medium for 24 h (controls), while the other cells were incubated 

with 0.2 mL of CellTiter-Blue® reagent (1:5). After 60, 90 and 120 min, 0.1 mL of the reagent were 

transferred into 96-well plates for optical density measurements at 570 nm (reference: 590 nm) in the 

Infinite® PRO reader against medium blanks. 

3.5. Transient Transfections and Dual Luciferase Assays 

Bacterial transformations and reporter plasmid DNA purifications were performed as described by 

Fragoulis et al. [70]. The 2.65 kb fragment of the human VEGF-A promoter region from plasmid 

pVEGF-KpnI (ATCC®, American Type Culture Collection, Manassas, VA, USA) or the 25 bp human 

hypoxia-responsive element (HRE) was cloned into the MluI site of the mcs pGL3-basic luciferase 

reporter vector (Promega, Madison, WI, USA). Both promoter reporter plasmids were then transiently 

co-transfected with the constitutively active reporter Renilla luciferase vector phRL-TK (Promega, 

Madison, WI, USA) into chondrocytes. After overnight incubation, reporter cells were used in 

mechanical stimulation experiments on BioFlex® plates (see above). 

Quantification of stretch-induced promoter activation by dual luciferase assays was performed 

exactly as reported earlier by Fragoulis et al. [70]. 
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3.6. Immunofluoresence 

To visualize changes in VEGF and VEGFR-1 expression on cellular level, C-28/I2 chondrocytes 

were fixed for 30 min in a neutral 4% v/v formalin solution (Sigma–Aldrich) after a 12 h lasting 8% 

cyclic square waveform stretch regime at 0.5 Hz. Cells on pieces of dissect BioFlex® silicone membranes 

were then permeabilized in 0.1% of Triton X-100 (Sigma–Aldrich) for 10 min and washed 3 times for  

5 min in Tris-Buffer (25 mM, pH 7.4) essentially as described earlier [71]. Blocking occurred in 1.5% 

BSA in Tris-Buffer (10 min) prior to incubation with polyclonal anti-VEGF (Santa Cruz, sc-507; 1:50)  

and anti-VEGFR-1 (Santa Cruz, sc-316; 1:30) antibodies overnight at 4 °C. After washing, antigens 

were visualized using secondary Alexa-Fluor® 488 labeled antibodies (Invitrogen, Karlsruhe, Germany; 

1:250) and analyzed imbedded in Shandon Immu-Mount™ (Thermo Scientific, Pittsburgh, PA, USA). 

Nuclear counterstaining was performed with Hoechst 33258 (Molecular Probes®, Invitrogen, 

Karlsruhe, Germany; bisBenzimide pentahydrate, 1:200) in 1× neutral PBS. Pictures were made using 

AxioVision Release 4.8.2 (Carl Zeiss MicroImaging GmbH, Jena, Germany). Normalized fluorescent 

signal densities were measured as reported earlier [72] and according to [73]. Quantification was 

performed using ImageJ freeware [74]. 

3.7. Scanning Electron Microscopy (SEM) 

Morphological changes in chondrocytes subjected to mechanical stimulation were assessed using 

SEM. Following a 12 h lasting 8% stretch regime at 1 Hz, C-28/I2 cells were immediately fixed in  

3% v/v EM-grade glutaraldehyde (Sigma–Aldrich, G5882) in a 0.1 M Sörensen phosphate buffer  

(pH 7.4; 13 mM NaH2PO4 × H2O; 87 mM Na2HPO4 × 2H2O; all Sigma–Aldrich). Cells were cut out 

with their BioFlex® silicone membrane and, upon routine dehydration in ethanol, critical point dried  

in liquid CO2 in a CPD 010 critical point dryer (BAL-TEC AG, Balzers, FL, USA). The samples  

were coated with 30 nm of gold in a SCD 500 sputter-coater (Leica Microsystems, Wetzlar, 

Deutschland) and analysed in a FEI/Philips XL 30 FEG ESEM (FEI, Frankfurt, Germany) in a high 

vacuum environment. 

3.8. Statistics 

Data are presented using GraphPad Prism 5 (La Jolla, CA, USA), showing the averages with 

standard deviation. Significance was tested using parametric, two-sided t-test using the average and 

significance was p ≤ 0.05. 

4. Conclusions 

Probably the most intriguing aspect of our study is that the high affinity receptor VEGFR-1 (Ftl-1) 

was less stretch-inducible than its ligand, VEGF-A. In addition, the secretion of the major VEGF 

decoy receptor, sVEGFR-1 (sFlt-1), appeared to be strain suppressible. 

In recent years there has been an impressive development of clinical therapies aiming to enhance or 

suppress VEGF/VEGFR function. That even relatively short-term suppression of VEGFR function 

might lead to suppression of blood vessel formation is now obvious from studies in mouse models [60] 

and has significant potential as a means to fine-tune VEGF-based anti-OA therapies. Strain-induced 
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sVEGFR-1 suppression in the long-term may therefore be detrimental to hyaline cartilage and suggests 

that even 4% relative elongation may be supra-physiological for chondrocytes. 
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