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Abstract: The cytoskeleton plays a central part in spatial organization of the plant 

cytoplasm, including the endomebrane system. However, the mechanisms involved are so 

far only partially understood. Formins (FH2 proteins), a family of evolutionarily conserved 

proteins sharing the FH2 domain whose dimer can nucleate actin, mediate the co-ordination 

between actin and microtubule cytoskeletons in multiple eukaryotic lineages including 

plants. Moreover, some plant formins contain transmembrane domains and participate in 

anchoring cytoskeletal structures to the plasmalemma, and possibly to other membranes. 

Direct or indirect membrane association is well documented even for some fungal and 

metazoan formins lacking membrane insertion motifs, and FH2 proteins have been shown 

to associate with endomembranes and modulate their dynamics in both fungi and 

metazoans. Here we summarize the available evidence suggesting that formins participate 

in membrane trafficking and endomembrane, especially ER, organization also in plants. 

We propose that, despite some methodological pitfalls inherent to in vivo studies based on 

(over)expression of truncated and/or tagged proteins, formins are beginning to emerge as 

candidates for the so far somewhat elusive link between the plant cytoskeleton and the 

endomembrane system. 
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1. Introduction: Cytoskeleton in the Organization of Plant Endomembranes 

In typical differentiated plant cells, most endomembrane organelles are literally sandwiched in a 

thin layer of cortical cytoplasm between the plasmalemma and tonoplast, close to each other and in an 

intimate contact with the cortical cytoskeleton. Common to all eukaryotes, the endomembranes are 

interconnected either directly or through an intensive membrane turnover (recently reviewed in [1,2]). 

They undergo continuous movements and dynamic remodelling, depending largely on both actin and 

microtubule cytoskeletons together with associated proteins including molecular motors, whose 

activity depends on the organization of tracks they ride on. Mechanisms of endomembrane movements 

may vary among eukaryotic lineages, as some of them have only been described in one or a few 

models (albeit absence of evidence in other lineages should not be understood as evidence of absence). 

In plant cells, actin and its associated myosin motors are primarily in charge of fast relocation of 

cell organelles and vesicle trafficking especially to the endoplasmic reticulum (ER), with myosin XI 

family members (mainly XI-K) as key players in this process [3–7]. Organelle movement in plants is 

faster in areas with bundled actin cables as demonstrated on velocity of Golgi bodies entering an area 

with a different actin configuration [8]. However, actin may not be the only part of the cytoskeleton 

controlling endomembrane structure and dynamics. The metazoan Golgi apparatus is shaped by the 

microtubule network; it can also act vice versa as a microtubule organizing centre [9]. ER tubules in 

animal cells move mainly by “sliding” along tracks formed by a sub-population of microtubules 

stabilized by acetylation, and this process may be central to controlling the contacts between ER and 

other endomembrane compartments [10]. In plants, microtubules were shown to contribute to the 

formation of ER branching points, which coincide with ER to cytoskeleton anchoring sites, and also to 

provide anchoring sites for other endomembrane compartments or organelles [11,12]. Moreover,  

actin-independent extension of ER tubules along microtubules, reminiscent of metazoan ER sliding but 

much slower, was observed in Arabidopsis cells [13]. Both relocation and dynamics of cortical ER 

tubules is microtubule-dependent also in elongating giant internodal cells of characean algae [14]. 

Thus, involvement of both actin and cortical microtubules in the motility and shaping of ER and 

other endomembrane compartments may be quite a conserved feature of eukaryotic cells. However,  

the knowledge of actual molecules mediating the association between endomembranes and the 

cytoskeleton is, especially in plants, rather sparse, as the numerous proteins linking the cytoskeleton to 

membranes in the metazoans appear to be mostly lineage-specific. Nevertheless, a plant-specific 

family of NET proteins that serve to anchor actin to various endomembrane compartments including 

the ER has been identified recently [15,16]. A molecular mechanism responsible for actin-dependent 

chloroplast motility, involving an adaptor protein, CHUP1, attaching the outer plastid membrane to 

microfilaments [17], and two specialized kinesins required for positioning the plastids adjacent to the 

plasmalemma [18], has been described also. However, these proteins are likely to act only in the specific 

context of plastid movement, probably without any relation to the dynamics of other endomembranes. 
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The inventory of plant proteins mediating the connection among the endomembrane structures and 

the cytoskeleton is thus obviously far from complete. Additional candidates are likely to emerge 

especially among proteins that can associate with membranes on one hand and bind to microfilaments, 

microtubules, or even both cytoskeletal systems, on the other. Formins, or FH2 proteins, are  

an example of such a protein family. In this review we summarize the observations from both 

opisthokont (fungal and metazoan) and plant models, pointing to a possible role of these proteins in  

cytoskeleton-dependent endomembrane organization and dynamics. 

2. FH2 Proteins as Versatile Cytoskeletal Regulators 

Formins are members of an evolutionarily conserved family of multi-domain proteins defined by 

the presence of the conserved formin homology 2 (FH2 domain). They are ubiquitous in eukaryotes, 

and many species possess multiple isoforms (for a recent review see [19]). Based on FH2 domain 

phylogeny, plant formins can be divided into three clades, with two of them (Class I and Class II) 

present in angiosperms. The model plant Arabidopsis thaliana has 11 Class I and 10 Class II formin 

paralogs, with possible additional diversity generated by alternative splicing [20–22]. FH2 proteins  

are currently understood mainly as regulators of cytoskeletal dynamics, in particular since the 

discovery of their ability to nucleate actin [23,24]. However, their actin-related roles are not restricted 

to nucleation, and they also interact with microtubules in both opisthokonts and plants (reviewed e.g., 

in [25–27]). Formins may thus significantly contribute to the co-ordination of the microtubule and 

microfilament cytoskeletons. 

Extensive domain rearrangements took place during formin evolution, resulting in incorporation  

of a variety of regulatory domains [22,28,29]. Nevertheless, all formins share the well-conserved 

hallmark FH2 domain, representing a “functional core” of the protein. The FH2 domain can form 

dimers capable of de novo nucleation of actin filaments from the barbed end by a unique mechanism 

referred to as processive capping [30]. However, in some formins (and some cellular contexts) it can 

also act as a barbed end cap (e.g., [31]), or contribute to microfilament bundling (e.g., [32]). The FH2 

domain is usually preceded by an N-terminally located proline-rich FH1 domain, which interacts with 

profilin, contributes to actin assembly and stimulates FH2-mediated microfilament elongation [31]. 

Actin nucleation has been well documented in vitro also for angiosperm formins representing both  

Class I [33–37] and Class II [38,39] clades. Actin-bundling activity has been reported for several plant 

formins from both clades not only in vivo, but also in vitro (e.g., [33,40,41]. The enormous diversity of 

FH2 protein isoforms in both plants and metazoans may be, at least in part, related to their functional 

specialization or “fine tuning” of their activities towards actin (and possibly also towards other 

interaction partners). Indeed, some of the 21 A. thaliana formins were documented to exhibit specific 

expression patterns, as well as varying biochemical parameters (see [42]). The 15 human formins also 

vary widely in their molecular structure, biochemical activities, and tissue-specific expression [43,44]. 

While the actin-related functions of formins depend on the presence of the FH2 domain, the many 

documented interactions between formins and microtubules do not share a common molecular 

mechanism. Even in plants, multiple modes of FH2 protein–microtubule association must exist, since 

the specific GOE domain responsible for microtubule interaction in a subset of Class I formins [45]  
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is absent in Class II formins that also bind microtubules, at least some of them with direct involvement 

of the FH2 domain [38,41,46–48]. 

3. Formins Can Associate with Cellular Membranes 

Multiple mechanisms appear to account also for the observed or predicted membrane association  

of many FH2 proteins. At least some of them operate in every eukaryotic lineage studied so far. 

Binding to peripheral or integral membrane proteins is a common means of attaching formins to 

membranes (reviewed in [49]). The DRFs (Diaphanous-related formins), regulated by interaction with 

RHO clade (Rho, Rac and Cdc42) small GTPases [50] that themselves attach to membranes thanks to 

post-translational hydrophobic modifications, provide probably the most notorious example. Some of 

the DRFs, including the prototype Drosophila Diaphanous protein, can also directly bind membrane 

phosphoinositides while bound to RHO. Such a cooperative mechanism of membrane attachment 

contributes to protein localization to distinct membrane domains [51]. The RHO–DRF system thus 

provides a paradigmatic example of a membrane-associated protein selectively localizing to a distinct 

subset of cellular membranes, a concept important for understanding possible roles of formins in the 

endomembrane system. 

While DRFs sensu stricto are only found in animals [22], regulation by RHO, mediated by 

conserved GBD/FH3 motifs, is a common feature of many (though not all) FH2 protein clades, 

including the typical formins of fungi, and apparently is of ancestral origin [28]. At least in one case 

(the non-angiosperm plant Class III formins), an independent mechanism of RHO interaction, based on 

a domain related to conserved RhoGAPs, has been proposed [22]. However, there is no evidence so far 

that angiosperm formins interact directly with RHO clade GTPases (i.e., the Rop–RHO of plants–family 

members). Nevertheless, plant formins can associate with membranes by other means (see [52]). While 

typical Class I angiosperm formins are transmembrane proteins with an N-terminal signal peptide and a 

single membrane-spanning helix [53,54], the most frequent domain organization of Class II formins 

features a PTEN-like domain whose phosphatase activity was lost by a point mutation affecting the 

active site, proposed to bind phosphoinositides [21]. For a Physcomitrella patens homologue its ability 

to bind PI(3,5)P2 was experimentally proven [55]. Thus, typical representatives of both angiosperm 

formin clades are capable of mediating association of both microtubules and microfilaments with 

membranes, and in case of Class I formins, which have an extracytoplasmic domain, also with the cell wall 

(Figure 1). 

Most functional studies of formins in fungi and metazoa have focused on their role in cell polarity, 

which naturally brought attention to their functions in the cell cortex. Cortical localization of a 

membrane-associated protein, however, does not necessarily mean plasmalemma localization, since 

endomembrane structures (including, but not limited to, numerous endocytotic and exocytotic vesicles) 

are present at the cell cortex in most cell types. Indeed, evidence for association of FH2 proteins with 

intracytoplasmic structures that may involve membranes can be found upon closer inspection in many 

cases, as discussed below. 
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Figure 1. Possible roles of Class I plant formins such as AtFH8 (shown in green) in the 

organization of cytoskeletal and membrane structures. Relatively static structures shown  

in shades of red serve as a “dock” for anchoring more dynamic ones shown in blue.  

Top: formins can attach both microfilaments and microtubules to the plasmalemma, which 

is linked to the cell wall through integral membrane proteins, including the formins 

themselves (modified from [45]); Bottom: attachment of endomembrane compartments, 

such as the ER or secretory vesicles, to the cytoskeleton may be mediated by formins. 

While Class II formins cannot anchor the plasmalemma to the cell wall, they may also 

participate in endomembrane-cytoskeleton interactions as long as they bind to the 

membrane itself or to some integral or peripheral membrane proteins. 
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4. Fungal Formins Participate in Endomembrane Organization 

Studies in yeasts and filamentous fungi suggest possible association between typical (RHO-regulated) 

fungal formins and endomembrane structures. In the budding yeast, Saccharomyces cerevisiae, the 

formin Bni1 is a part of the polarisome, a multiprotein cortical structure associated with sites of 

polarized cell growth [56]. Bni1 also localizes to polarized sub-cortical spots in the nascent bud in  

an actin and RHO GTPase-dependent manner [57]. Subsequent higher resolution observations  

showed that Bni1 associates with motile cytoplasmic speckles whose movement depends on actin 

cables, while the related formin Bnr1 decorates nearly static cortical structures at the bud neck [58]. 

While these studies do not directly address possible association between budding yeast formins and 

endomembranes, their results do not exclude such interpretation. Intriguingly, Bni1 together with 

several other polarisome subunits was recently shown to modulate the organization of the cortical ER 

in yeast buds through its role in the regulation of the MAP kinase Slt2 that is involved in cell wall 

integrity signalling [59]. 

More direct support for possible participation of FH2 proteins in fungal endomembrane 

organization comes from studies in dimorphic yeasts such as Candida, from filamentous fungi, or from 

budding yeasts’ mating projections (“shmoos”) that share some characteristics of tip-growing fungal 

hyphae [60]. In these systems, a membrane vesicle-rich, cytoskeleton-associated structure historically 

termed the Spitzenkörper and containing homologs of some, though not all, of the polarisome 

components [61–63] is found inside the growing tip of the tubular hypha or cell projection. 

Remarkably, FH2 proteins exhibit a pattern of intracellular localization and dynamics characteristic of 

Spitzenkörper components in several systems, including Aspergillus nidulans, where green fluorescent 

protein (GFP)-tagged formin SEPA localizes, besides future septation sites, to a dynamic “cap” on top  

of a cytoplasmic region rapidly staining by FM4-64 (indicating rapid membrane turnover), which is  

a hallmark pattern for Spitzenkörper proteins [64]. A similar localization and dynamics has been 

reported also for the Candida albicans Bni1 homolog [65] and even for budding yeast Bni1 during shmoo 

development [60]. 

Two additional lines of evidence link formins to the endomembrane system in fungi. In Candida 

albicans, the Golgi apparatus undergoes extensive remodelling upon transition between the yeast and 

hyphal growth phase. This event requires both actin and the Bni1 formin, as documented by 

pharmacological and mutant studies [66]. Last but not least, in the fission yeast Schizosaccharomyces 

pombe, Sec3, a component of the evolutionarily conserved Exocyst complex involved in targeting of 

secretory vesicles, was recently shown to interact physically with the formin For3. This partnership is 

required for proper localization of this formin (but not other polarisome components) at cell periphery 

and for correct formin-mediated actin cable assembly. Mutants defective in Sec3 also exhibit impaired 

endocytosis, albeit it is unclear if this phenotype is related to the For3 function [67]. While authors  

of this study presume that the relevant interaction between Sec3 and For3 takes place at the 

plasmalemma, earlier data show that For3 locates to intracytoplasmic speckles in the cell cortex, 

similar to those reported for budding yeast [68]. In any case, these findings place the For3 formin at 

the crossroads between actin organization and membrane turnover, the latter being inseparable from 

endomembrane dynamics. Remarkably, budding yeast Bem1, a scaffold protein known to interact with 
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formins, was recently reported to bind another exocyst subunit, Exo70 [69], showing that at least in 

fungi the connection between formins and the exocyst is a general phenomenon. 

5. Formins and Endomembranes: Evidence from Metazoans 

In metazoan cells, endomembrane-related roles of the “classical” DRFs and related RHO-interacting 

formins were studied mainly in the context of the mammalian Golgi apparatus rearrangements. The 

congregation and dispersal of Golgi stacks depends on microtubules, but also involves actin-dependent 

motor activity and reorganization of Golgi-associated actin network. Formins have been implicated in 

both directions of Golgi remodelling, indicating that their participation is apparently paralog- and/or 

cell type-dependent. 

In cultured mammalian lymphocytes, depletion of the RHO-regulated formin FMNL1 by RNAi 

results in massive accumulation of cytoplasmic actin filaments accompanied by Golgi fragmentation. 

Re-expression of the FMNL1γ splicing isoform that localizes to the Golgi complex, but not of other 

isoforms, rescues this phenotype in a manner requiring actin binding to the FH2 protein [70]. 

Mutational or pharmacological activation of RHO in human HeLa cells also results in similar Golgi 

fragmentation into “mini-stacks”. This process requires actin, microtubules and a functional homolog 

of the prototype DRF mDia1, while the requirement for RHO can be bypassed by expression of 

constitutively active mDia1. Remarkably, mDia1 was also shown to localize to Golgi-derived 

membrane vesicles and apparently contributes to the regulation of their formation [71]. This protein 

also plays a central role in the assembly of specialized membrane-anchored actin tracks for delivery of 

secretory vesicles to the plasma membrane in pancreatic exocrine cells, further supporting its role in the 

final step of exocytosis [72]. 

INF2 (inverted formin 2), a RHO-interacting metazoan formin that exhibits an unusual “inverted” 

domain structure with long C-terminal extensions, and containing the WASP homology 2 (WH2), 

domain characteristic of interactors of the Arp2/3 actin nucleation complex, was found to decorate  

the ER in cultured Swiss 3T3 fibroblasts due to C-terminal prenylation that allows its direct peripheral 

attachment to membranes [73]. However, in some other cell lines this protein remains cytoplasmic. 

The cause of this diversity was traced back to the existence of two splicing isoforms of INF2 with 

variant C-ends, expressed in varying ratios among the studied cell lines; the cytoplasmic isoform lacks 

the prenylation site. Interestingly, RNAi-mediated knock-down of the non-prenylated INF2 isoform 

resulted in Golgi dispersal (similar to the above-described consequences of FMNL1 depletion  

or mDia1 activation), which can be prevented by latrunculin B treatment, suggesting that cytoplasmic 

INF2, which is often enriched in peri-Golgi cytoplasm, also participates in actin-dependent 

endomembrane organization [74]. The prenylated INF2 isoform appears to mediate actin assembly  

on the ER surface, which is required for a key step in endoplasmic reticulum-mediated mitochondrial 

division (ERMD), namely the recruitment of dynamin on the surface of ER-associated  

mitochondria [75,76]. Interestingly, a close relative, INF1, was shown to induce, besides actin-microtubule 

co-alignment, formation of acetylated microtubule bundles [77], with possible implication for 

microtubule sliding-mediated ER movements (see above).  

Investigation of mechanisms that localize formins to the metazoan endomembrane system led to the 

discovery of a novel, and somewhat surprising, mechanism of co-translational protein addressing.  



Int. J. Mol. Sci. 2015, 16 8 

 

 

In contrast with the above-described localization of mDia1 to the Golgi apparatus of cultured 

mammalian cells [71], chicken Dia1 (cDia1/DIAPH1) was found to associate with perinuclear  

ER in embryo-derived fibroblasts. It is at present not clear whether the different localization of  

the two DRFs is due to different properties of the formin itself or of the studied cells. The ER 

localization mirrors cDia1 mRNA distribution, does not depend on either actin or microtubules, but 

requires successful translation of the formin’s RHO-interacting domain, which apparently binds the 

membrane-associated RHO GTPase as soon as it exits the ribosome [78]. The somewhat puzzling lack 

of actin or microtubule requirement for the perinuclear localization may be explained by the finding 

that translation and RHO binding to the nascent polypeptide takes place immediately after the mRNA 

leaves the nucleus [79]. In the plasmalemma, fine-tuned RHO GTPase-independent subcellular 

targeting of mouse formin mDia1 is also mediated by its direct interaction with phospholipids, since 

the formin induces strong clustering of PI(4,5)P2 prior to its insertion into the membrane [80].  

Similar mechanisms might also participate in localizing at least some formins into distinct regions  

of endomembranes. 

Thus, association with endomembrane compartments and/or functional involvement in their 

dynamics is a common feature of several metazoan formins. A variety of molecular mechanisms  

can ensure targeting of these proteins to their corresponding compartments. Post-translational 

modifications, alternative splicing, interaction partners, and additional (mostly not yet characterized) 

organism- or cell type-specific factors all contribute to the choice of role a particular formin will fulfil. 

While some of the mechanisms responsible for endomembrane-related formin functions are  

lineage-specific (such as those involving the metazoan-specific Spir actin nucleator [81]), others may 

be conserved across eukaryotes. 

6. Membrane-Associated Plant Formins: No Longer Only at the Plasmalemma 

Until recently, most of the research addressing membrane-related functions of plant formins focused 

on the roles of Class I (transmembrane) angiosperm formins in the cortical cytoskeleton-plasmalemma-cell 

wall continuum. Using mainly C-terminal fluorescent protein fusions in vivo, in some cases with 

confirmation by immunostaining, localization in the cell cortex was documented for several of these 

proteins, including AtFH1, the major housekeeping Class I formin in Arabidopsis, whose mobility in 

the plasmalemma is restricted by the cell wall [40], AtFH4 and AtFH8, both accumulating at 

transversal cell-to-cell boundaries in the Arabidopsis rhizodermis and root cortex [34]. AtFH5 was 

found at the nascent cell plate, which, however, could be viewed not only as prospective plasmalemma 

but also as an endomembrane compartment of a kind [35], and AtFH6 decorates the plasma membrane 

of giant cells in nematode-induced galls [82]. However, cortical localization may involve not only the 

plasmalemma but also adjacent endomembrane compartments, including small exo- and endocytotic 

vesicles, endosomes, TGN/Golgi or the cortical ER, which can hold a molecular subpopulation of the 

protein in addition to that residing at the plasmalemma. Unless interaction with the cell wall (as in the 

case of AtFH1 [40]), or co-localization with a plasmalemma marker is proven, or very sensitive 

imaging techniques are used, plasmalemma and sub-plasmalemma localization may not be reliably 

distinguishable in vivo. 
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Indeed, AtFH1, reported to accumulate in tobacco pollen tube plasmalemma upon ectopic 

heterologous overexpression, decorates also some intracytoplasmic structures under these conditions [83]. 

Remarkably, Arabidopsis mutants lacking AtFH1 exhibit impaired endocytosis, suggesting a direct or 

indirect participation of this formin in membrane trafficking [84]. AtFH5, which is naturally expressed 

in pollen, localizes both inside growing pollen tube tips and in their cortex when C-terminally  

GFP-tagged [85], and overexpression of GFP-tagged derivatives of the related pollen formin AtFH3 

also resulted in a cytoplasmic signal [37]. Such observations suggest a possible association of at least a 

subpopulation of Class I formins with secretory or endocytotic pathway compartments. Indeed, 

fluorescent protein-tagged AtFH4 was upon closer observation found to localize to the cortical ER and 

participate in its co-alignment with microtubules [45], while AtFH8 was observed predominantly at the 

cell plates of dividing root cortex cells and at the nuclear envelope, with weaker signals either in the 

cytoplasm or the ER, although the quality of the published images does not allow distinguishing 

between these locations [47]. Localization to the nuclear membrane, and, to a lesser extent, the cortical 

ER, was also seen in Nicotiana benthamiana leaf epidermis transiently transformed using the p19 

enhancer system [86] with constructs expressing N-terminally GFP-tagged AtFH5, i.e., a derivative of 

this formin that should not enter the secretory pathway ([87]; Figure 2). In this case, the fluorescent 

protein may become localized through interactions with other membrane proteins, including possibly 

dimerization with related endogenous formins. 

Angiosperm Class II formins lack obvious means for insertion into the membrane, and in general 

are less well characterized than their Class I counterparts. A moss (P. patens) member of this clade, 

associated with membranes through its PTEN-like domain, co-localizes with the FM4-64 membrane 

marker in the tip of growing protonemata in a pattern suggestive of possible endomembrane 

association [55]. However, it has to be stressed that the observed structures, although located in the 

apical dome of tip growing cells, bear only very superficial similarity to the above-discussed fungal 

Spitzenkörper, as they do not exhibit the distinctive pattern of separate domains of formin and FM4-64 

localization. Another typical (i.e., PTEN-like domain-containing) Class II formin, the Arabidopsis 

AtFH14, which can bind microtubules, localizes predominantly to the preprophase band, mitotic 

spindle and the  phragmoplast when heterologously expressed in cultured tobacco BY2 cells, although 

the phragmoplast pattern does not exclude contribution of membrane structures [46]. AtFH16,  

a microtubule-binding Class II formin that lacks the PTEN-like domain, was found to decorate 

microtubules in transiently transformed onion epidermis [41] and in Nicotiana benthamiana leaves, 

where, however, additional intra-cytoplasmic structures reminiscent of the ER were also observed 

upon transformation with GFP-tagged AtFH16 or its deletion derivatives. However, in stably 

transformed Arabidopsis plants this protein decorates the ER, and pharmacological experiments have 

documented that its localization is sensitive to anti-actin drugs such as latrunculin B (LatB) to a similar 

extent as that of the ER ([88]; Figure 3). 
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Figure 2. Arabidopsis Class I formin AtFH5 (At5g54650) can associate with the nuclear 

membrane and ER in the epidermis of N. benthamiana leaves after Agrobacterium-mediated 

transient transformation with a plasmid carrying full length AtFH5 fused to the C end of 

GFP under the control of the 35S promoter. (a) Maximum projection of a stack of confocal 

images of epidermal cells expressing GFP:AtFH5, 5 days post-transformation; (b) Control 

cells expressing free GFP showing cytoplasmic and nuclear localization, 6 days  

post-transformation (maximum projection); (c) Detail of a cell expressing GFP:AtFH5,  

4 days post transformation (maximum projection); and (d) Two optical sections of the  

cell presented in (c), showing localization in the nuclear membrane (top) and in the  

sub-cortical ER (bottom). 
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Figure 3. Arabidopsis Class II formin AtFH16 (At5g07770) associates with the ER in the 

rhizodermis of young seedlings stably transformed with a plasmid carrying full-length 

AtFH16 C, terminally tagged with GFP under the control of the 35S promoter. (a) From 

left to right: AtFH16:GFP in a root hair, an atrichoblast, and a bulge-stage trichoblast;  

(b) The ER marker GFP:HDEL in a control line shows a similar, though more detailed, 

pattern, with some bright ER bodies. Left—a segment of rhizodermis, right—a root hair; 

(c) The actin cytoskeleton, visualized by GFP:FABD in the rhizodermis of another control 

line, exhibits a different pattern; (d–g) Sister seedlings after LatB treatment (10 μM for  

the time indicated). (d) AtFH16:GFP after 2 h; (e) AtFH16:GFP after 4 h; (f) GFP:HDEL 

after 2 h; (g) GFP:FABD after 2 h (note actin fragmentation). Scale bars represent 10 μm. 

Modified from [88]. 
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7. Conclusion: Time to Look for Formin Functions in Plant Membrane Trafficking 

Convincing evidence thus shows that participation in endomembrane dynamics is a common 

function for formins in opisthokonts. Furthermore, in plants, at least some representatives of  

both angiosperm-specific formin clades associate with compartments of the endomembrane system. 

More such examples are likely to emerge once we start looking for them. While localization to 

endomembrane structures per se does not prove a function in membrane dynamics, it is a necessary 

prerequisite for such a role. 

Some data supporting involvement of plant formins in membrane organization and movements 

already exist. Overexpression of several formins, either occurring naturally, as in the case of AtFH6 

upregulation in nematode-induced galls [82], or experimentally induced (e.g., ectopic expression of 

AtFH1 in pollen [83], overexpression of AtFH8 in rhizodermis [36], or moderate overexpression of 

AtFH5 in pollen [85]) correlates with obvious stimulation of cell expansion or loss of its polarity, 

which must involve membrane trafficking. Interestingly, massive overexpression of FH5 inhibits 

growth of pollen tubes [85]. Loss or impairment of formin function also leads to phenotypic effects 

that include altered membrane trafficking. Mutation of AtFH5 causes a cytokinesis defect [35], and 

expression of a dominant negative mutant of AtFH8 inhibited root hair development [34]. Functional 

impairment of AtFH1 by mutation or treatment with SMIFH2, a small molecule inhibitor of FH2 

domain activity [89], results in altered cell expansion in both rhizodermis and cotyledon pavement 

cells [84,90]. Mutations of a rice Class II formin cause a complex developmental phenotype also 

involving altered cell growth [38,48], albeit in this case participation of phytohormone (especially 

auxin) signalling, a process that also to a large extent relies on membrane trafficking (for a recent 

review see [91]), can be expected. 

In the current perspective, such phenotypic effects tend to be understood as secondary to alterations 

in cytoskeletal structure and function. However, at least some of them may be reflecting also a direct 

participation of formins in endomembrane organization and dynamics. Such an interpretation might 

perhaps be viewed as contrary to the time-proven Occam’s razor rule. Nevertheless, in the light of the 

above summarized evidence from non-plant lineages we believe that the possibility of formins also in 

plants directly contributing to membrane trafficking is very real, and that further experimental research 

should be undertaken to test this hypothesis. 
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