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Abstract: This paper presents a density functional theory (DFT)/time-dependent DFT 

(TD-DFT) study on the lowest lying singlet and triplet excited states of 20 selected 

polybrominateddiphenyl ether (PBDE) congeners, with the solvation effect included in the 

calculations using the polarized continuum model (PCM). The results obtained showed that 

for most of the brominated diphenyl ether (BDE) congeners, the lowest singlet excited 

state was initiated by the electron transfer from HOMO to LUMO, involving a π–σ* 

excitation. In triplet excited states, structure of the BDE congeners differed notably from 

that of the BDE ground states with one of the specific C–Br bonds bending off the 

aromatic plane. In addition, the partial least squares regression (PLSR), principal component 

analysis-multiple linear regression analysis (PCA-MLR), and back propagation artificial 

neural network (BP-ANN) approaches were employed for a quantitative structure-property 

relationship (QSPR) study. Based on the previously reported kinetic data for the 

debromination by ultraviolet (UV) and sunlight, obtained QSPR models exhibited  

a reasonable evaluation of the photodebromination reactivity even when the BDE 

congeners had same degree of bromination, albeit different patterns of bromination. 
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1. Introduction 

Polybrominateddiphenyl ethers (PBDEs) are organobromine compounds that are widely used as  

an additive flame retardant in polymers and are thus now widespread in the environment [1–5]. Due to 

their environmental persistency, lipophilicity, and potential toxicity (such as endocrine disruption, 

mutagenic harm to animals), PBDEs have aroused increasing concerns from both environmental 

chemists and biologists [6–13]. Furthermore, highly toxic products, such as polybrominated 

dibenzofurans (PBDFs) and polybrominateddibenzo-p-dioxins (PBDDs), might be generated by the 

combustion or photolysis of PBDEs [14–16]. 

Recently, photochemical debromination is recognized as a key transformation pathway of highly 

brominated PBDEs [17]. According to an estimation of the removal rates of PBDEs from the lower 

troposphere, the photolysis accounted for more than 90% of the removal of gas-phase congeners [18]. 

The direct photochemical debromination is also known to be an important process for the 

transformation of highly brominated BDEs to lower brominated congeners in the environment.  

In addition, the photodebromination for PBDEs is a relatively rapid and efficient remediation 

approach. For example, the photodebromination rate of BDE-209 [19] is approximately ten times 

higher than the reductive debromination rate by nanoscale zero-valent iron [20], and approximately 

equal to the debromination rate with the use of smectite clay-templated subnanoscale zero-valent  

iron [21]. Remediation of PBDEs via the photolysis approach with sunlight would be promising since 

solar energy is considered to be a clean and renewable energy. The current interpretation of these 

photolytic processes is mainly based on the excitation of PBDEs, by which the formed singlet or triplet 

excited states can undergo C–Br cleavage of PBDEs [22–24], as shown in Equations (1) and (2). 

PBDEs + UV → PBDEs (singlet excited state) → PBDEs (triplet excited state) (1)

PBDEs (singlet excited state or triplet excited state) → debromination (2)

Excitation energy is highly related to the photolysis reactions. For example, it was found that the 

lowest singlet vertical excitation energy rather than hydrogen-donating efficiency and electron-donating 

efficiency of solvents contributes to relative resistance of bromine removal of BDE-209 [25]. Several 

quantitative structure-property relationship (QSPR) studies were previously carried out to investigate 

the photodebromination rates and quantum yields of PBDEs [26,27]. However, in these QSPR models, 

the excitation energy was not included as the molecular descriptors, and the studies on the relationship 

between the excitation states and the photodebromination of PBDEs are still insufficient and  

incomplete [28]. It is generally believed that, by spin-orbit coupling, halogenated aromatic hydrocarbons 

can be efficiently relaxed to triplet levels [29]. Triplet excited states are important in many kinds of 

photo-induced reactions due to the relatively long lifetimes bestowed on excited triplet species [30,31]. 

Hitherto, only limited studies on the debromination of PBDEs’ triplet excited states were reported.  

In addition, the QSPR studies conducted were only devoted to the photodebromination rate constants 
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of PBDEsbyultraviolet (UV), but the QSPR studies regarding the photodebromination rate constants of 

PBDEs by sunlight have not yet been reported. 

Eriksson et al. [19] and Wei et al. [32] have investigated the debromination of several BDE 

congeners, covering a range of different bromination patterns and degrees. To better investigate the 

relationship between the excited states and the photodebromination of PBDEs, 20BDE congeners were 

selected from their reported experiments for a computational study in the present work. The vertical 

lowest-lying singlet and triplet excited states were investigated by density functional theory 

(DFT)/time-dependent density functional theory (TD-DFT) calculations. 

In addition, linear and nonlinear models were employed for a quantitative structure-property 

relationship (QSPR) study based on the reported photodebromination rate constants of PBDEs by UV [19] 

and by sunlight [32]. In traditional multiple linear regression methods, a dataset may contain redundant 

descriptors, and the correlations observed may be chance correlations. Moreover, the relationship 

between reaction rates and its parameter factors is in general considered nonlinear by nature. 

Therefore, we choose the two linear based models (partial least squares regression (PLSR) and 

principal component analysis-multiple linear regression (PCA-MLR)) and one nonlinear model (back 

propagation artificial neural network (BP-ANN)) to resolve the inter correlation problem of the 

descriptors and to remove the limitation of the assumption of a linear relationship between the reaction 

rate and descriptors, respectively. We also considered and studied the over fitting problems encountered 

when using the BP-ANN methods since this might be useful for significantly improving the 

performance of the BP-ANN model. 

2. Results and Discussion 

2.1. The Lowest-Lying Singlet Excitations for Selected Brominated Diphenyl Ether (BDE) Congeners 

The lowest excited state (S1) is crucial to the mechanism explanation of the photochemical 

degradation of PBDEs [25,28], and S1 is the excited state which can be achieved not only by photon 

excitation from S0 (this might be weak), but also by conversions of other higher excited states (e.g., SN, TN) 

via multiple processes. As one of the most important parts in the photochemistry, therefore, the excited 

states investigated in this study are all located on S1. 

In this study, the obtained excitation energies of lowest-lying singlet (ES1) for the BDE congeners 

are between 3.79 to 4.46 eV, and the energy required for such photoexcitation corresponds to the 

ultraviolet light (327–278 nm), as shown in Table 1. Since PBDEs share the basic structure of diphenyl 

ether, the properties of BDE congeners will all depend on the bromination pattern. The ES1 values  

of the BDE congeners are linearly correlated negatively with the number of Br, as shown in Figure 1. 

For the three nona-BDEs under study, the ES1 values obtained are fairly close, while for the selected  

hepta- and hexa-BDEs, the ES1 values of the BDE congeners vary significantly. 
  



Int. J. Mol. Sci. 2015, 16 1163 

 

 

Table 1. The lowest-lying singlet excitation energy for the BDE congeners and the weights 

of excited configurations. 

Congener ES1 (eV) 
Wavelength 

(nm) 
f Assignment (H = HOMO, L = LUMO, L + 1 = LUMO + 1, etc.) 

BDE-209 3.7996 326.3 0.0062 H→L (+74%); H-2→L + 1 (15%); H-3→L + 1 (7%) 

BDE-208 3.8262 324.0 0.0022 H-1→L (+45%); H→L (+44%); H-3→L (7%) 

BDE-207 3.8218 324.4 0.0037 H→L (+44%); H-1→L (42%); H-2→L (+10%) 

BDE-206 3.8336 323.4 0.0026 H-1→L (+51%); H→L (+38%); H-3→L (6%) 

BDE-203 3.846 322.4 0.0024 H-1→L (+70%); H→L (+23%) 

BDE-196 3.8309 323.6 0.0029 H→L (+46%); H-1→L (36%); H-2→L (+7%) 

BDE-190 3.9397 314.7 0.0001 H-1→L (+83%); H→L (14%) 

BDE-183 4.1444 299.2 0.0012 H-1→L (+58%); H→L (36%) 

BDE-181 3.9175 316.5 0.0025 H-1→L (+48%); H→L (+34%); H-2→L (+14%) 

BDE-155 4.3949 282.1 0.0204 H→L (+83%); H-1→L + 1 (9%) 

BDE-154 4.3799 283.1 0.0001 H→L + 2 (+42%); H→L + 1 (37%); H→L + 4 (18%) 

BDE-153 4.4181 280.6 0.0025 H→L + 1 (+57%); H→L (16%); H→L + 3 (+8%) 

BDE-139 4.1221 300.8 0.0015 H-1→L (+49%); H→L (+46%) 

BDE-138 4.1844 296.3 0.0036 H→L (+79%); H-1→L (+15%) 

BDE-100 4.4286 280.0 0.0121 H→L (+64%); H-1→L (+29%) 

BDE-99 4.4037 281.6 0.0013 H→L + 1 (+73%); H→L (15%) 

BDE-85 4.1269 300.4 0.0026 H→L (+84%); H-1→L (+12%) 

BDE-77 4.4590 278.1 0.0183 H→L (+79%) 

BDE-47 4.4543 278.4 0.0197 H→L (+87%); H-2→L + 1 (+6%) 

BDE-28 4.4539 278.4 0.0204 H→L (+88%) 

 

Figure 1. Correlation between lowest-lying excitation energy and Br number of the 

brominated diphenyl ether (BDE) congeners. 

For ten of the selected twenty BDE congeners (Table 1), the electron excitation from highest 

occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) made the 
biggest contribution to S0→S1 excitation. The HOMOs for most of the BDE congeners were found to 

be π-based, and preferred to spread mainly over the aromatic ring of fewer bromine substituents 
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(especially for the lower brominated BDE congeners). Conversely, the LUMOs for the BDE congeners 

under study generally have the σ* character, and were mainly located on the phenyl group which  

has relatively more bromine substituents (e.g., BDE-181, Figure 2). This should be caused by the 

electron-withdrawing effects of the bromine atoms on the two phenyl rings. According to the 

assumption of Kasha’s rule, higher electronic states (SN) should decay exclusively via internal 

conversion to the lowest excited state in a solvent where collisions are common and energy dissipation 

is fast [33]. Therefore, after excitation, the molecules could convert to S1whichproceed from π orbital 

to σ* orbital showing the characteristics of the coherent HOMO-LUMO electronic transition. A similar 

phenomenon was found in the photoreductive debromination of a halogen-binding-based complex 

between decabromodiphenyl ether (BDE-209) and carboxylate under visible light irradiation [24]. 

Unlike other halogenated aromatic compounds, such as polychlorinated dibenzo-p-dioxins (PCDDs) 

and polychlorinated dibenzofurans (PCDFs), the conjugated system of the two aromatic rings for 

PBDEs is relatively weak. For the BDE congeners not symmetrically brominated on the two aromatic 

rings, the phenyl group with more Br substituents becomes more electron-deficient than the other one. 

Therefore, the electronic excitation from HOMO to LUMO of PBDEs would make the electron of 

electronic-rich ring transferred to the electron-deficient ring, resulting in a situation similar to the BDE 

anionic species which captured an additional electron in the LUMO [34–36]. Consequently, this 

transition of electrons into these anti-bond orbitals will reduce the C–Br bond order, and the C–Br 

bonds become weakened and easy to break in the excited states of BDE congeners. This contribution 

of S1 to the photolysis of PBDEs could be supported by previous theoretical calculations, the structure 

of PBDEs in singlet excited state and the structure of PBDE anions have the same geometrical 

characteristic, i.e., the significant lengthening and out-of-plane bending of C–Br bonds [28,37,38]. 

Zeng et al. [39] also found the major debromination products of PBDEs have a greater similarity 

between photodebromination and Fe0 reduction and the linear relationships are significantly high 

between the LUMO energies and the debromination rates of PBDEs by treatment using UV light or 

zero-valent iron. In addition, it can be inferred that with one aromatic ring having relatively more 

bromine substituents than the other one, the electronic excitation of this kind of BDE congeners might 

be relatively easy, and the photochemical debromination, according to the characteristics of S1, would 

prefer to occur on the benzene ring having a higher bromination. These assumptions could be in 

agreement with the results observed in the previous photodebromination experiments [40]. 

 

Figure 2. Frontier orbitals of BDE-181 (A: HOMO; B: LUMO) (iso-surface value = 0.02, 

arbitrary unit).  
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2.2 The Lowest-Lying Triplet Excitations for Selected BDE Congeners 

The electron in the LUMO is easy to spin-reverse due to the heavy atom effect of Br, thus the 

singlet excited state of the brominated compounds is expected to undergo efficient intersystem 

crossing to form the triplet state [24,41,42]. The lowest-lying triplet excitation energy (ET1) (Table 2) 

of the BDE congeners is significantly correlated with the ES1 (R2 = 0.937). However, in comparison 

with the singlet excitation of the BDE congeners under study, the weights of excited configurations for 

their triplet excitation are totally different and relatively complex. 

Table 2. The lowest-lying triplet excitation energy for the BDE congeners and positions of 

the bent C–Br bond for the optimized geometries. 

Congener ET1 (eV) Wavelength (nm) Position of the Bent C–Br Bond 

BDE-209 3.2118 386.0 4 (para-position) 
BDE-208 3.22 385.0 4 (para-position) 
BDE-207 3.221 384.9 4 (para- position) 
BDE-206 3.221 384.9 4 (para-position) 
BDE-203 3.2274 384.1 4' (para-position) 
BDE-196 3.2229 384.7 4 (para-position) 
BDE-190 3.2642 379.8 4 (para- position) 
BDE-183 3.3164 373.8 4' (para- position) 
BDE-181 3.2591 380.4 3 (meta-position) 
BDE-155 3.3942 365.3 2 (ortho-position) 
BDE-154 3.4327 361.2 5 (meta-position) 
BDE-153 3.418 362.7 2 (ortho-position) 
BDE-139 3.3175 373.7 2' (ortho-position) 
BDE-138 3.3693 368.0 2 (ortho-position) 
BDE-100 3.4028 364.4 2 (ortho-position) 
BDE-99 3.4209 362.4 2 (ortho-position) 
BDE-85 3.4145 363.11 2 (ortho-position) 
BDE-77 3.4481 359.5 4 (para-position) 
BDE-47 3.4479 359.6 2 (ortho-position) 
BDE-28 3.4594 358.4 -a 

a bending of the C–Br bond was not observed in the present calculations. 

In the present work, the DFT calculations (PCM/B3LYP/6-31G(d)) were employed to investigate 

the geometries of the lowest triplet excited states of the BDE congeners. Results show that the 

structures of the triplet excited states differ significantly from that of the BDE congeners in ground 

states. For the BDE congeners under study (except for BDE-28), one of the C–Br bonds at a specific 

position is bent out of the aromatic ring plane with the angles from around 50 to 70 degrees that 

increases with a decrease in the number of Br, as shown in Figure 3 (visualized geometries of the 

BDE-154 and BDE-183 in triplet excited state are taken as examples, and the others can be found in 

Appendix A). The degrees of this bond bending in the triplet excited states of PBDEs are significantly 

larger than those in their anionic states, probably indicating that the cleavage of C–Br bonds for 

PBDEs would occur more easily by excitation than by electron attachment [34,35]. In addition, the 

singly occupied molecular orbital (SOMO) of the triplet excited states for the BDE congeners were 
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examined. The SOMO of the congeners (corresponding to the original HOMO in ground states) did not 

change significantly, leaving the π character. However, the SOMO + 1 (corresponding to the original 

LUMO in ground states) of the most BDEs is of the mixing characteristics of π and σ orbitals,  

or twisted σ character, which is believed to play an important role in the dissociation of halogen atoms 

from the halogenated compounds (e.g., PCDDs and PBDEs) induced by electron attachment [35,36]. 

From Table 2, we can see that the bending of C–Br bonds in the triplet excited states occurred 

preferably at the para-position for higher brominated BDE congeners and at the ortho-position for 

lower brominated BDE congeners. Similar results can also be observed in the corresponding gas-phase 

calculations. This is in agreement with the previous report that photodebromination of BDE-209 

occurred mostly at the para-position [43]. Fang et al. [40] also reported that the photo-reactivity  

of bromines at various positions of phenyl rings decreased in the following order: ortho > para for 

lower brominated PBDEs (e.g., BDE-47), while for higher brominated congeners, the regioselectivity 

of photodebromination was not significant. 

In addition, the geometry optimizations with higher multiplicity (e.g., five and seven) were performed, 

showing a bending of multiple C–Br bonds of the BDE congeners. This indicated the possibility  

of elimination of more than one Br atom in the photodebromination by multi photon excitation. 

 

Figure 3. Visualized geometries of BDE-154 (A) and BDE-183 (B) in the triplet  

excited state. 

2.3. Quantitative Structure-Property Relationship (QSPR) between the Photodebromination Rate 

Constants and Molecular Descriptors 

2.3.1. Establishment of the Partial Least Squares Regression (PLSR), Principal Component  

Analysis-Multiple Linear Regression Analysis (PCA-MLR), and Back Propagation Artificial Neural 

Network (BP-ANN) Models 

Photodebromination rate constants of the BDE congeners by UV light and sunlight used in this 

QSPR study were collected from Eriksson et al. [19] (n = 15, in the mixed solvent (methanol:water, 
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80:20)) and Wei et al. [32] (n = 13, in hexane), respectively. The original kinetic data were then 

randomly divided into two parts called training set and test set, for the model building and validation, 

respectively. Six molecular parameterscalculated at the PCM/B3LYP/6-311++G(d,p) level were 

chosen as the descriptor variables (as shown in Table S1), including ET1, ES1, ELUMO, EHOMO,  

HOMO-LUMO gap and the number of Br, which are popular descriptors for the stability and reactivity 

of molecules in theoretical and computational chemistry [44–46] and are important molecular 

parameters used to investigate the photolytic reactions [26,47,48]. 

The Pearson correlation analysis showed a high intercorrelation among the six independent 

variables (Table S2). For the establishment of the PLSR model, the first latent variable was obtained 

and then used for the regression. For the PCA-MLR approach, one principal component (PC1) was 

extracted from the original data (Table S3) and was taken as the variable to establish the linear 

regression equation. For the BP-ANN model, a multilayer feed-forward (MLFF) neural network with a 

back-propagation (BP) supervised learning method was selected with different architectures composed 

of different numbers of neurons in the hidden layer. The tangent sigmoid function as the transfer 

function was carried out by including input neurons as the six molecular descriptors related to 

logarithm of the debromination rate constants of the BDE congeners (log k). Gradient descent method 

was used to train the network. The training goal was set by 0.02. The learning rate was set by 0.05. 

Before training, all values of the inputted molecular descriptors were normalized between 0.1 and 0.9 

using the following equation: 

Normalized value = 0.1 + (original value − min)/(max − min) × (0.9 − 0.1) (3)

where “max” and “min” represent the maximum and minimum values, respectively, for a specific 

descriptor. Due to the random initialization of initial connection weight values at the start of the 

training process, the predicted results of the BP-ANN might vary slightly. Therefore, the final 

performance of the model was evaluated based on the average results from the simulations with  

ten repetitions. 

There are several theories about determining the optimal network size used in statistical  

inference [49–52]. One of the theories indicates that the number of parameters in the network should 

be smaller than the number of observations. Although these rule-of-thumb methods aim to prevent 

overfitting and are useful in some cases, they are not considered to be true and reliable always as the 

optimal number of parameters is likely to depend on other factors, e.g., the distribution of the data 

points and the amount of noise [52–54]. A model which has been overfit will generally have poor 

predictive performance, as it can exaggerate minor fluctuations in the data. In general, with a fixed 

number of training patterns, overfitting can occur when the model has too many degrees of freedom. 

Considering the rather small number of observations obtained for the training sets (11 observations for 

the log kUV and 9 observations for the log ksun), the maximum neurons in the hidden layer in this study 

was limited to 4 neurons (30 connections). The required number of hidden neurons was optimized  

by an iterative process, and the predictive ability of the network was separately validated by the test set 

(n = 4) [55,56]. 

In addition, the artificial neural networks are generally presented as systems of interconnected 

“neurons” which can compute values from inputs, and thus both the R factor and other evaluating 

indicators such as standard statistical error are invalid for effective evaluation of the fitting 
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performance. Therefore, for comparative purposes, the values of RMSE (root mean squared error) were 

employed so that the three models (PLSR, PCA-MLR, and ANN) may be compared using their RMSE 

value as a measure of how well they explain a given set of observations. The RMSE can be calculated 

by Equation (4). 

2(observed - predicted)

n
RMSE =   (4)

2.3.2. Performance of the QSPR Models 

As shown in Table 3, the performance of the PLSR and PCA-MLR models are similar solely 

considering the data in the training set, since the R2Y in PLSR and R2 in PCA-MLR are fairly close 

with the values around 0.91 (n =15) and 0.83 (n = 13) for log kUV and log ksun, respectively. For the 

training sets (Table 4), both the PLSR and PCA-MLR models presented the relatively large predicted 

values of the hexa-BDE congener (BDE-139), albeit BDE-139 has an experimental log kUV close to 

that of the other hexa-BDEs (BDE-138, BDE-154, and BDE-155). Similarlytothe training set for  

log ksun, the PLSR and PCA-MLR models both overestimated the log ksun of BDE-100, which actually 

has a relatively low reactivity in comparison with the other penta-BDEs (BDE-85 and BDE-99). These 

deviated cases might be caused by the inadequate utilization of the descriptor variables during the 

component extraction as the weights of the variables were estimated based on the linear transition; 

however, the impact of the molecular parameters on the debromination reactivity of the compounds 

might not follow this mode. Therefore, in the test set, we can also see that the PLS and PCA-MLR 

models both give the log kUV values of BDE-183 (hepta-BDE) with relatively large errors, compared 

with the prediction results for the other congeners in the test set. Clearly, the RMSE values calculated 

with the PCA-MLR model are smaller than those calculated with the PLSR model. 

Table 3. Fitting results of the models established by partial least squares regression (PLSR), 

principal component analysis-multiple linear regression analysis (PCA-MLR) methods. 

Data PLSR PCA-MLR 

training set 

Log kUV (n = 11) RMSE = 0.300 RMSE = 0.232 
 R2X = 0.901 R2 = 0.920 
 R2Y = 0.891 F = 103.452 
 Q2 = 0.879 Sig. = 0.000 

Log ksun (n = 9) RMSE = 0.276 RMSE = 0.275 
 R2X = 0.901 R2 = 0.838 
 R2Y = 0.835 F = 36.252 
 Q2 = 0.804 Sig. = 0.001 

test set 

Log kUV (n = 4) RMSE = 0.32 RMSE = 0.231 

Log ksun (n = 4) RMSE = 0.202 RMSE = 0.185 
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Table 4. Predicted results of the quantitative structure-property relationship (QSPR) 

models by PLSR, PCA-MLR and BP-ANN (4 neurons in hidden layer) using the reported 

logarithm of the debromination rate constants by UV light (log kUV) [19]. 

Congener PLSR a PCA-MLR a BP-ANN b log kUV 

training set 

BDE-209 −3.71 ± 0.11 −3.80 ± 0.13 −3.44 ± 0.09 −3.40 
BDE-208 −3.87 ± 0.1 −3.96 ± 0.12 −3.91 ± 0.11 −3.77 
BDE-206 −3.89 ± 0.1 −3.99 ± 0.11 −3.95 ± 0.04 −4.08 
BDE-203 −4.01 ± 0.09 −4.12 ± 0.11 −4.33 ± 0.07 −4.43 
BDE-190 −4.24 ± 0.08 −4.37 ± 0.09 −4.59 ± 0.04 −4.52 
BDE-155 −5.3 ± 0.07 −5.43 ± 0.10 −5.31 ± 0.08 −5.39 
BDE-154 −5.47 ± 0.08 −5.60 ± 0.11 −5.50 ± 0.13 −5.48 
BDE-139 −4.83±0.07 −4.96 ± 0.08 −5.31 ± 0.07 −5.40 
BDE-138 −5.15 ± 0.07 −5.30 ± 0.09 −5.40 ± 0.11 −5.21 
BDE-99 −5.6 ± 0.09 −5.75 ± 0.12 −5.67 ± 0.06 −5.52 
BDE-47 −5.9 ± 0.11 −6.08 ± 0.14 −5.96 ± 0.08 −6.16 

test set 

BDE-207 −3.88 ± 0.10 −3.98 ± 0.12 −3.92 ± 0.05 −3.72 
BDE-183 −4.73 ± 0.07 −4.85 ± 0.08 −5.06 ± 0.10 −5.17 
BDE-181 −4.2 ± 0.08 −4.33 ± 0.09 −4.61 ± 0.06 −4.50 
BDE-77 −5.9 ± 0.11 −6.08 ± 0.14 −5.96 ± 0.08 −6.22 

prediction 

BDE-196 −3.95 ± 0.10 −4.05 ± 0.11 −4.03 ± 0.12 - 
BDE-153 −5.43 ± 0.08 −5.57 ± 0.10 −5.52 ± 0.09 - 
BDE-100 −5.54 ± 0.09 −5.68 ± 0.11 −5.59 ± 0.20 - 
BDE-85 −5.30 ± 0.08 −5.46 ± 0.10 −5.41 ± 0.14 - 
BDE-28 −6.10 ± 0.12 −6.29 ± 0.16 −6.01 ± 0.15 - 

a value ± standard error, a = 0.05; b value ± standard deviation, n = 10. 

In the ANN models (as shown in Table 5), the best mean training error in the test set occurs at four 

and three (four) hidden neurons for log kUV and log ksun, respectively. The generalization error is fairly 

small for all networks with the largest RMSE value of 0.27 for the architecture (6:1:1, log kUV). The 

underfitting is significant for the prediction of log kUV when the number of the hidden neurons  

is smaller than two. For the prediction of log ksun, the difference of the RMSE values in the test set  

is slight in the four network architectures. 

In order to minimize the parameters, the number of the neurons in hidden layer should thus  

be minimal (the best choice is only one neuron). Nevertheless, the prediction results for the test sets are 

unsatisfactory for the BP-ANN models with one neuron in the hidden layer, which might be caused by 

underfitting (Table 5). Thus, we chose four neurons for log kUV and three neurons for log ksun in the 

hidden layer for BP-ANN model. The predictions for the test set by the BP-ANN model are 

considerably better than those by the PLSR and PCA-MLR models for log kUV, but slightly poorer than 

those by the two models for log ksun. 

Although the numbers of parameters (weights or connections) of the networks in three cases of this 

study are larger than the sample size, the validation of the networks by the test set seemed fairly good.  

An explanation might be that the extra degrees of freedom can aid convergence, and successive pruning 

and retraining of a larger network may arrive at a network with similar size or the smaller size networks but 

with improved training results [54,57]. In a large network, there may be many solutions which fit the 
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training data well that will not generalize well; we therefore list herein the predicted results of each 

BDE congener in the test set by the BP-ANN models (with the optimized number of hidden layer 

neurons), PLSR, and PCA-MLR models for the purpose of comparison (as shown in Tables 4 and 6). 

Table 5. RMSE (root mean squared error) values for the optimization of the number  

of hidden layer neurons in BP-ANN. 

Hidden Layer Neurons 1 2 3 4 

Weights 7 14 21 28 

Performance for log kUV 
Training (n = 11) 0.165  0.160  0.136  0.124  
Test (n = 4) 0.270  0.268  0.216  0.182  

Performance for log ksun 
Training (n = 9) 0.179  0.166  0.171  0.182  
Test (n = 4) 0.240  0.251  0.216  0.216  

Table 6. Predicted results of the QSPR models by PLSR, PCA-MLR and BP-ANN  

(3 neurons in hidden layer) using the reported logarithm of the debromination rate 

constants by sunlight (log ksun) [32]. 

Congener PLSR a PCA-MLR a BP-ANN b log ksun 

training set 

BDE-209 −3.3 ± 0.12 −3.26 ± 0.18 −3.27 ± 0.10  −3.24 
BDE-206 −3.44 ± 0.11 −3.39 ± 0.17 −3.43 ± 0.08  −3.43 
BDE-196 −3.50± 0.1 −3.44 ± 0.16 −3.49 ± 0.08  −3.48 
BDE-183 −4.07 ± 0.07 −4.03 ± 0.11 −4.04 ± 0.15  −4.10 
BDE-153 −4.58 ± 0.08 −4.55 ± 0.12 −4.38 ± 0.09  −4.23 
BDE-100 −4.67 ± 0.09 −4.63 ± 0.13 −4.83 ± 0.12  −5.23 
BDE-99 −4.71 ± 0.09 −4.68 ± 0.13 −4.57 ± 0.16  −4.30 
BDE-85 −4.52 ± 0.08 −4.47 ± 0.11 −4.26 ± 0.03  −4.27 
BDE-28 −5.13 ± 0.13 −5.08 ± 0.18 −5.24 ± 0.06  −5.24 

test set 

BDE-208 −3.42 ± 0.11 −3.37 ± 0.17 −3.41 ± 0.10  −3.18 
BDE-207 −3.44 ± 0.11 −3.39 ± 0.17 −3.41 ± 0.13  −3.19 
BDE-154 −4.60 ± 0.08 −4.57 ± 0.12 −4.21 ± 0.21  −4.51 
BDE-47 −4.97 ± 0.11 −4.92 ± 0.16 −5.14 ± 0.18  −5.16 

predictions 

BDE-203 −3.56 ± 0.10 −3.49 ± 0.15 −3.55 ± 0.23  - 
BDE-190 −3.75 ± 0.08 −3.67 ± 0.13 −3.80 ± 0.60  - 
BDE-181 −3.72 ± 0.09 −3.65 ± 0.14 −3.78 ± 0.52  - 
BDE-155 −4.47 ± 0.08 −4.45 ± 0.11 −4.32 ± 0.21  - 
BDE-139 −4.16 ± 0.07 −4.11 ± 0.10 −4.31 ± 0.23  - 
BDE-138 −4.40 ± 0.07 −4.35 ± 0.11 −4.43 ± 0.27  - 
BDE-77 −4.97 ± 0.11 −4.92 ± 0.16 −5.12 ± 0.21  - 

a value ± standard error, a = 0.05; b value ± standard deviation, n = 10. 

In summary, the predicted orders of the photodebromination reactivities for the congeners by all 

models are very consistent with the observed trends: BDE-207 > BDE-183 > BDE-181 > BDE-77 for 

UV debromination and BDE-208 > BDE-207 > BDE-154 > BDE-47 for sunlight debromination.  

It is noteworthy that the log kUV values between BDE-183 and BDE-181 which have the same  
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Br number (hepta-) but different bromination patterns were successfully predicted by the three 

methods, especially by BP-ANN. Since one of the aromatic rings for BDE-181 is fully brominated, the 

photodebromination reactivity of BDE-181 is reasonably higher than that of BDE-183, which has  

a relatively high symmetry of the bromination pattern on its two phenyl rings. The predictions of BDE-183 

obtained with all BP-ANN models are significantly better than those made with PLSR and PCA-MLR 

models, exhibiting the nonlinear fitting ability of ANN. No significant difference was found between 

the prediction results given by BP-ANN models of different architecture (Tables S4 and S5). 

In addition, a significant correlation was found between the log kUV and log kSUN (R2 = 0.95, n = 8), 

indicating that these two types of reactions are of clear similarity (initiated by the electron excitation  

or intermolecular electron transfer). However, the kinetic data obtained under natural sunlight 

irradiation for some congeners (e.g., BDE-298, BDE-207, and BDE-100) seemed to be abnormal 

(Table 6) according to the commonly accepted knowledge that the photochemical reactivity of PBDEs 

increased with an increasing number of bromines [40,43]. Two other earlier reports also supported the 

low photoreactivity of BDE-100, showing that under UV irradiation, this congener has the log k value 

similar to or even lower than BDE-28 [27,40]. The HOMO-LUMO gap is a popular molecular 

descriptor used to describe the reactivity of molecules, and this is also an approximation of the 

hardness of the system. In some systems, the HOMO-LUMO gap can be close to the excitation energy; 

however, they may not be identical after a comparison of several cases in this study. We examined  

the six selected variables and observed that the most possible factor accounting for the relatively low 

photoreactivity of BDE-100 might be the ES1, since this parameter of BDE-100 is distinctively higher 

than that of the other penta-BDEs, and close to that of the tetra-BDEs in this work. And the  

HOMO-LUMO gap value of BDE-100 seemed not special and just ranked in the middle of that of the 

other penta-BDEs. The three methods employed in this work, including PLSR, PCA-MLR and ANN, 

are all effective tools which are good at digging valuable information and dealing with this kind of 

problem. However, only the BP-ANN models in this study could distinctively identify the relatively 

low photoreactivity of BDE-100 in comparison with the other penta-BDEs (Tables 5 and S6).  

In addition, the higher photoreactivities of the nona-BDEs than BDE-209 under sunlight is hard to 

explain by the models in this study. More molecular descriptors as well as the experimental data of 

similar cases for other BDE congeners are expected to help better understand the reasons behind this 

kind of “abnormal” low reactivity of some BDE congeners, and this still needs further research. 

Since it is difficult to evaluate the variable importance in the PCA-MLR and BP-ANN models, the 

variable importance was evaluated only in the PLSR model. Results showed that, in the PLSR model, 

ES1, ET1 and number of Br are the two most important variables with the largest VIP (variable 

importance in the projection) values. It is reasonable that the process of excitation played an important 

role in the photodebromination of PBDEs [25]. In the debromination experiments of PBDEs, the intensities 

of the light emission (which directly affected the photoreaction rate) from artificial sources [30,40]  

or sunlight [58] are in general not permanent but increase with the increasing wavelength in the range 

of the PBDEs’ excitation wavelength. Thus, for the BDE congeners, photo-excitation at a longer 

wavelength would occur more easily. In addition, it is well known that the reactivity of PBDEs 

increases with the increase in the degree of bromination. For PBDEs, the Br number used in these 

models can also be viewed as the representation of molecular weights or the rough total energy. We 

observed that the simple linear correlations between the Br number and log k have high R2 values  
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(0.95 for log kUV and 0.88 for log kSUN), which were even better than those in the PCA-MLR models. 

However, only using the number of Br as the descriptor variable cannot distinguish the difference 

between the BDE congeners if they have the same Br number. It is well known that the 

photodebromination rates for BDE congeners depend not only on their degree of bromination but also 

on the bromination pattern. Bromination pattern significantly affects the conformation and the degree 

of conjugation of the PBDE molecules. The latter one is related to the molecular orbital energy and 

determines the actual energy difference between the ground and excited states. When the other five 

molecular descriptors were added in the dataset for the QSPR study, the established models were able 

to approximately represent (or quantify) the pattern of bromination of the BDE congeners as well as 

their reactivity. Therefore, some kinds of topological descriptors concerning the molecular structure 

might be worth trying for the QSPR study in the future [59,60]. 

3. Experimental Section 

All quantum-chemical calculations were performed using Gaussian03 program suite [61] with 

GaussView 4.1 used as the molecular modeling system for constructing and visualizing the results  

of the calculations. To facilitate our calculations, methanol was chosen as the solvent included in our 

calculations using the polarized continuum model (PCM), considering that the observed photodegradation 

pathways of the BDEs seemed to be consistent among the different solvent matrices tested (toluene, 

methanol, and THF) [62] and the photodebromination rates of the congeners were highly correlated  

in different solvents (methanol/water (80:20) solution, methanol, THF, and hexane) [19,32]. Prior to 

calculating the excited states, all molecules were geometry-optimized in their ground state at the 

PCM/B3LYP/6-31G(d) level of theory. The minimum geometries were confirmed by a frequency 

analysis. Then, the TD-DFT was employed to calculate the vertical excitation energy of the BDE 

congeners at the PCM/B3LYP/6-311++G(d,p) level, including the lowest-lying singlet and the  

lowest-lying triplet excitation energies. The PCM/B3LYP/6-31G(d) calculations were employed  

to investigate the structure of triplet excited states by setting the multiplicity to triplet. Assignment of 

the singlet excited states was conducted with the use of SWizard 4.6 program (Gorelsky SI, Ottawa, 

ON, Canada). The PLSR was carried out by SIMCA-P software (demo version 11.5.0.0, Umetrics AB, 

San Jose, CA, USA). The PCA-MLR was undertaken with the use of PASW (Version 18.0.0, SPSS 

Inc., Chicago, IL, USA). The BP-ANN was built with the Neural Network Toolbox of MATLAB 

software (2010a) (the MathWorks, Inc., Natick, MA, USA). 

The IUPAC names and the congener numbers of the 2-selected PBDEs in this study are listed  

in Table 7. 
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Table 7. IUPAC names and the congener numbers of the twenty selected BDE congeners. 

No. IUPAC Name 

BDE-209 Deca-bromodiphenyl ether 
BDE-208 2,2',3,3',4,5,5',6, 6'- nona-bromodiphenyl ether 
BDE-207 2,2',3,3',4,4',5,6,6'-nona-bromodiphenyl ether 
BDE-206 2,2',3,3',4,4',5,5',6-nona-bromodiphenyl ether 
BDE-203 2,2',3,4,4',5,5',6-octa-bromodiphenyl ether 
BDE-196 2,2',3,3',4,4',5,6'-octa-bromodiphenyl ether 
BDE-190 2,3,3',4,4',5,6-hepta-bromodiphenyl ether 
BDE-183 2,2',3,4,4',5',6-hepta-bromodiphenyl ether 
BDE-181 2,2',3,4,4',5,6-hepta-bromodiphenyl ether 
BDE-155 2,2',4,4',6,6'-hexa-bromodiphenyl ether 
BDE-154 2,2',4,4',5,6'-hexa-bromodiphenyl ether 
BDE-153 2,2',4,4',5,5'-hexa-bromodiphenyl ether 
BDE-139 2,2',3,4,4',6-hexa-bromodiphenyl ether 
BDE-138 2,2',3,4,4',5'-hexa-bromodiphenyl ether 
BDE-100 2,2',4,4',6-penta-bromodiphenyl ether 
BDE-99 2,2',4,4',5-penta-bromodiphenyl ether 
BDE-85 2,2',3,4,4'-penta-bromodiphenyl ether 
BDE-77 3,3',4,4'-tetra-bromodiphenyl ether 
BDE-47 2,2',4,4'-tetra-bromodiphenyl ether 
BDE-28 2,4,4'-Tri-bromodiphenyl ether 

4. Conclusions 

In this study, both DFT and TD-DFT methods were employed to investigate the singlet excited 

states and triplet excited states of the 20selected BDE congeners. For most of the BDE congeners, the 

singlet excited state was initiated by the electron transfer from HOMO to LUMO, involving a π–σ* 

excitation. The electron density of the HOMO and LUMO differently located on the two phenyl rings 

of most BDE congeners showed that the electronic excitation of these compounds could make the 

electron of the electronic-rich ring transferred to the electron-deficient ring. Thus, the direct 

photochemical debromination would prefer to occur on the benzene ring of a higher bromination level. 

Structures in the triplet excited states of the BDE congeners differ notably from those in the ground 

states, with one of the specific C–Br bonds bending off the aromatic plane. This bond bending occurs 

preferably at the para-position for the higher brominated BDE congeners and at the ortho-position  

for the lower brominated congeners, being compatible with the experimentally observed 

photodebromination preference [39,43]. Results from the QSPR studies show that PLSR, PCA-MLR 

and ANN could satisfactorily predict the rate constants of the BDE photodebromination. 

In comparison with other remediation methods for PBDE contamination, photodebromination has  

a unique advantage since solar energy is a kind of efficient and renewable energy source especially 

with the assistance of the photocatalyzers (e.g., TiO2 [63] and graphitic carbon nitride [64]). Thus, 

more studies should be conducted in this field to facilitate the improvement of remediation techniques  

(such as soil contamination remediation) and to better evaluate the potential risk of PBDEs. 
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