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Abstract: We have previously reported that the danshensu-cysteine conjugate 

N-((R)-3-benzylthio-1-methoxy-1-oxo-2-propanyl)-2-acetoxy-3-(3,4-diacetoxyphenyl) 

propanamide (DSC) is a potent anti-oxidative and anti-apoptotic agent. Herein, we further 

design and asymmetrically synthesize two diastereoisomers of DSC and explore their 

potential bioactivities. Our results show that DSC and its two diastereoisomers exert 

similar protective effects in hydrogen peroxide (H2O2)-induced cellular injury in SH-SY5Y 

cells, as evidenced by the increase of cell viability, superoxide dismutase (SOD),  

and reduced glutathione (GSH) activity, and glutathione peroxidase (GPx) expression,  

and the decrease of cellular morphological changes and nuclear condensation, lactate 

dehydrogenase (LDH) release, and malondialdehyde (MDA) production. In H2O2-stimulated 

human umbilical vein endothelial cells (HUVEC), DSC concentration-dependently 

attenuates H2O2-induced cell death, LDH release, mitochondrial membrane potential 

collapse, and modulates the expression of apoptosis-related proteins (Bcl-2, Bax, caspase-3, 

and caspase-9). Our results provide strong evidence that DSC and its two diastereoisomers 

have similar anti-oxidative activity and that DSC exerts significant vascular-protective 
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effects, at least in part, through inhibition of apoptosis and modulation of endogenous 

antioxidant enzymes. 
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1. Introduction 

Oxidative stress occurs when reactive oxygen species (ROS) are generated in excess through the 

reduction of oxygen, which can destroy the physiological function of cellular proteins, lipids, nucleic 

acids, and other macromolecular substances [1]. Oxidative stress is implicated in the pathogenesis  

of neurodegenerative and cardiovascular disorders, such as dysautonomia, Alzheimer’s disease, 

atherosclerosis, peripheral artery disease, myocardial ischemia, and so on [2–5]. Indeed, oxidative 

stress, generated by excessive amounts of ROS including hydrogen peroxide (H2O2), causes cell 

apoptosis and plays an essential role in the pathogenesis of neurodegenerative and cardiovascular 

disorders [5–7]. Therefore, pharmacological approaches for intervening in oxidative stress may 

provide therapeutic intervention strategies for neurodegenerative and cardiovascular disorders. 

Salvia miltiorrhiza Bunge (Danshen in Chinese) or S. miltiorrhiza, a perennial herbal plant  

of the Labiatae family, is widely used for the treatment of coronary heart disease and other 

cardiovascular disorders, blood circulation diseases, and menstrual disorders in Eastern countries  

for hundreds of years [8,9]. Danshensu ((R)-3-(3,4-dihydroxyphenyl)-2-hydroxypropanoic acid,  

Figure 1A), a hydrophilic bioactive component of Danshen, attracts considerable interest due to its 

salubrious biological activities, such as coronary artery dilatation, microcirculation improvement, 

myocardial protection and anti-platelet aggregation [6,10]. However, the chemical instability  

of phenolic hydroxyl groups of danshensu results in poor cellular permeability, bioavailability, 

lipophilicity and low pharmacological potency, which limits its further therapeutic development  

for clinical use [11]. Many synthetic Danshensu compounds with modified groups have emerged, 

laying the foundation of exploring and improving the biological activity of Danshensu. 
In our previous studies, an array of Danshensu derivatives were synthesized by combination  

with L-cysteine (Figure 1B) through an appropriate bond in the light of the guidance of medicinal 

chemical hybridization [12]. Among them, DSC (1,N-((R)-3-benzylthio-1-methoxy-1-oxo-2-propanyl)- 

2-acetoxy-3-(3,4-diacetoxyphenyl) propanamide, Figure 1C), a novel Danshensu-cysteine conjugate, 

has aroused considerable interest due to its various biological activities, such as anti-oxidative [6]  

and anti-inflammatory [10] capacities. In the present study, we thus hypothesize that the diastereoisomers  

of DSC also possess antioxidant activities. Therefore two diastereoisomers 2 and 3 (Figure 1D,E)  

of DSC were further obtained by asymmetric synthesis for antioxidant screening, and we herein 

present the synthesis and anti-oxidative and anti-apoptotic activities of Danshensu-cysteine conjugates  

in H2O2-induced cellular damage in SH-SY5Y cells and human umbilical vein endothelial cells (HUVEC). 
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Figure 1. The structures of Danshensu, L-cysteine and their conjugated derivatives (1–3).  

(A) Danshensu; (B) L-Cysteine; (C) N-((R)-3-benzylthio-1-methoxy-1-oxo-2-propanyl)- 

2-acetoxy-3-(3,4-diacetoxyphenyl) propanamide (DSC); (D) (2R,2'R)-diastereoisomer of DSC;  

(E) (2S,2'R)-diastereoisomer of DSC. 

2. Results and Discussion 

2.1. The Asymmetric Synthesis of Danshensu-Cysteine Conjugates 

As outlined in Figure 2, the designed conjugates were synthesized efficiently using 

3,4-dihydroxybenzaldehyde (4) as the starting material. The key intermediate 7 and L-cysteine 

derivatives 15 were synthesized according to the reported procedures [12,13]. The condensation  

of 4 with N-acetylglycine followed by hydrolysis in hydrochloric acid and protection of the hydroxyl 

groups in acetic anhydride afforded 7 in 33% total yield. Esterization of 7 with benzyl bromide  

in the presence of K2CO3 in acetone provided the thoroughly protected compound 8 in 90% yield.  

The asymmetric hydrogenation of 8 using 9/10 as the chiral ligand and [Rh(cod)2]BF4 as the catalyst 

precursor gave excellent enantioselectivities (>97% enantiomeric excess) and good yields (>89%)  

of compounds 11/12 respectively under the modified conditions of the literature procedures [14].  

The deprotection of 11/12 by hydrogenolysis under the catalysis of 10% Pd-C in methanol attained 

(R)/(S)-2-acetoxy-3-(3,4-diacetoxyphenyl) propanoic acid (13/14) in >95% yields, which were  

then subjected to the condensation with S-benzyl-L-cysteine methyl ester (15) in the presence  

of 1-hydroxybenzotriazole (HOBt), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI) 

and diisopropylethylamine (DIPEA) in CH2Cl2, affording the target amide conjugates 2/3 in 79%  

and 81% yields respectively. 

Another synthetic route to 2/3 was also tried via the direct asymmetric hydrogenation of 7 to give 

13 or condensation of 7 with 15 followed by asymmetric hydrogenation of 16, but both of the 

asymmetric hydrogenation of 7/16 failed which may be attributed to the reactive hydrogen in the 

carboxy group of 7 and the sulphur atom or steric-hindrance in 16. 
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Figure 2. The synthesis of target diastereoisomers 2 and 3. 

2.1.1. (Z)-2-Acetoxy-3-(3,4-diacetoxyphenyl)acrylic Acid Benzyl Ester (8) 

(Z)-2-Acetoxy-3-(3,4-diacetoxyphenyl)acrylic acid (7) was prepared by using aldehyde 4  

as the starting material according to the method in the literature [13]. To a solution of a mixture of 7  

(1.5 g, 4.65 mmol) and anhydrous K2CO3 (1.28 g, 9.31 mmol) in acetone (30 mL) was dropped  

benzyl bromide (1.5 mL, 12.6 mmol). The mixture was refluxed for 7 h, then filtered and concentrated.  

The residue was purified by silica gel column chromatography (eluent:PE-EtOAc, 6:1~3:1), providing 

1.72 g of 8 as a white solid in 90% yield, mp 79–82 °C. 1H NMR (400 MHz, CDCl3) δ 2.28 (s, 9H, 

–OCOCH3), 5.28 (s, 2H, –CH2Ph), 7.21 (d, J = 8.6 Hz, 1H), 7.27 (d, J = 5.5 Hz, 1H), 7.35–7.40  

(m, 5H), 7.43 (d, J = 8.8 Hz, 1H), 7.47 (s, 1H). ESI-MS m/z (%): 435.2 (M + Na+, 100). High 

Resolution Mass Spectrum (HRMS) calculated mass for C22H20O8Na [M + Na+] 435.1056, found 435.1050. 

2.1.2. (R)/(S)-2-Acetoxy-3-(3,4-diacetoxyphenyl)propanoic Acid Benzyl Ester (11/12) 

[Rh(cod)2]BF4 (2.0 mg, 0.005 mmol), ligand 9 (6 mg, 0.011 mmol) in CH2Cl2 (1 mL) were 

dissolved under nitrogen and the solution was stirred at room temperature for 10 min. The substrate 8 
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(206 mg, 0.5 mmol) in CH2Cl2 (2 mL) was added to the above catalyst solution. The mixture was then 

transferred to a stainless steel autoclave under nitrogen atmosphere, and then sealed. After purging 

with hydrogen three times, final H2 pressure was adjusted to 60 atm. After stirring at room temperature 

for 24 h, H2 was released. After removal of the solvent under the reduced pressure, the residue of the 

product was passed through a pad of Celite and purified by silica gel column chromatography 

(eluent:PE-EtOAc, 5:1~3:1), providing 184 mg of 11 as a colorless oil in 89% yield and 97% ee,  

[α]20 
D  = +4.8° (c = 1.0 mg/mL, CHCl3). The enantiomeric excess was determined by HPLC on 

Chiralcel OJ column, hexane:isopropanol = 95:5; flow rate = 1.0 mL/min; UV detection at λ = 230 nm; 

tR = 16.1 min (minor), 19.8 min (major), respectively. Using 10 as chiral ligand, 186 mg of product 12 

could be obtained as a colorless oil in 90% yield and 98% ee, [α]20 
D  = −4.8° (c = 1.0 mg/mL, CHCl3). 

1H NMR (400 MHz, CDCl3), δ 2.1 (s, 3H, –OCOCH3), 2.29 (s, 6H, –OCOCH3), 3.06–3.19 (m, 2H, 

–CH2Ar), 5.17 (s, 2H, –CH2Ph), 5.20–5.25 (m, 1H, –CHOCOCH3), 7.05–7.11 (m, 3H, –Ar), 7.27–7.39 

(m, 5H, –Ph). ESI-MS m/z (%): 437.3 (M + Na+, 100). HRMS calculated mass for C22H22O8Na [M + Na+] 

437.1212, found 437.1207. 

2.1.3. (R)/(S)-2-Acetoxy-3-(3,4-diacetoxyphenyl)propanoic Acid (13/14) 

Compounds 11/12 (200 mg, 0.48 mmol) were deprotected by hydrogenolysis under the catalysis  

of 10% Pd-C (200 mg) at atmospheric pressure in MeOH (5 mL) for 24 h. The mixture was  

filtered and concentrated, and the residue was purified by silica gel column chromatography 

(eluent:PE-EtOAc, 10:1~5:1) to give 13 (149 mg)/14 (148 mg) as sticky colorless oils in 96%/95% 

yields respectively. 1H NMR (400 MHz, CDCl3), δ 2.17 (s, 3H, –OCOCH3), 2.27 (s, 6H, –OCOCH3), 

3.12–3.18 (m, 2H, –CH2–), 5.21 (br, 1H, –COOH), 7.09–7.12 (m, 3H, Ph–H). 

2.1.4. (R)-N-((R)-3-Benzylthio-1-methoxy-1-oxo-2-propanyl)-2-acetoxy-3-(3,4-diacetoxyphenyl)propanamide (2) 

and (S)-N-((R)-3-Benzylthio-1-methoxy-1-oxo-2-propanyl)-2-acetoxy-3-(3,4-diacetoxyphenyl)propanamide (3) 

To a solution of carboxylic acid 13/14 (162 mg, 0.5 mmol) in CH2Cl2 (8 mL) was added HOBt  

(82 mg, 0.6 mmol) and EDCI (116 mg, 0.6 mmol). The mixture was stirred at room temperature  

for 15 min, then methyl S-benzyl-L-cysteine hydrochloride (15) (244 mg, 0.55 mmol) followed  

by diisopropylethylamine (0.1 mL, 0.6 mmol) were added. After 2 h, The mixture was filtered  

and concentrated, and the residue was purified by silica-gel column chromatography to give  

the corresponding amide conjugates 2 (210 mg)/3 (215 mg) as white viscous oils in 79%/81% yields  

and 97%/73% diastereoisomeric excess, respectively. Compound 2: [α]20 
D  = +12.8° (c = 1.0 mg/mL, 

CHCl3). 1H NMR (400 MHz, CDCl3) δ 2.11, 2.13 (s, s, 3H, –OCOCH3), 2.25–2.27 (m, 6H, 

–OCOCH3), 2.78–2.87 (m, 2H, –CH2SBn), 3.11–3.21 (m, 2H, ArCH2CH–), 3.65 (s, 2H, –SCH2Ph), 

3.74 (s, 3H, –COOCH3), 4.71–4.75 (m, 1H, –NCH–), 5.36–5.40 (m, 1H, ArCH2CH–), 6.75  

(t, J = 7.9 Hz, 1H, –NH–), 7.05–7.09 (m, 3H, Ph–H), 7.24–7.33 (m, 5H, Ph–H). 13C NMR (100 MHz, 

CDCl3), δ 170.8, 169.5, 168.8, 168.2, 168.1, 141.8, 141.0, 137.5, 134.5, 129.0, 128.9, 128.6, 127.6, 

127.3, 124.7, 123.3, 73.7, 52.7, 51.2, 36.9, 36.4, 33.3, 33.0, 20.8, 20.6. ESI-MS m/z (%): 554.8  

(M + Na+, 100). HRMS calculated mass for C26H30NO9S [M + H+] 532.1636, found 532.1633. 

Compound 3: [α]20 
D  = +8.9° (c = 1.0 mg/mL, CHCl3). 
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2.2. Effects of Danshensu-Cysteine Conjugates (DSC (1,N-((R)-3-Benzylthio-1-methoxy-1-oxo-2- 

propanyl)-2-acetoxy-3-(3,4-diacetoxyphenyl)), 2 and 3) on H2O2-Induced Cellular Injury in SH-SY5Y Cells 

Consistent with our previous study [6], H2O2 (200 μM) stimulation for 12 h significantly decreased 

cell viability, accompanied by serious lactate dehydrogenase (LDH) release (Figure 3A,B). However, 

pretreatment with the three Danshensu-cysteine conjugates (DSC, 2 and 3) (all at 50 μM), showed 

similar protective effects on H2O2-induced cell death and LDH release in SH-SY5Y cells. Meanwhile, 

we also checked the effects of these three compounds on H2O2-induced changes of cellular 

morphology and nuclear morphological changes. As shown in Figure 3C,D, pretreatment with the three 

derivatives (DSC, 2 and 3) (all at 50 μM) also showed similar protective effects on H2O2-induced 

cellular morphological changes and nuclear morphological changes. As a positive control, 

N-acetyl-L-cysteine (NAC, 5 mM) could markedly attenuate H2O2-mediated cellular events mentioned 

above. Collectively, DSC and its two diastereoisomers (2 and 3) showed similar protective effects  

in H2O2-induced cellular injury in SH-SY5Y cells. 

 

Figure 3. Effects of Danshensu-cysteine conjugates on H2O2-induced cellular injury  

in SH-SY5Y cells. SH-SY5Y cells were incubated with Danshensu-cysteine conjugates 

(DSC, 2 and 3) (all at 50 μM) or N-acetyl-L-cysteine (NAC, 5 mM) for 4 h, then stimulated 

with H2O2 (200 μM) for 12 h, the cell viability (A) and lactate dehydrogenase (LDH) (B) 

release were measured, respectively. Data shown are means ± SEM, & p < 0.05 compared 

with unstimulated cells, * p < 0.05, ** p < 0.01 compared with H2O2-stimulated cells.  

Data were from at least three independent experiments, each performed in duplicate. 

Representative picture shows cell morphology (C) and nuclear morphology (D) detected 

by microscope or fluorescence microscope (magnification, 200×), respectively. 
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2.3. Effects of Danshensu-Cysteine Conjugates on Intercellular Anti-Oxidative Capacity  

in H2O2-Stimulated SH-SY5Y Cells 

To further elucidate the protective effects of Danshensu-cysteine conjugates on H2O2-induced 

cellular injury, malondialdehyde (MDA) production, intracellular total superoxide dismutase (SOD)  

and reduced glutathione (GSH) activity as well as glutathione peroxidase (GPx) expression were 

measured by commercial kits and immunofluorescence, respectively. As shown in Figure 4A,B,  

H2O2 stimulation significantly decreased intercellular anti-oxidative capacity as evidenced by the increase  

of MDA production and reduction of SOD activity, which were evidently ameliorated by pretreatment 

with Danshensu-cysteine conjugates (DSC, 2 and 3) (all at 50 μM) or NAC (5 mM). Although H2O2 

stimulation did not decrease GSH activity, incubation with the three derivatives (DSC, 2 and 3)  

(all at 50 μM) or NAC (5 mM) significantly increased GSH activity in H2O2-stimulated cells (Figure 4C).  

In addition, three conjugates (DSC, 2 and 3) (all at 50 μM) or NAC (5 mM) also evidently blocked 

H2O2-induced decrease of GPx expression in SH-SY5Y cells as detected by immunofluorescent 

staining (Figure 4D). These data strongly suggested that DSC and its two diastereoisomers (2 and 3) 

could improve intercellular anti-oxidative capacity in H2O2-stimulated SH-SY5Y cells, but these 

effects were not statistically significant between the three compounds at the dosage used in this study. 

 

Figure 4. Effects of Danshensu-cysteine conjugates on intercellular anti-oxidative capacity 

in H2O2-stimulated SH-SY5Y cells. SH-SY5Y cells were incubated with Danshensu-cysteine 

conjugates (all at 50 μM) or NAC (5 mM) for 4 h, then stimulated with H2O2 (200 μM)  

for 12 h; the malondialdehyde (MDA) (A) production, superoxide dismutase (SOD) (B)  

and reduced glutathione (GSH) (C) activities were measured, respectively. Data shown  

are means ± SEM, & p < 0.05 compared with unstimulated cells, * p < 0.05 compared  

with H2O2-stimulated cells. Data were from at least three independent experiments, each 

performed in duplicate; (D) Representative pictures showing glutathione peroxidase (GPx) 

expression by immunofluorescent staining (magnification, 200×). 
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2.4. DSC Attenuated H2O2-Induced Cell Damage in Human Umbilical Vein Endothelial  

Cells (HUVEC) 

Oxidative stress is one of the mechanisms that cause widespread endothelial dysfunction  

in cardiovascular diseases and disorders [15]. To examine the endothelial protective effects of 

Danshensu-cysteine conjugates on oxidative stress-induced cytotoxicity, HUVEC were conditioned 

with Danshensu-cysteine conjugates for 4 h prior to H2O2 stimulation. Taking into account the 

difficulty of chemical synthesis, only DSC was chosen to study the protective effects of 

Danshensu-cysteine conjugates on H2O2-induced cellular injury. As shown in Figure 5A, H2O2  

(200 μM) stimulation for 12 h significantly decreased cell viability, which was attenuated by DSC  

(5–100 μM) in a concentration-dependent manner. Meanwhile, DSC (5–100 μM) also decreased 

H2O2-induced LDH release in a concentration dependent manner (Figure 5B). In addition, DSC  

(5–200 μM) treatment for 24 h did not affect cell viability of HUVEC as checked by MTT assay (data 

not shown). As a positive control, NAC also markedly reduced H2O2-induced cellular damage  

in HUVEC (Figure 5A,B). 

 

Figure 5. The danshensu-cysteine conjugate N-((R)-3-benzylthio-1-methoxy-1-oxo-2-propanyl)- 

2-acetoxy-3-(3,4-diacetoxyphenyl) propanamide (DSC) attenuated H2O2-induced cell 

damage in human umbilical vein endothelial cells (HUVEC). HUVEC were incubated  

with indicated concentrations of DSC or NAC for 4 h, then stimulated with H2O2  

(200 μM) for 12 h; the cell viability (A) and LDH (B) release were measured, respectively. 

Data shown are means ± SEM, & p < 0.05 compared with unstimulated cells, * p < 0.05 

compared with H2O2-stimulated cells. Data were from at least three independent experiments, 

each performed in duplicate. 

2.5. DSC Improved Anti-Oxidative Capacity in H2O2-Stimulated HUVEC 

GSH activity and MDA production were chosen to evaluate the effects of DSC on anti-oxidative 

capacity in H2O2-stimulated HUVEC. As shown in Figure 6A, H2O2 (200 μM) stimulation for 12 h 

markedly decreased GSH activity (p < 0.05), which was reversed by DSC pretreatment in a 

concentration-dependent manner. Meanwhile, a significant increase in MDA release was observed 

after stimulation with H2O2 for 12 h (p < 0.05), reflecting a decrease in anti-oxidative ability. 

However, pretreatment with DSC also resulted in a decrease of H2O2-induced MDA levels  

in HUVEC (Figure 6B). Meanwhile, NAC markedly enhanced intercellular anti-oxidative capacity  

in H2O2-stimulated HUVEC. 
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Figure 6. DSC improved anti-oxidative capacity in H2O2-stimulated HUVEC. HUVEC 

were incubated with indicated concentrations of DSC or NAC for 4 h, then stimulated with 

H2O2 (200 μM) for 12 h; the GSH activity (A) and MDA (B) production were measured, 

respectively. Data shown are means ± SEM, & p < 0.05 compared with unstimulated cells,  

* p < 0.05 compared with H2O2-stimulated cells. Data were from at least three independent 

experiments, each performed in duplicate. 

2.6. DSC Inhibited H2O2-Induced Mitochondrial Membrane Potential (ΔΨm) Loss and Apoptosis  

in HUVEC 

Loss of mitochondrial membrane potential (ΔΨm) played a pivotal role in H2O2-induced apoptosis [6]. 

The effect of DSC on H2O2-induced ΔΨm loss was analyzed by flow cytometry using JC-1 staining.  

As shown in Figure 7A, stimulation with H2O2 significantly induced the loss of ΔΨm, which  

was attenuated by pretreatment with DSC in a concentration dependent manner. Meanwhile,  

cell apoptosis induced by H2O2 was also inhibited by DSC as observed by Annexin V-fluorescein 

isothiocyanate (FITC)/propidium iodide (PI) assay. NAC, a non-targeted ROS scavenger, also 

markedly inhibited H2O2-induced ΔΨm loss and apoptosis in HUVEC. 

(A) 

Figure 7. Cont. 
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(B) 

Figure 7. DSC inhibited H2O2-induced mitochondrial membrane potential (ΔΨm) loss  

and apoptosis in HUVEC. HUVEC were incubated with indicated concentrations of DSC  

or NAC for 4 h, then stimulated with H2O2 (200 μM) for 2 or 12 h; the ΔΨm (A)  

and apoptosis (B) were measured by flow cytometry, respectively. Data shown are  

means ± SEM, & p < 0.05 compared with unstimulated cells, * p < 0.05 compared with 

H2O2-stimulated cells. Data were from at least three independent experiments, each 

performed in duplicate. 

2.7. DSC Modulated Apoptosis-Related Proteins Expression in H2O2-Stimulated HUVEC 

To further demonstrate the anti-apoptotic activity of DSC on H2O2-stimulated HUVEC, 

apoptosis-related proteins were analyzed by Western blot. As shown in Figure 8A,B, H2O2 stimulation 

significantly decreased Bcl-2 expression and increased Bax expression level. However, pretreatment 

with DSC concentration-dependently increased Bcl-2 expression and decreased Bax expression  

in H2O2-stimulated HUVEC. Meanwhile, H2O2 stimulation markedly induced degradation of caspase-3 

and caspase-9 (Figure 8C,D). Consistent with our previous study [6], DSC concentration-dependently 

inhibited H2O2-induced caspase-3 and caspase-9 degradation in HUVEC. In addition, NAC treatment 

also attenuated H2O2-mediated changes of apoptosis-related proteins expression. 

 

Figure 8. Cont. 
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Figure 8. DSC modulated apoptosis-related proteins expression in H2O2-stimulated 

HUVEC. HUVEC were incubated with indicated concentrations of DSC or NAC for 4 h, 

then stimulated with H2O2 (200 μM) for 12 h; the Bcl-2 (A); Bax (B); caspase-3 (C);  

and caspase-9 (D) were measured by Western blot, respectively. Western blot  

and densitometric analysis for Bcl-2 (A); Bax (B); caspase-3 (C); and caspase-9 (D). 

β-actin was used as loading control. Protein expression in control cells was set to 1. Data 

shown are means ± SEM, & p < 0.05 compared with unstimulated cells, * p < 0.05 

compared with H2O2-stimulated cells; Data were from at least three independent 

experiments, each performed in duplicate. 

2.8. Discussion 

Danshensu, a hydrophilic bioactive component of Danshen, attracts considerable interest due  

to its salubrious biological activities. However, the chemical structure of Danshensu contains unstable 

phenolic hydroxyl groups, which limits its further therapeutic development for clinical use [11]. 

Recently, we reported that the Danshensu-cysteine conjugate, DSC, is found to have an improved 

antioxidant and anti-apoptotic activity in vitro [6,12]. The present study provides the first evidence that 

the two diastereoisomers (2 and 3) of DSC are synthesized asymmetrically in excellent stereoselectivities 

and high yields using a chemical approach based on asymmetric hydrogenation [14]. As the presence  

of the active hydroxyl group contributes to the instability of Danshensu, we used the asymmetric 

synthesis to obtain Danshensu derivatives, with an acetyl analogue of Danshensu to eliminate  

the unstable hydroxyl group, which showed a much better stability in our previous study [6,12].  

The cytoprotective property and the improved stability make the novel Danshensu-cysteine conjugates 

promising as anti-apoptotic reagents. 

Recently, we demonstrated that DSC protected SH-SY5Y cells against H2O2-induced cellular 

injury, at least in part, due to its strong anti-oxidative and anti-apoptotic properties [6]. Therefore, the 

potential anti-oxidative and anti-apoptotic activity of the diastereoisomers of DSC was firstly 

evaluated in H2O2-stimulated SH-SY5Y cells. Consistent with previous studies [6,16], H2O2 

stimulation significantly induces cellular damage and decreases intercellular anti-oxidative capacity. 

However, DSC and its diastereoisomers (all at 50 μM) significantly attenuate H2O2-induced cellular 

injury in SH-SY5Y cells, as evidenced by increase of cell viability and decrease of cellular 

morphological changes and nuclear condensation. However, the three compounds pretreatment also 

markedly increase SOD and GSH activity as well as GPx expression, and decrease LDH release  
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and MDA production in H2O2-stimulated SH-SY5Y cells. But, the cyto-protective activity is not 

significantly different among these stereoisomers. These results suggest that DSC and its two 

diastereoisomers have similar protective effects on the anti-oxidative activity against H2O2-induced 

cellular damage. Our findings indicate that the Danshensu-cysteine conjugates exert their cytoprotective 

effects against oxidative insults through modulation of intercellular anti-oxidative capacities. 

Danshen and its bioactive ingredients have been mainly used for the treatment of cardiovascular 

diseases [9,17]. Meanwhile, our previous studies have demonstrated that Danshensu-cysteine 

conjugates exhibited cardiovascular-protective activity [12,18]. Thus we hypothesize that the 

Danshensu-cysteine conjugates may also exert beneficial effects in cardiovascular diseases. DSC  

and its diastereoisomers also exert similar protective effects on H2O2-induced cellular injury  

in SH-SHY5Y. Taking into account the clinical application and the difficulty of chemical synthesis  

of the Danshensu-cysteine conjugates, DSC was chosen for further research. As expected, DSC 

significantly attenuates H2O2-induced cellular injury and redox imbalance in endothelial cells, which  

is one of the major causes of cell and tissue injury and implicated in the pathological process of 

cardiovascular disease [11,19]. H2O2 can induce ΔΨm disruption and release of cytochrome C from 

mitochondria into the cytoplasm, and therefore initiate apoptosis by activating caspase-3 [16,20]. 

Meanwhile, a decreasing Bcl-2/Bax ratio results in mitochondrial dysfunction, which ultimately 

triggers the activation of caspase cascades and results in apoptosis [6,21]. In our present study, DSC 

concentration-dependently reverses H2O2-mediated loss of ΔΨm and decreases the ratio of Bcl-2/Bax 

in HUVEC. The subsequent disruption of ΔΨm causes activating caspase-9, which in turn activates 

caspase-3 and eventually apoptosis [22,23]. Likewise, the degradation of caspase-9 and caspase-3  

in H2O2-stimulated HUVEC was also attenuated by DSC in a concentration-dependent manner. Altogether, 

these results indicate that DSC protective action against cell death involves anti-apoptotic mechanisms. 

3. Experimental Section 

3.1. Materials and Antibodies 

Starting materials and reagents were obtained from commercial suppliers and were used without 

purification unless otherwise stated. Melting points were determined in open capillary tubes using  

hot stage apparatus and were uncorrected. Flash chromatography was performed using silica gel 

(300–400 mesh) with the indicated solvent system. 1H NMR spectra were recorded at 400 MHz using 

tetramethylsilane as an internal standard and 13C NMR spectra were measured at 100 MHz with 

complete proton decoupling. All chemical shifts are reported in ppm on the δ scale relative to an 

internal standard of TMS (1H) or the signals of the solvent (13C). High-resolution mass spectra 

(HRMS) were recorded using either electron impact (EI) or electrospray ionization (ESI) techniques. 

Dulbecco’s modified Eagle’s medium/F-12 (DMEM/F-12), fetal bovine serum (FBS) were from 

GIBCO-BRL (Grand Island, NY, USA). NAC and 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium 

bromide (MTT) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Antibodies against Bcl-2, 

Bax, caspase-9, caspase-3, β-actin were purchased from Cell Signaling Technology (Danvers, MA, 

USA). All compounds (except for positive control NAC) solution in dimethyl sulfoxide (DMSO)  

was freshly prepared. Final DMSO concentration in media did not exceed 0.05%. 



Int. J. Mol. Sci. 2015, 16 640 
 

 

3.2. Cell Culture 

Human neuroblastoma cells (SH-SY5Y) were grown in DMEM/F-12 containing 10% FBS,  

100 U/mL penicillin and 100 μg/mL streptomycin at 37 °C in a humidified 5% CO2 atmosphere. Cells 

were exposed to different compounds for 4 h, and then subjected to 200 μM H2O2 for 12 h. 

HUVEC (ATCC, Manassas, VA, USA) were maintained in DMEM containing 1800 mg/L 

NaHCO3, supplemented with 10% FBS, 1% endothelial growth supplement, 100 U/mL penicillin and 

100 μg/mL streptomycin at 37 °C in a humidified atmosphere with 5% CO2. Passage 3–8 was used  

for experiments. 

3.3. Cells Viability 

Cell viability was evaluated by MTT assay as described previously [6]. In brief, MTT was added  

to the cells at a final concentration of 0.5 mg/mL, and cultured at 37 °C, 5% CO2 atmosphere for 1 h. 

Cells were washed with PBS and the converted formazan dye was dissolved in DMSO and measured 

at 570 nm by a spectrophotometer (M1000, TECAN, Austria GmbH, Untersbergstrasse, Grödig Austria). 

3.4. Hoechst 33258 Staining 

The nuclear morphological changes of apoptotic cells were detected using the Hoechst 33258 

nuclear staining kit (Beyotime Biotechnology, Haimen, China) according to the manufacturer’s 

instructions. Nuclear morphology was observed under a fluorescence microscope (excitation, 340 nm; 

emission, 460 nm, Carl Zeiss Inc., Jena, Germany). 

3.5. Annexin V-Fluorescein Isothiocyanate (FITC)/Propidium Iodide (PI) Apoptosis Assay 

Early apoptosis and necrosis were identified by means of double fluorescence staining with annexin 

V-PI. Staining for FITC-labeled annexin V binding to membrane phosphatidylserine and PI binding 

for cellular DNA was performed according to the protocol provided by the manufacturer (Becton 

Dickinson Pharmingen, San Jose, CA, USA). Briefly, HUVEC (1 × 106 cells per sample) were 

incubated with indicated concentrations of DSC or NAC for 4 h, then stimulated with H2O2 (200 μM)  

for 12 h, the cells were loaded with PI (5 µL) and annexin V-FITC (10 µL) at room temperature  

for 10 min in the dark and analyzed using a flow cytometer (Becton Dickinson, Franklin Lakes, NJ, USA). 

3.6. ΔΨm Assessment 

ΔΨm was determined with fluorescent probe JC-1, which exists predominantly in monomeric form  

in cells with depolarized mitochondria and displays fluoresced green at 490 nm. Cells with polarized 

mitochondria predominantly contain JC-1 in aggregate form and show fluorescence of reddish orange 

color. Briefly, HUVEC were incubated with indicated concentrations of DSC or NAC for 4 h, then 

stimulated with H2O2 (200 μM) for 2 h, after two rinses with PBS, the cells were incubated with JC-1  

(2 mM) for 15 min and rinsed twice with PBS, and visualized by fluorescence microscope (Carl Zeiss) 

with excitation at 488 nm and emission at 520 nm or analyzed by flow cytometry (Becton Dickinson). 
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3.7. Western Blot 

For whole cell extraction, cells were washed twice with ice-cold PBS and lysed in RIPA buffer with 

protease & phosphatase inhibitors (Sigma-Aldrich). After centrifugation (4 °C, 10 min, 10,000× g), 

samples were prepared for Western blot analysis. Western blot analyses was performed as previously 

described [24]. Briefly, equal amounts (30 μg) of proteins were separated and transferred to polyvinyl 

difluoride membrane. The membranes were probed with antibodies: Bcl-2, Bax, caspase-9, caspase-3, 

β-actin (all dilution in 1:1000), then incubation with either horseradish peroxidase-conjugated goat 

anti-rabbit antibody (1:5000, Pierce Biotechnology, Waltham, MA, USA). Immunoreactive proteins 

were visualized by enhanced chemiluminescence and signal intensity was detected and quantified by 

Alpha Imager (Alpha Innotech Corp., San Leandro, CA, USA). 

3.8. Lactate Dehydrogenase (LDH) Release, Malondialdehyde (MDA) Production, Superoxide 

Dismutase (SOD) Activity, and Reduced Glutathione (GSH) Activity Measurement 

The SH-SY5Y cells or HUVEC in 6-well plates were pretreated with DSC or NAC for 4 h,  

then stimulated with H2O2 after 12 h, LDH release, MDA production, SOD and GSH activity  

in the supernatants were detected by a LDH Cytotoxicity Assay Kit, Lipid Peroxidation MDA Assay 

Kit, Total Superoxide Dismutase Assay Kit, and GSH/GSSG Assay Kit Assay Kit (all from Beyotime 

Biotechnology, Haimen, China) according to the manufacturer’s instructions, respectively. 

3.9. Immunofluorescence 

SH-SY5Y cells were grown on glass slides in six-well plates. Cells were fixed in 4% 

paraformaldehyde for 30 min at room temperature, immunostained using rabbit anti-GPx (all 1:200)  

and Alexa Fluor 488-conjugated goat anti-rabbit IgG (1:500; Invitrogen, Carlsbad, CA, USA). 

Immunofluorescence was visualized using a fluorescence microscope (Carl Zeiss). The results were 

based on three independent analyses. 

3.10. Statistical Analysis 

Data are reported as mean ± SEM. Differences between mean values of multiple groups were 

analyzed by one-way analysis of variance with Tukey’s test for post hoc comparisons. The level  

of significance was determined at p < 0.05. 

4. Conclusions 

In summary, this study for the first time reports using the method of asymmetric synthesis to obtain 

the two diastereoisomers of DSC. Our present experiments also indicate that DSC and its two 

diastereoisomers have similar bioactivity on H2O2-induced cellular damage. Furthermore, our results 

demonstrate that DSC protective action against cell death involves anti-apoptotic mechanisms  

in endothelial cells. These results suggest that DSC possesses cytoprotective effects and that DSC 

supplementation may be a promising therapeutic strategy for oxidative stress-related diseases. 
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