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Abstract: The unbalanced assignment problem (UAP) is to optimally resolve the problem 

of assigning n jobs to m individuals (m < n), such that minimum cost or maximum profit 

obtained. It is a vitally important Non-deterministic Polynomial (NP) complete problem in 

operation management and applied mathematics, having numerous real life applications.  

In this paper, we present a new parallel DNA algorithm for solving the unbalanced 

assignment problem using DNA molecular operations. We reasonably design flexible-length 

DNA strands representing different jobs and individuals, take appropriate steps, and get the 

solutions of the UAP in the proper length range and O(mn) time. We extend the application 

of DNA molecular operations and simultaneity to simplify the complexity of the computation. 

Keywords: DNA molecules computing; the unbalanced assignment problem; biological 

optimization algorithm; NP-complete problem 
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1. Introduction 

In the pathbreaking work of DNA computation, Adleman [1] firstly described how to solve a  

seven-node instance of a well-known NP-hard problem utilizing biological operations, and also 

demonstrated the potential parallel power of DNA computation. In 1995, Lipton [2] proved that 

Adleman’s experiment could be used to figure out the NP-complete satisfiability problem. DNA 

computation, as an interdisciplinary science using DNA molecular biotechnologies to solve conundrum 

problems of computer science and computational mathematics, has a wide application prospect in 

solving difficult problems. Huge storage capacity, massive parallelism and low energy consumption are 

primary advantages of DNA computation. The advantages imply that we can utilize DNA molecules to 

solve harder, larger problems such as NP-complete problems in linearly increasing time, in contrast to 

the exponentially increasing time required by an electronic computer. In recent years, DNA computation 

has received considerable interest from researchers. Some typical DNA computing models, such as the 

Adleman-Lipton model [1,2], the sticker model [3], the restriction enzyme model [4], the self-assembly 

model [5], the hairpin model [6], and the surface-based model [7], have already been established.  

Based on these models, lots of papers have been written for designing DNA procedures and algorithms 

to solve various NP-complete problems [8–21]. In order to fully understand the power of biological 

computation, it is worthwhile to try to solve more kinds of computationally-intractable problems with 

the aid of DNA biologic operations. 

The assignment problem is a common topic in the fields related to operation management and network 

flow theory. This problem is known to be NP-hard and it is hard from a computational point of view as 

well. A standard assignment problem is to optimally resolve the problem of assigning n jobs to m 

individuals, such that minimum cost or maximum profit can be obtained. Various algorithms, including 

standard linear programming [6–9], Hungarian algorithm [10], neural network [11], and genetic 

algorithms [12], have been developed to find solutions. When we deal with real life situation, it becomes 

quite difficult to ensure that the number of jobs is exactly equal to individuals. Thus, the need arises to 

solve the unbalanced assignment problem in such a way that total assignment cost may be optimized 

along with the other constraints. In general, the unbalanced assignment problem can be considered  

as a particular case of the transportation problem, and can be formulated as a 0–1 integer linear  

programming [22,23]. The problem can be mathematically formulated as follows: 
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where the decision variable xij = 1 means that the j-th job is assigned to the i-th individual; otherwise,  

xij = 0 is in reverse; cij is the associated cost incurred by the assignment (if cij is the correlative profit, the 

object function will be max Z). For instance, the Table 1 defines the cost matrix A = [cij]m × n of the 

unbalanced assignment problem. 
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Table 1. Cost matrix A = [cij]3 × 5. 

Cost j1 j2 j3 j4 j5 

i1 5 9 1 2 7 
i2 9 8 6 4 4 
i3 4 7 8 5 2 

In this paper, based on a combination of Adleman-Lipton model, A theoretically-efficient DNA 

algorithm is introduced for figuring out solutions of the unbalanced assignment problem, which is 

executed in O(mn) operations, where n is number of jobs and m is number of individuals. With the 

progress of molecular biology techniques, the proposed algorithm might be of practical use in treating 

medium-sized instances of UAP. 

The rest of this paper is organized as follows. In Section 2, the Adleman-Lipton model is introduced 

in detail. Then, we use a DNA molecular algorithm for solving the unbalanced assignment problem. And 

prove DNA algorithm complexity and feasibility. In Section 3, we use computer to simulate the DNA 

experiment and get correct solution of the Table 1. We get conclusions in Section 4. 

2. Results and Discussion 

2.1. The Adleman-Lipton Model 

The DNA operations proposed by Adleman [1] and Lipton [2] are described below. These operations 

will be used for figuring out solutions of the unbalanced assignment problem in this paper. In the 

Adleman-Lipton model: A (test) tube is a set of molecules of DNA (i.e., a multi-set of finite strings over 

the alphabet {A,C,G,T}. Given a tube, one can perform the following operations: 

(1) Merge(T1,T2): for two given test tubes T1 and T2, it stores the union T1∪T2 in T1 and leaves  

T2 empty; 

(2) Copy(T1,T2): for a given test tube T1, it produces a test tube T2 with the same contents as T1; 

(3) Detect(T): given a test tube T, it outputs “yes” if T contains at least one strand, otherwise,  

outputs “no”; 

(4) Separation(T1,X,T2): for a given test tube T1 and a given set of strings X, it removes all single 

strands containing a string in X from T1, and produces a test tube T2 with the removed strands; 

(5) Selection(T1,L,T2): for a given test tube T1 and a given integer L, it removes all strands with 

length L from T1, and produces a test tube T2 with the removed strands; 

(6) Sort(T1,T2,T3): for a given test tube T1, it choose the shortest length strands in the tube T2,  

the longest strands in T3 and the remaining strands in T1; 

(7) Annealing(T): for a given test tube T, it produces all feasible double strands in T. The produced 

double strands are still stored in T after annealing; 

(8) Denaturation(T): for a given test tube T, it dissociates each double strand in T into two  

single strands; 

(9) Ligation(T): for a given tube T, the operation is used to ligate together the strands in T; 

(10) Discard(T): for a given test tube T, it discards the tube T; 
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(11) Read(T): for a given tube T, the operation is used to describe a single molecule, which is 

contained in the tube T. Even if T contains many different molecules each encoding a different 

set of bases, the operation can give an explicit description of exactly one of them; 

(12) Append-tail(T,Z): for a given test tube T and a given DNA singled strand, it appends Z onto the 

end of every strand in the tube T. 

Since these twelve manipulations are implemented with a constant number of biological steps for 

DNA strands [24,25], we assume that the complexity of each manipulation is in O(1) time steps. 

2.2. DNA Algorithm for the Unbalanced Assignment Problem 

2.2.1. Thinking Process 

The initial idea to solve the unbalanced assignment problem is as followed: generate strands 

corresponding to all possible job allocation schemes in a data pool, then, filter out inappropriate job 

allocation. Next, append the cost-weighted length strands in order to identify the schemes’ pros and cons. 

Finally, obtain the optimal solutions of the unbalanced assignment problem by using the corresponding 

DNA operations. Concretely, the proposed algorithm has four steps. 

Step 1: Construct set T of all possible mn solutions for unbalanced assignment problem; 

Step 2: For all possible solutions, eliminate inappropriate allocation, such as one job distribution to 

multiple individuals, one job without been assigned. 

Step 3: Append time weight chain at the corresponding qualified strands in order to find the  

optimal solution. 

Step 4: Get the shortest strands as the answer to the problem and identify the specific distribution. 

2.2.2. Detailed DNA Algorithm 

Given a set of n jobs and m individuals (m < n), the unbalanced assignment problem requires that 

each job should be allocated to only one individual that the total cost, which is defined as the sum of the 

cost between each pair job and individual, is minimized. Consider a problem which consists of a set of 

m individuals I = {i1,i2,…,im}. A set of n jobs J = {j1,j2,…,jn}is considered which are to be assigned for 

execution by m available individuals. 

We suppose m < n. The execution cost of each job by all the individuals is known and mentioned in 

the matrix, namely A = [cij]m × n where cij is the cost between job j and individual i. The objective is to 

determine the optimal assignment cost. A method is devised to obtain the said costs in such a way that 

all the jobs are to be allotted on the available individuals. In the following, the symbols s, e, Ai, Bj  

(i = 1,2,…,m, j = 1,2,…,n) denote distinct DNA single strands with the same length, say t mer (t is a 

positive integer, mer is monomer unit length). Obviously the length t of the DNA single strands greatly 

depends on the size of the problem involved in order to distinguish all above symbols [25]. Meanwhile 

we use the symbols wij to denote the cost cij and ||wij|| = cij. Then, in the below operations, we use the 

distinct DNA single strand symbols sAieBj (i = 1,2,…,m, j = 1,2,…,n) to denote that the j-th job is 

assigned to the i-th individual without cost information. Simultaneity the symbols s, e are the signal of 

different edges division. Let 
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1 2{ , , , }mP sAe sA e sA e=   

1 2 1 2{ , , , , , , , }n nQ eB s eB s eB s B B B=    

For a cost matrix A = [cij]m × n, the unbalanced assignment problem is firstly on the relation between 

n jobs and m individuals. Every possible assignment can be expressed by a list of DNA strands. DNA 

strands sAieBj represent that the j-th job is assigned to the i-th individual. For example in Table 1, the 

DNA strands {sA1eB2sA2eB3sA3eB4sA2eB1sA1eB5} represent the 2 and 5-job to 1-individual, 1 and  

3-job to 2-individual and 4-job to 3-individual. In this way, we can get DNA strands representing all 

possible n jobs to m individuals allocation relation. 

(1) We choose all possible DNA strands denoting n jobs to m individuals allocation relation. 

(1-1) Merge(P,Q); 
(1-2) Annealing(P); 
(1-3) Ligation(P); 
(1-4) Denaturation(P); 
(1-5) Separation(P,{s},T1); 
(1-6) Selection(T1,4nt,T2). 

This step operation can be finished in O(1) time steps since each manipulation above works in O(1). 

(2) The unbalanced assignment problem requires that each job is assigned to a unique individual.  

So we check above DNA strands whether they satisfy the condition or not. The above assignment DNA 

strands should contain job strands Bk (1 ≤ k ≤ n) one time only. For example in Table 1, the single strands 

{sA1eB3sA3eB3sA2eB1sA1eB2sA2eB4} ∈  T2 should be discarded for the 3-job simultaneously assigned to 

1 and 3-individuals and not assigned the 5-job. We get all feasible assignment strands as follow: 

For k = 1 to k = n 
(2-1) Separation(T2,{eBks},T3); 
(2-2) Discard(T2); 
(2-3) Copy(T3,T2); 
(2-4) Discard(T3). 

End for 

In the above operations, we use one “For” clauses, thus this operation can be finished in O(n) time steps. 

(3) In addition, the unbalanced assignment problem require that every individual get at least one job. 

So the above assignment DNA strands should contain individual strands Ai (1 ≤ i ≤ m) at least one time. 

For example in Table 1, the single strands {sA1eB3sA2eB4sA2eB1sA1eB2sA2eB5}  T2 should be 

discarded for not including the 3-individual. We get all feasible assignment strands as follow: 

For k = 1 to k = n 
(3-1) Separation(T2,{sAke},T4); 
(3-2) Discard(T2); 
(3-3) Copy(T4,T2); 
(3-4) Discard(T4). 

End for 

In the above operations, we use one “For” clause; thus, this operation can be finished in O(m) time steps. 

(4) The solutions of unbalanced assignment problem must be with the minimum cost. In order to find 

the optimal results, we append the cost information strands at the end of above strands. For example,  

∈
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for the Table 1, the singled strands {sA1eB3sA3eB2sA3eB4sA2eB1sA2eB3}  T2 representing the 

allocation: {j3→i1, j2→i3, j4→i3, j1→i2, j5→i2}, we append strands {w14, w21, w32, w43} at the above-

mentioned strands to {sA1eB3sA3eB2sA3eB4sA2eB1sA2eB3w13w32w34w21w25}. 

This is done by the following manipulations: 

For i = 1 to i = m 

For j = 1 to j = n 

(4-1) Separation(T2,{sAieBj},T5); 

(4-2) If (Detect(T5)) 

Then execute (4-3) to (4-5) 

(4-3) Append-tail(T5,wij); 

(4-4) Merge(T2,T5); 

(4-5) Discard(T5). 

End for 

End for 

In the above operation, this operation can be finished in O(mn) time steps since we use two “For” 

clauses with m and n circulation. 

(5) We take out those single strands in T2 with the shortest length, which give the solutions to the 

unbalanced assignment problem. For example in Table 1, those single strands in T2with shortest length 

are {sA1eB3sA1eB4sA2eB2sA3eB1sA3eB5w13w14w22w31w35}. 

Therefore, solutions to unbalanced assignment problem for Table 1 are {j3→i1, j4→i1, j2→i2, j1→i3, 

j5→i3} with the weight sum 17. 

(5-1) Sort(T2,T5,T6); 
(5-2) Read(T6). 

In the above operation, this operation can be finished in O(1) time steps since each single 

manipulation above works in O(1) steps. Finally the “Read” operation is applied to giving the exact 

solutions to the unbalanced assignment problem. 

2.3. A Simple Example 

We take a simple example in Table 2 to walk through the entire DNA algorithm. 

Table 2. Cost matrix A = [cij]2 × 3. 

Cost j1 j2 j3 

i1 2 4 1 
i2 1 2 3 

After Step (1), all possible job assignment projects are shown in Table 3. For the unbalanced 

assignment problem, every job should be assigned to someone. The strands’ symbols after Step (2) are 

shown in Table 4. Table 5 displays the strand symbols, which mean every individual gets at least one 

job. Subsequently, the corresponding weight strands are attached to the original ones as shown in Table 6 

and we get the solution strands in Table 7. 
  

∈
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Table 3. DNA Sequences symbols after Step (1) for Table 2. 

3′–5′ DNA Sequence 3′–5′ DNA Sequence 3′–5′ DNA Sequence 3′–5′ DNA Sequence

sA1eB1sA1eB1sA1eB1 sA1eB1sA1eB1sA1eB2 sA1eB1sA1eB1sA1eB3 sA1eB1sA1eB1sA2eB1 

sA1eB1sA1eB1sA2eB2 sA1eB1sA1eB1sA2eB3 sA1eB1sA1eB2sA1eB1 sA1eB1sA1eB2sA1eB2 

sA1eB1sA1eB2sA1eB3 sA1eB1sA1eB2sA2eB1 sA1eB1sA1eB2sA2eB2 sA1eB1sA1eB2sA2eB3 

sA1eB1sA1eB3sA1eB1 sA1eB1sA1eB3sA1eB2 sA1eB1sA1eB3sA1eB3 sA1eB1sA1eB3sA2eB1 

sA1eB1sA1eB3sA2eB2 sA1eB1sA1eB3sA2eB3 sA1eB1sA2eB1sA1eB1 sA1eB1sA2eB1sA1eB2 

sA1eB1sA2eB1sA1eB3 sA1eB1sA2eB1sA2eB1 sA1eB1sA2eB1sA2eB2 sA1eB1sA2eB1sA2eB3 

sA1eB1sA2eB2sA1eB1 sA1eB1sA2eB2sA1eB2 sA1eB1sA2eB2sA1eB3 sA1eB1sA2eB2sA2eB1 

sA1eB1sA2eB2sA2eB2 sA1eB1sA2eB2sA2eB3 sA1eB1sA2eB3sA1eB1 sA1eB1sA2eB3sA1eB2 

sA1eB1sA2eB3sA1eB3 sA1eB1sA2eB3sA2eB1 sA1eB1sA2eB3sA2eB2 sA1eB1sA2eB3sA2eB3 

sA1eB2sA1eB1sA1eB1 sA1eB2sA1eB1sA1eB2 sA1eB2sA1eB1sA1eB3 sA1eB2sA1eB1sA2eB1 

sA1eB2sA1eB1sA2eB2 sA1eB2sA1eB1sA2eB3 sA1eB2sA1eB2sA1eB1 sA1eB2sA1eB2sA1eB2 

sA1eB2sA1eB2sA1eB3 sA1eB2sA1eB2sA2eB1 sA1eB2sA1eB2sA2eB2 sA1eB2sA1eB2sA2eB3 

sA1eB2sA1eB3sA1eB1 sA1eB2sA1eB3sA1eB2 sA1eB2sA1eB3sA1eB3 sA1eB2sA1eB3sA2eB1 

sA1eB2sA1eB3sA2eB2 sA1eB2sA1eB3sA2eB3 sA1eB2sA2eB1sA1eB1 sA1eB2sA2eB1sA1eB2 

sA1eB2sA2eB1sA1eB3 sA1eB2sA2eB1sA2eB1 sA1eB2sA2eB1sA2eB2 sA1eB2sA2eB1sA2eB3 

sA1eB2sA2eB2sA1eB1 sA1eB2sA2eB2sA1eB2 sA1eB2sA2eB2sA1eB3 sA1eB2sA2eB2sA2eB1 

sA1eB2sA2eB2sA2eB2 sA1eB2sA2eB2sA2eB3 sA1eB2sA2eB3sA1eB1 sA1eB2sA2eB3sA1eB2 

sA1eB2sA2eB3sA1eB3 sA1eB2sA2eB3sA2eB1 sA1eB2sA2eB3sA2eB2 sA1eB2sA2eB3sA2eB3 

sA1eB3sA1eB1sA1eB1 sA1eB3sA1eB1sA1eB2 sA1eB3sA1eB1sA1eB3 sA1eB3sA1eB1sA2eB1 

sA1eB3sA1eB1sA2eB2 sA1eB3sA1eB1sA2eB3 sA1eB3sA1eB2sA1eB1 sA1eB3sA1eB2sA1eB2 

sA1eB3sA1eB2sA1eB3 sA1eB3sA1eB2sA2eB1 sA1eB3sA1eB2sA2eB2 sA1eB3sA1eB2sA2eB3 

sA1eB3sA1eB3sA1eB1 sA1eB3sA1eB3sA1eB2 sA1eB3sA1eB3sA1eB3 sA1eB3sA1eB3sA2eB1 

sA1eB3sA1eB3sA2eB2 sA1eB3sA1eB3sA2eB3 sA1eB3sA2eB1sA1eB1 sA1eB3sA2eB1sA1eB2 

sA1eB3sA2eB1sA1eB3 sA1eB3sA2eB1sA2eB1 sA1eB3sA2eB1sA2eB2 sA1eB3sA2eB1sA2eB3 

sA1eB3sA2eB2sA1eB1 sA1eB3sA2eB2sA1eB2 sA1eB3sA2eB2sA1eB3 sA1eB3sA2eB2sA2eB1 

sA1eB3sA2eB2sA2eB2 sA1eB3sA2eB2sA2eB3 sA1eB3sA2eB3sA1eB1 sA1eB3sA2eB3sA1eB2 

sA1eB3sA2eB3sA1eB3 sA1eB3sA2eB3sA2eB1 sA1eB3sA2eB3sA2eB2 sA1eB3sA2eB3sA2eB3 

sA2eB1sA1eB1sA1eB1 sA2eB1sA1eB1sA1eB2 sA2eB1sA1eB1sA1eB3 sA2eB1sA1eB1sA2eB1 

sA2eB1sA1eB1sA2eB2 sA2eB1sA1eB1sA2eB3 sA2eB1sA1eB2sA1eB1 sA2eB1sA1eB2sA1eB2 

sA2eB1sA1eB2sA1eB3 sA2eB1sA1eB2sA2eB1 sA2eB1sA1eB2sA2eB2 sA2eB1sA1eB2sA2eB3 

sA2eB1sA1eB3sA1eB1 sA2eB1sA1eB3sA1eB2 sA2eB1sA1eB3sA1eB3 sA2eB1sA1eB3sA2eB1 

sA2eB1sA1eB3sA2eB2 sA2eB1sA1eB3sA2eB3 sA2eB1sA2eB1sA1eB1 sA2eB1sA2eB1sA1eB2 

sA2eB1sA2eB1sA1eB3 sA2eB1sA2eB1sA2eB1 sA2eB1sA2eB1sA2eB2 sA2eB1sA2eB1sA2eB3 

sA2eB1sA2eB2sA1eB1 sA2eB1sA2eB2sA1eB2 sA2eB1sA2eB2sA1eB3 sA2eB1sA2eB2sA2eB1 

sA2eB1sA2eB2sA2eB2 sA2eB1sA2eB2sA2eB3 sA2eB1sA2eB3sA1eB1 sA2eB1sA2eB3sA1eB2 

sA2eB1sA2eB3sA1eB3 sA2eB1sA2eB3sA2eB1 sA2eB1sA2eB3sA2eB2 sA2eB1sA2eB3sA2eB3 

sA2eB2sA1eB1sA1eB1 sA2eB2sA1eB1sA1eB2 sA2eB2sA1eB1sA1eB3 sA2eB2sA1eB1sA2eB1 

sA2eB2sA1eB1sA2eB2 sA2eB2sA1eB1sA2eB3 sA2eB2sA1eB2sA1eB1 sA2eB2sA1eB2sA1eB2 

sA2eB2sA1eB2sA1eB3 sA2eB2sA1eB2sA2eB1 sA2eB2sA1eB2sA2eB2 sA2eB2sA1eB2sA2eB3 

sA2eB2sA1eB3sA1eB1 sA2eB2sA1eB3sA1eB2 sA2eB2sA1eB3sA1eB3 sA2eB2sA1eB3sA2eB1 

sA2eB2sA1eB3sA2eB2 sA2eB2sA1eB3sA2eB3 sA2eB2sA2eB1sA1eB1 sA2eB2sA2eB1sA1eB2 

sA2eB2sA2eB1sA1eB3 sA2eB2sA2eB1sA2eB1 sA2eB2sA2eB1sA2eB2 sA2eB2sA2eB1sA2eB3 

sA2eB2sA2eB2sA1eB1 sA2eB2sA2eB2sA1eB2 sA2eB2sA2eB2sA1eB3 sA2eB2sA2eB2sA2eB1 
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Table 3. Cont. 

3′–5′ DNA Sequence 3′–5′ DNA Sequence 3′–5′ DNA Sequence 3′–5′ DNA Sequence

sA2eB2sA2eB2sA2eB2 sA2eB2sA2eB2sA2eB3 sA2eB2sA2eB3sA1eB1 sA2eB2sA2eB3sA1eB2 

sA2eB2sA2eB3sA1eB3 sA2eB2sA2eB3sA2eB1 sA2eB2sA2eB3sA2eB2 sA2eB2sA2eB3sA2eB3 

sA2eB3sA1eB1sA1eB1 sA2eB3sA1eB1sA1eB2 sA2eB3sA1eB1sA1eB3 sA2eB3sA1eB1sA2eB1 

sA2eB3sA1eB1sA2eB2 sA2eB3sA1eB1sA2eB3 sA2eB3sA1eB2sA1eB1 sA2eB3sA1eB2sA1eB2 

sA2eB3sA1eB2sA1eB3 sA2eB3sA1eB2sA2eB1 sA2eB3sA1eB2sA2eB2 sA2eB3sA1eB2sA2eB3 

sA2eB3sA1eB3sA1eB1 sA2eB3sA1eB3sA1eB2 sA2eB3sA1eB3sA1eB3 sA2eB3sA1eB3sA2eB1 

sA2eB3sA1eB3sA2eB2 sA2eB3sA1eB3sA2eB3 sA2eB3sA2eB1sA1eB1 sA2eB3sA2eB1sA1eB2 

sA2eB3sA2eB1sA1eB3 sA2eB3sA2eB1sA2eB1 sA2eB3sA2eB1sA2eB2 sA2eB3sA2eB1sA2eB3 

sA2eB3sA2eB2sA1eB1 sA2eB3sA2eB2sA1eB2 sA2eB3sA2eB2sA1eB3 sA2eB3sA2eB2sA2eB1 

sA2eB3sA2eB2sA2eB2 sA2eB3sA2eB2sA2eB3 sA2eB3sA2eB3sA1eB1 sA2eB3sA2eB3sA1eB2 

sA2eB3sA2eB3sA1eB3 sA2eB3sA2eB3sA2eB1 sA2eB3sA2eB3sA2eB2 sA2eB3sA2eB3sA2eB3 

Table 4. DNA Sequences symbols after Step (2) for Table 2. 

3′–5′ DNA Sequence 3′–5′ DNA Sequence 3′–5′ DNA Sequence 3′–5′ DNA Sequence

sA1eB1sA1eB1sA2eB1 sA1eB1sA1eB1sA2eB2 sA1eB1sA1eB1sA2eB3 sA1eB1sA1eB2sA1eB1 

sA1eB1sA1eB2sA1eB2 sA1eB1sA1eB2sA1eB3 sA1eB1sA1eB2sA2eB1 sA1eB1sA1eB2sA2eB2 

sA1eB1sA1eB2sA2eB3 sA1eB1sA1eB3sA1eB1 sA1eB1sA1eB3sA1eB2 sA1eB1sA1eB3sA1eB3 

sA1eB1sA1eB3sA2eB1 sA1eB1sA1eB3sA2eB2 sA1eB1sA1eB3sA2eB3 sA1eB1sA2eB1sA1eB1 

sA1eB1sA2eB1sA1eB2 sA1eB1sA2eB1sA1eB3 sA1eB1sA2eB1sA2eB1 sA1eB1sA2eB1sA2eB2 

sA1eB1sA2eB1sA2eB3 sA1eB1sA2eB2sA1eB1 sA1eB1sA2eB2sA1eB2 sA1eB1sA2eB2sA1eB3 

sA1eB1sA2eB2sA2eB1 sA1eB1sA2eB2sA2eB2 sA1eB1sA2eB2sA2eB3 sA1eB1sA2eB3sA1eB1 

sA1eB1sA2eB3sA1eB2 sA1eB1sA2eB3sA1eB3 sA1eB1sA2eB3sA2eB1 sA1eB1sA2eB3sA2eB2 

sA1eB1sA2eB3sA2eB3 sA1eB2sA1eB1sA1eB1 sA1eB2sA1eB1sA1eB2 sA1eB2sA1eB1sA1eB3 

sA1eB2sA1eB1sA2eB1 sA1eB2sA1eB1sA2eB2 sA1eB2sA1eB1sA2eB3 sA1eB2sA1eB2sA1eB1 

sA1eB2sA1eB2sA1eB2 sA1eB2sA1eB2sA1eB3 sA1eB2sA1eB2sA2eB1 sA1eB2sA1eB2sA2eB2 

sA1eB2sA1eB2sA2eB3 sA1eB2sA1eB3sA1eB1 sA1eB2sA1eB3sA1eB2 sA1eB2sA1eB3sA1eB3 

sA1eB2sA1eB3sA2eB1 sA1eB2sA1eB3sA2eB2 sA1eB2sA1eB3sA2eB3 sA1eB2sA2eB1sA1eB1 

sA1eB2sA2eB1sA1eB2 sA1eB2sA2eB1sA1eB3 sA1eB2sA2eB1sA2eB1 sA1eB2sA2eB1sA2eB2 

sA1eB2sA2eB1sA2eB3 sA1eB2sA2eB2sA1eB1 sA1eB2sA2eB2sA1eB2 sA1eB2sA2eB2sA1eB3 

sA1eB2sA2eB2sA2eB1 sA1eB2sA2eB2sA2eB2 sA1eB2sA2eB2sA2eB3 sA1eB2sA2eB3sA1eB1 

sA1eB2sA2eB3sA1eB2 sA1eB2sA2eB3sA1eB3 sA1eB2sA2eB3sA2eB1 sA1eB2sA2eB3sA2eB2 

sA1eB2sA2eB3sA2eB3 sA1eB3sA1eB1sA1eB1 sA1eB3sA1eB1sA1eB2 sA1eB3sA1eB1sA1eB3 

sA1eB3sA1eB1sA2eB1 sA1eB3sA1eB1sA2eB2 sA1eB3sA1eB1sA2eB3 sA1eB3sA1eB2sA1eB1 

sA1eB3sA1eB2sA1eB2 sA1eB3sA1eB2sA1eB3 sA1eB3sA1eB2sA2eB1 sA1eB3sA1eB2sA2eB2 

sA1eB3sA1eB2sA2eB3 sA1eB3sA1eB3sA1eB1 sA1eB3sA1eB3sA1eB2 sA1eB3sA1eB3sA1eB3 

sA1eB3sA1eB3sA2eB1 sA1eB3sA1eB3sA2eB2 sA1eB3sA1eB3sA2eB3 sA1eB3sA2eB1sA1eB1 

sA1eB3sA2eB1sA1eB2 sA1eB3sA2eB1sA1eB3 sA1eB3sA2eB1sA2eB1 sA1eB3sA2eB1sA2eB2 

sA1eB3sA2eB1sA2eB3 sA1eB3sA2eB2sA1eB1 sA1eB3sA2eB2sA1eB2 sA1eB3sA2eB2sA1eB3 

sA1eB3sA2eB2sA2eB1 sA1eB3sA2eB2sA2eB2 sA1eB3sA2eB2sA2eB3 sA1eB3sA2eB3sA1eB1 

sA1eB3sA2eB3sA1eB2 sA1eB3sA2eB3sA1eB3 sA1eB3sA2eB3sA2eB1 sA1eB3sA2eB3sA2eB2 

sA1eB3sA2eB3sA2eB3 sA2eB1sA1eB1sA1eB1 sA2eB1sA1eB1sA1eB2 sA2eB1sA1eB1sA1eB3 
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Table 5. DNA Sequences symbols after Step (1) for Table 2. 

3′–5′ DNA Sequence 3′–5′ DNA Sequence 3′–5′ DNA Sequence 3′–5′ DNA Sequence

sA1eB1sA1eB2sA2eB3 sA1eB1sA1eB3sA2eB2 sA1eB1sA2eB2sA1eB3 sA1eB1sA2eB2sA2eB3 

sA1eB1sA2eB3sA1eB2 sA1eB1sA2eB3sA2eB2 sA1eB2sA1eB1sA2eB3 sA1eB2sA1eB3sA2eB1 

sA1eB2sA2eB1sA1eB3 sA1eB2sA2eB1sA2eB3 sA1eB2sA2eB3sA1eB1 sA1eB2sA2eB3sA2eB1 

sA1eB3sA1eB1sA2eB2 sA1eB3sA1eB2sA2eB1 sA1eB3sA2eB1sA1eB2 sA1eB3sA2eB1sA2eB2 

sA1eB3sA2eB2sA1eB1 sA1eB3sA2eB2sA2eB1 sA2eB1sA1eB2sA1eB3 sA2eB1sA1eB2sA2eB3 

sA2eB1sA1eB3sA1eB2 sA2eB1sA1eB3sA2eB2 sA2eB1sA2eB2sA1eB3 sA2eB1sA2eB3sA1eB2 

sA2eB2sA1eB1sA1eB3 sA2eB2sA1eB1sA2eB3 sA2eB2sA1eB3sA1eB1 sA2eB2sA1eB3sA2eB1 

sA2eB2sA2eB1sA1eB3 sA2eB2sA2eB3sA1eB1 sA2eB3sA1eB1sA1eB2 sA2eB3sA1eB1sA2eB2 

sA2eB3sA1eB2sA1eB1 sA2eB3sA1eB2sA2eB1 sA2eB3sA2eB1sA1eB2 sA2eB3sA2eB2sA1eB1 

Table 6. DNA Sequences symbols after Step (4) for Table 2. 

3′–5′ DNA Sequence 3′–5′ DNA Sequence 3′–5′ DNA Sequence 

sA1eB1sA1eB2sA2eB3w11w12w23 sA1eB1sA1eB3sA2eB2w11w13w22 sA1eB1sA2eB2sA1eB3w11w13w22

sA1eB1sA2eB2sA2eB3w11w22w23 sA1eB1sA2eB3sA1eB2w11w12w23 sA1eB1sA2eB3sA2eB2w11w22w23

sA1eB2sA1eB1sA2eB3w11w12w23 sA1eB2sA1eB3sA2eB1w12w13w21 sA1eB2sA2eB1sA1eB3w12w13w21

sA1eB2sA2eB1sA2eB3w12w21w23 sA1eB2sA2eB3sA1eB1w11w12w23 sA1eB2sA2eB3sA2eB1w12w21w23

sA1eB3sA1eB1sA2eB2w11w13w22 sA1eB3sA1eB2sA2eB1w12w13w21 sA1eB3sA2eB1sA1eB2w12w13w21

sA1eB3sA2eB1sA2eB2w13w21w22 sA1eB3sA2eB2sA1eB1w11w13w22 sA1eB3sA2eB2sA2eB1w13w21w22

sA2eB1sA1eB2sA1eB3w12w13w21 sA2eB1sA1eB2sA2eB3w12w21w23 sA2eB1sA1eB3sA1eB2w12w13w21

sA2eB1sA1eB3sA2eB2w13w21w22 sA2eB1sA2eB2sA1eB3w13w21w22 sA2eB1sA2eB3sA1eB2w12w21w23

sA2eB2sA1eB1sA1eB3w11w13w22 sA2eB2sA1eB1sA2eB3w11w22w23 sA2eB2sA1eB3sA1eB1w11w13w22

sA2eB2sA1eB3sA2eB1w13w21w22 sA2eB2sA2eB1sA1eB3w13w21w22 sA2eB2sA2eB3sA1eB1w11w22w23

sA2eB3sA1eB1sA1eB2w11w12w23 sA2eB3sA1eB1sA2eB2w11w22w23 sA2eB3sA1eB2sA1eB1w11w12w23

sA2eB3sA1eB2sA2eB1w12w21w23 sA2eB3sA2eB1sA1eB2w12w21w23 sA2eB3sA2eB2sA1eB1w11w22w23

Table 7. DNA Sequences symbols after Step (5) for Table 2. 

3′–5′ DNA Sequence 3′–5′ DNA Sequence 3′–5′ DNA Sequence 

sA1eB3sA2eB1sA2eB2w13w21w22 sA1eB3sA2eB2sA2eB1w13w21w22 sA2eB1sA1eB3sA2eB2w13w21w22

sA2eB1sA2eB2sA1eB3w13w21w22 sA2eB2sA1eB3sA2eB1w13w21w22 sA2eB2sA2eB1sA1eB3w13w21w22

2.4. The Complexity and Feasibility of the Proposed DNA Algorithm 

The following theorem tells that the algorithm proposed above really can get solutions of the 

unbalanced assignment problem in O(mn) steps using DNA molecules. 

Theorem 1. The solutions of the unbalanced assignment problem with n jobs and m individuals can be 

obtained by the above DNA operations. 

Proof. We first get all combinations of the n jobs assignment in the data pool after the first step. Since 

the unbalanced assignment problem requires every job be assigned, we discard DNA strands without 

some jobs information at step (2). Additionally, each individual should get at least one job in the 

problem, thus we abandon DNA strands without some jobs information at step (3). Simultaneity is 

required in order to find the minimum solution, thus we append the corresponding cost strands at the 
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end of previous strands at step (4). The shortest stands in the tube T6 mean the solutions to the unbalanced 

assignment problem, and we can “read” the answer at the last step. 

Theorem 2. The solutions of the unbalanced assignment problem with n jobs and m individuals can be 

figured out in O(mn) time steps using DNA molecules computation. 

Proof. We get that the complexity of every biological operation is in O(1) time [14], the manipulation 

of the total algorithm can be entirely finished in a finite time range, such as step (1), (5) in O(1) time, step 

(2) in O(n), step (3) in O(m), and step (4) in O(mn). The time complexity T of the total algorithm is as 

follows: 

T(Step (1)) = O(1); 
T(Step (2)) = O(n); 
T(Step (3)) = O(m); 
T(Step (4)) = O(mn); 
T(Step (4)) = O(1); 
T = T(Step (1)) + T(Step (2)) + T(Step (3)) + T(Step (4)) + T(Step (5)); 
= O(1) + O(n) + O(m) + O(mn) + O(1); 
= O(mn). 

Theorem 3. The solutions strands of the unbalanced assignment problem with n jobs and m individuals 

can be found in the finite length range. 

Proof. After the second step, we pick up the DNA strands for all possible assignment choices with n 

jobs and m individuals. Here the single strands in tube T2 at step (3) can be described: 

1 1 2 2 p p n ni j i j i j i jsA eB sA eB sA eB sA eB  {1, 2, , }pi m∈  , {1, 2, , }pj n∈   

In the beginning we reasonably design the length of s, e, Ak, Bk, for 

k ks A B e t= = = = mer 

In order to choose the minimum cost assignment, we append the cost strands wij at the end of the 

previous strands denoting j-job to i-individual at (4) step. And we let ||wij|| = cij mer and max ||wij|| = y mer. 

Then T2 can be described: 

1 1 2 2 1 1 2 2p p n n p p n ni j i j i j i j i j i j i j i jsA eB sA eB sA eB sA eB w w w w     

So the length range of DNA strands in tube T2 is: 

1 1 2 2i j i jS s A e B s A e B= + + + + + + + +
 

1 1 2 2n n n ni j i j i j i js A e B w w w+ + + + + + +
 

1 1 1 1 1
k k k k

n n n n n

i j i j
i k i k k

s A e B w
= = = = =

= + + + +    
 

1

4
k k

n

i j
k

nt w
=

= +
 

∵ 0 ≤ 
k ki jw  ≤ y 

∴ 4tn ≤ ||T2|| ≤ (4t + y)n 

The length of strands in T2 tube must be between 4tn and (4t + y)n. So we can get the solution in  

step (4) in the appropriate length range. 
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3. Experimental Section 

It is shown that errors in the separation of the library strands are errors in the computation [26–32]. 

This means that it needs a lower rate of primary errors of hybridization in the computation. DNA 

sequences should be generated to ensure library strands have little secondary structure that might inhibit 

intended probe-library hybridization. The design must also exclude DNA sequences that might 

encourage unintended probe-library hybridization. In order to realize the goals, we need to follow some 

DNA sequence constraints. For instance, library strands should include only A, T, and C, which has a 

lower secondary structure than those conditions and has higher chance to bind probes; through the 

restriction every library and probe sequence should have no runs of more than four A, four T, four C or 

four G, long homopolymer tracts which may have unusual secondary structures that inhibit the binding 

from probes to library strands and the melting temperatures of probe and library strand hybridization 

will be more similar, if they do not have any long enough homopolymer tracts. Restrictions that each 

probe should have four, five, or six G in its sequence are aimed to insure that intended probe-library 

pairings have uniform melting temperatures, and so on. 

In this paper, the Adleman procedures [29] are simulated working on an electronic computer.  

The coded algorithms are used to generate DNA sequences to solve the unbalanced assignment problem 

and construct the 15-base DNA sequences for every bit of the library. For Table 1, the algorithm 

generates 5-base random sequences, consisting of Ak, Bk, s, e, and confirms whether the library strands 

satisfy above-mentioned restrictions when a new DNA sequence is gained [30]. If the restrictions are 

satisfied, the new DNA sequence is “greedily” taken up. If the restrictions are not satisfied, then 

mutations would be imported individually, in succession, into the new block until either the restrictions 

are satisfied and then the new DNA sequence is accepted, or a threshold for the number of mutations is 

reached, and the algorithm has finished and so it quits, printing the DNA sequence found so far. If the 

whole string of bits satisfy the restrictions, the algorithm has succeeded and these DNA sequences would 

be the product. 

Consider the example in Table 1, the problem includes jobs {j1, j2, j3, j4, j5},and individuals {i1, i2, 

i3}. Basic DNA sequences are generated by Adleman’s algorithms and modified, shown in Table 8. 

Table 9 shows DNA sequences representing the job assignment schemes sAieBj (1 ≤ i ≤ m, 1 ≤ j ≤ n). 

Adleman’s algorithms are also used to calculate the enthalpy, entropy, and free energy for binding of each 

probe to its corresponding region on a library strand; meanwhile, the energy used is shown in Table 10. 

Table 8. Sequences chosen to represent s, e, Ak, Bk, and wij in the example for Table 1. 

Bit 
3′–5′ DNA 

Sequence 
Bit 

3′–5′ DNA 

Sequence 
Bit 

3′–5′ DNA 

Sequence 
Bit 

3′–5′ DNA 

Sequence 

s CTATC e AACTC A1 TAAAA B1 AATTA 

A2 CTTTT B2 CATTA A3 TTCAA B3 ATCTA 

B4 CAAAC B5 ATCCA w11 CCCAT w12 ATATA 

w13 TTACA w14 TACCC w15 TTCTT w21 TTTCA 

w22 ATAAT w23 CTACC w24 TTACA w25 CATAC 

w31 CCTTC w32 ACTCA w33 TCACT w34 ACCCT 

w35 TTAAC       
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Table 9. Sequences chosen to represent the job assignment schemes sAieBj (1 ≤ i ≤ m,  

1 ≤ j ≤ n) in the example for Table 1. 

Job Assignment 3′–5′ DNA Sequence Job Assignment 3′–5′ DNA Sequence 

sA1eB1 CTATCTAAAAAACTCAATTA sA1eB2 CTATCTAAAAAACTCCATTA 

sA1eB3 CTATCTAAAAAACTCATCTA sA1eB4 CTATCTAAAAAACTCCAAAC

sA1eB5 CTATCTAAAAAACTCATCCA sA2eB1 CTATCCTTTTAACTCAATTA 

sA2eB2 CTATCCTTTTAACTCCATTA sA2eB3 CTATCCTTTTAACTCATCTA 

sA2eB4 CTATCCTTTTAACTCCAAAC sA2eB5 CTATCCTTTTAACTCATCCA 

sA3eB1 CTATCTTCAAAACTCAATTA sA3eB2 CTATCTTCAAAACTCCATTA 

sA3eB3 CTATCTTCAAAACTCATCTA sA3eB4 CTATCTTCAAAACTCCAAAC 

sA3eB5 CTATCTTCAAAACTCATCCA   

Table 10. The energies for of binding each probe to its corresponding region on a library strand. 

Job 

Assignment 

Enthalpy 

Energy H 

Entropy 

Energy S 

Free 

Energy G 

Job 

Assignment 

Enthalpy 

Energy H 

Entropy 

Energy S 

Free 

Energy G 

sA1eB1 110.5 287.1 24.7 sA1eB2 101.2 256.7 22.9 

sA1eB3 111.6 294.4 25.9 sA1eB4 107.4 281.3 24.9 

sA1eB5 108.3 277.7 25.2 sA2eB1 104.2 271.3 24.9 

sA2eB2 99.8 248.2 22.9 sA2eB3 105.4 270.3 24.8 

sA2eB4 104.5 269.7 24.7 sA2eB5 97.7 243.1 23.3 

sA3eB1 107.6 275.3 25.2 sA3eB2 111.2 289.5 25.8 

sA3eB3 103.3 262.4 24.6 sA3eB4 114.7 292.1 26.3 

sA3eB5 112.1 288.5 26.1     

Our program also figures out the average and standard deviation for the enthalpy, entropy, and free 

energy over all probe/library strand interactions. The energy levels are shown as in Table 11. Table 12 

presents the library strands and the solution {j3→i1, j4→i1, j2→i2, j1→i3, j5→i3}of the unbalanced 

assignment problem. 

Table 11. The energies over all probe/library strand interactions. 

Average 106.463 273.613 24.794 

Standard Deviation 4.8018 15.3631 1.0363 

Table 12. DNA sequences chosen to represent the answer of the unbalanced assignment problem. 

Solutions DNA Strands Denoting Solutions 

{j3→i1, j4→i1,j2→i2, j1→i3,j5→i3} 
3′-CTATCTAAAAAACTCATCTACTATCTAAAAAACTCCAAAC

CTATCCTTTTAACTCCATTACTATCTTCAAAACTCAATTACTAT
CTTCAAAACTCATCCATTACATACCCATAATCCTTCTTAAC-5′ 

4. Conclusions 

In this paper, we present DNA algorithms for solving the unbalanced assignment problem based on 

biological operations in the Adleman-Lipton model. Due to electronic computers having obvious limits 

in storage, speed, intelligence, and miniaturization, the methods of DNA computation have arisen, 
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especially for their efficient parallelism. The present algorithm has the following advantages compared 

with previous algorithms: firstly, the proposed algorithm actually has a lower rate of errors for 

hybridization because we develop a computer program to generate good DNA sequences for generating 

the solution space of the unbalanced assignment problem. Secondly, the proposed algorithm requires a 

time cost and a DNA strand length that are linearly proportional to the instance size. It can finish in 

O(mn) the unbalanced assignment problem with n jobs and m individuals, having certain advantages 

comparing with existing algorithms, such as algorithm of paper [33] with O(nlogn(m + nlogn)) 

complexity. Additionally, the proposed algorithms can be easily performed in a fully automated manner 

in a laboratory. The full automation manner is essential not only for the speedup of computation but also 

for error-free computation. Meanwhile we simulated the DNA experiment to solve the unbalanced 

assignment problem. The ability to perform complex operations in solution might help us learn more 

about the nature of computation and lead to the development of better DNA-based computation, capable 

of solving a wide range of complex problems. We hope that, in future studies, more highly-effective 

DNA operations will be exploited to derive a DNA computing model with time efficiency and is 

complete for NP-hard problems. 
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