

Int. J. Mol. Sci. 2015, 16, 25338-25352; doi:10.3390/ijms161025338

International Journal of

Molecular Sciences
ISSN 1422-0067

www.mdpi.com/journal/ijms

Article

A Parallel Biological Optimization Algorithm to Solve
the Unbalanced Assignment Problem Based on
DNA Molecular Computing

Zhaocai Wang 1, Jun Pu 2, Liling Cao 3 and Jian Tan 4,*

1 College of Information, Shanghai Ocean University, Shanghai 201306, China;

E-Mail: zcwang1028@163.com
2 Center for Finance and Accounting Research of University of International Business and Economics,

Beijing 100029, China; E-Mail: junp1980@163.com
3 College of Engineering Science and Technology, Shanghai Ocean University,

Shanghai 201306, China; E-Mail: appll188@163.com
4 Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth,

Chinese Academy of Sciences, Beijing 100094, China

* Author to whom correspondence should be addressed; E-Mail: jtan1980@163.com;

Tel./Fax: +86-10-8217-8075.

Academic Editor: Mihai V. Putz

Received: 7 September 2015 / Accepted: 8 October 2015 / Published: 23 October 2015

Abstract: The unbalanced assignment problem (UAP) is to optimally resolve the problem

of assigning n jobs to m individuals (m < n), such that minimum cost or maximum profit

obtained. It is a vitally important Non-deterministic Polynomial (NP) complete problem in

operation management and applied mathematics, having numerous real life applications.

In this paper, we present a new parallel DNA algorithm for solving the unbalanced

assignment problem using DNA molecular operations. We reasonably design flexible-length

DNA strands representing different jobs and individuals, take appropriate steps, and get the

solutions of the UAP in the proper length range and O(mn) time. We extend the application

of DNA molecular operations and simultaneity to simplify the complexity of the computation.

Keywords: DNA molecules computing; the unbalanced assignment problem; biological

optimization algorithm; NP-complete problem

OPEN ACCESS

Int. J. Mol. Sci. 2015, 16 25339

1. Introduction

In the pathbreaking work of DNA computation, Adleman [1] firstly described how to solve a

seven-node instance of a well-known NP-hard problem utilizing biological operations, and also

demonstrated the potential parallel power of DNA computation. In 1995, Lipton [2] proved that

Adleman’s experiment could be used to figure out the NP-complete satisfiability problem. DNA

computation, as an interdisciplinary science using DNA molecular biotechnologies to solve conundrum

problems of computer science and computational mathematics, has a wide application prospect in

solving difficult problems. Huge storage capacity, massive parallelism and low energy consumption are

primary advantages of DNA computation. The advantages imply that we can utilize DNA molecules to

solve harder, larger problems such as NP-complete problems in linearly increasing time, in contrast to

the exponentially increasing time required by an electronic computer. In recent years, DNA computation

has received considerable interest from researchers. Some typical DNA computing models, such as the

Adleman-Lipton model [1,2], the sticker model [3], the restriction enzyme model [4], the self-assembly

model [5], the hairpin model [6], and the surface-based model [7], have already been established.

Based on these models, lots of papers have been written for designing DNA procedures and algorithms

to solve various NP-complete problems [8–21]. In order to fully understand the power of biological

computation, it is worthwhile to try to solve more kinds of computationally-intractable problems with

the aid of DNA biologic operations.

The assignment problem is a common topic in the fields related to operation management and network

flow theory. This problem is known to be NP-hard and it is hard from a computational point of view as

well. A standard assignment problem is to optimally resolve the problem of assigning n jobs to m

individuals, such that minimum cost or maximum profit can be obtained. Various algorithms, including

standard linear programming [6–9], Hungarian algorithm [10], neural network [11], and genetic

algorithms [12], have been developed to find solutions. When we deal with real life situation, it becomes

quite difficult to ensure that the number of jobs is exactly equal to individuals. Thus, the need arises to

solve the unbalanced assignment problem in such a way that total assignment cost may be optimized

along with the other constraints. In general, the unbalanced assignment problem can be considered

as a particular case of the transportation problem, and can be formulated as a 0–1 integer linear

programming [22,23]. The problem can be mathematically formulated as follows:

min
1 1

m n

ij ij
i j

Z c x
= =

=

. .s t
1

1
m

ij
i

x
=

= 1,2, ,i m= 

1

1 1
n

ij
j

x n m
=

≤ ≤ − + 1,2, ,j n= 

0ijx = , or 1

where the decision variable xij = 1 means that the j-th job is assigned to the i-th individual; otherwise,

xij = 0 is in reverse; cij is the associated cost incurred by the assignment (if cij is the correlative profit, the

object function will be max Z). For instance, the Table 1 defines the cost matrix A = [cij]m × n of the

unbalanced assignment problem.

Int. J. Mol. Sci. 2015, 16 25340

Table 1. Cost matrix A = [cij]3 × 5.

Cost j1 j2 j3 j4 j5

i1 5 9 1 2 7
i2 9 8 6 4 4
i3 4 7 8 5 2

In this paper, based on a combination of Adleman-Lipton model, A theoretically-efficient DNA

algorithm is introduced for figuring out solutions of the unbalanced assignment problem, which is

executed in O(mn) operations, where n is number of jobs and m is number of individuals. With the

progress of molecular biology techniques, the proposed algorithm might be of practical use in treating

medium-sized instances of UAP.

The rest of this paper is organized as follows. In Section 2, the Adleman-Lipton model is introduced

in detail. Then, we use a DNA molecular algorithm for solving the unbalanced assignment problem. And

prove DNA algorithm complexity and feasibility. In Section 3, we use computer to simulate the DNA

experiment and get correct solution of the Table 1. We get conclusions in Section 4.

2. Results and Discussion

2.1. The Adleman-Lipton Model

The DNA operations proposed by Adleman [1] and Lipton [2] are described below. These operations

will be used for figuring out solutions of the unbalanced assignment problem in this paper. In the

Adleman-Lipton model: A (test) tube is a set of molecules of DNA (i.e., a multi-set of finite strings over

the alphabet {A,C,G,T}. Given a tube, one can perform the following operations:

(1) Merge(T1,T2): for two given test tubes T1 and T2, it stores the union T1∪T2 in T1 and leaves

T2 empty;

(2) Copy(T1,T2): for a given test tube T1, it produces a test tube T2 with the same contents as T1;

(3) Detect(T): given a test tube T, it outputs “yes” if T contains at least one strand, otherwise,

outputs “no”;

(4) Separation(T1,X,T2): for a given test tube T1 and a given set of strings X, it removes all single

strands containing a string in X from T1, and produces a test tube T2 with the removed strands;

(5) Selection(T1,L,T2): for a given test tube T1 and a given integer L, it removes all strands with

length L from T1, and produces a test tube T2 with the removed strands;

(6) Sort(T1,T2,T3): for a given test tube T1, it choose the shortest length strands in the tube T2,

the longest strands in T3 and the remaining strands in T1;

(7) Annealing(T): for a given test tube T, it produces all feasible double strands in T. The produced

double strands are still stored in T after annealing;

(8) Denaturation(T): for a given test tube T, it dissociates each double strand in T into two

single strands;

(9) Ligation(T): for a given tube T, the operation is used to ligate together the strands in T;

(10) Discard(T): for a given test tube T, it discards the tube T;

Int. J. Mol. Sci. 2015, 16 25341

(11) Read(T): for a given tube T, the operation is used to describe a single molecule, which is

contained in the tube T. Even if T contains many different molecules each encoding a different

set of bases, the operation can give an explicit description of exactly one of them;

(12) Append-tail(T,Z): for a given test tube T and a given DNA singled strand, it appends Z onto the

end of every strand in the tube T.

Since these twelve manipulations are implemented with a constant number of biological steps for

DNA strands [24,25], we assume that the complexity of each manipulation is in O(1) time steps.

2.2. DNA Algorithm for the Unbalanced Assignment Problem

2.2.1. Thinking Process

The initial idea to solve the unbalanced assignment problem is as followed: generate strands

corresponding to all possible job allocation schemes in a data pool, then, filter out inappropriate job

allocation. Next, append the cost-weighted length strands in order to identify the schemes’ pros and cons.

Finally, obtain the optimal solutions of the unbalanced assignment problem by using the corresponding

DNA operations. Concretely, the proposed algorithm has four steps.

Step 1: Construct set T of all possible mn solutions for unbalanced assignment problem;

Step 2: For all possible solutions, eliminate inappropriate allocation, such as one job distribution to

multiple individuals, one job without been assigned.

Step 3: Append time weight chain at the corresponding qualified strands in order to find the

optimal solution.

Step 4: Get the shortest strands as the answer to the problem and identify the specific distribution.

2.2.2. Detailed DNA Algorithm

Given a set of n jobs and m individuals (m < n), the unbalanced assignment problem requires that

each job should be allocated to only one individual that the total cost, which is defined as the sum of the

cost between each pair job and individual, is minimized. Consider a problem which consists of a set of

m individuals I = {i1,i2,…,im}. A set of n jobs J = {j1,j2,…,jn}is considered which are to be assigned for

execution by m available individuals.

We suppose m < n. The execution cost of each job by all the individuals is known and mentioned in

the matrix, namely A = [cij]m × n where cij is the cost between job j and individual i. The objective is to

determine the optimal assignment cost. A method is devised to obtain the said costs in such a way that

all the jobs are to be allotted on the available individuals. In the following, the symbols s, e, Ai, Bj

(i = 1,2,…,m, j = 1,2,…,n) denote distinct DNA single strands with the same length, say t mer (t is a

positive integer, mer is monomer unit length). Obviously the length t of the DNA single strands greatly

depends on the size of the problem involved in order to distinguish all above symbols [25]. Meanwhile

we use the symbols wij to denote the cost cij and ||wij|| = cij. Then, in the below operations, we use the

distinct DNA single strand symbols sAieBj (i = 1,2,…,m, j = 1,2,…,n) to denote that the j-th job is

assigned to the i-th individual without cost information. Simultaneity the symbols s, e are the signal of

different edges division. Let

Int. J. Mol. Sci. 2015, 16 25342

1 2{ , , , }mP sAe sA e sA e= 

1 2 1 2{ , , , , , , , }n nQ eB s eB s eB s B B B=  

For a cost matrix A = [cij]m × n, the unbalanced assignment problem is firstly on the relation between

n jobs and m individuals. Every possible assignment can be expressed by a list of DNA strands. DNA

strands sAieBj represent that the j-th job is assigned to the i-th individual. For example in Table 1, the

DNA strands {sA1eB2sA2eB3sA3eB4sA2eB1sA1eB5} represent the 2 and 5-job to 1-individual, 1 and

3-job to 2-individual and 4-job to 3-individual. In this way, we can get DNA strands representing all

possible n jobs to m individuals allocation relation.

(1) We choose all possible DNA strands denoting n jobs to m individuals allocation relation.

(1-1) Merge(P,Q);
(1-2) Annealing(P);
(1-3) Ligation(P);
(1-4) Denaturation(P);
(1-5) Separation(P,{s},T1);
(1-6) Selection(T1,4nt,T2).

This step operation can be finished in O(1) time steps since each manipulation above works in O(1).

(2) The unbalanced assignment problem requires that each job is assigned to a unique individual.

So we check above DNA strands whether they satisfy the condition or not. The above assignment DNA

strands should contain job strands Bk (1 ≤ k ≤ n) one time only. For example in Table 1, the single strands

{sA1eB3sA3eB3sA2eB1sA1eB2sA2eB4} ∈ T2 should be discarded for the 3-job simultaneously assigned to

1 and 3-individuals and not assigned the 5-job. We get all feasible assignment strands as follow:

For k = 1 to k = n
(2-1) Separation(T2,{eBks},T3);
(2-2) Discard(T2);
(2-3) Copy(T3,T2);
(2-4) Discard(T3).

End for

In the above operations, we use one “For” clauses, thus this operation can be finished in O(n) time steps.

(3) In addition, the unbalanced assignment problem require that every individual get at least one job.

So the above assignment DNA strands should contain individual strands Ai (1 ≤ i ≤ m) at least one time.

For example in Table 1, the single strands {sA1eB3sA2eB4sA2eB1sA1eB2sA2eB5} T2 should be

discarded for not including the 3-individual. We get all feasible assignment strands as follow:

For k = 1 to k = n
(3-1) Separation(T2,{sAke},T4);
(3-2) Discard(T2);
(3-3) Copy(T4,T2);
(3-4) Discard(T4).

End for

In the above operations, we use one “For” clause; thus, this operation can be finished in O(m) time steps.

(4) The solutions of unbalanced assignment problem must be with the minimum cost. In order to find

the optimal results, we append the cost information strands at the end of above strands. For example,

∈

Int. J. Mol. Sci. 2015, 16 25343

for the Table 1, the singled strands {sA1eB3sA3eB2sA3eB4sA2eB1sA2eB3} T2 representing the

allocation: {j3→i1, j2→i3, j4→i3, j1→i2, j5→i2}, we append strands {w14, w21, w32, w43} at the above-

mentioned strands to {sA1eB3sA3eB2sA3eB4sA2eB1sA2eB3w13w32w34w21w25}.

This is done by the following manipulations:

For i = 1 to i = m

For j = 1 to j = n

(4-1) Separation(T2,{sAieBj},T5);

(4-2) If (Detect(T5))

Then execute (4-3) to (4-5)

(4-3) Append-tail(T5,wij);

(4-4) Merge(T2,T5);

(4-5) Discard(T5).

End for

End for

In the above operation, this operation can be finished in O(mn) time steps since we use two “For”

clauses with m and n circulation.

(5) We take out those single strands in T2 with the shortest length, which give the solutions to the

unbalanced assignment problem. For example in Table 1, those single strands in T2with shortest length

are {sA1eB3sA1eB4sA2eB2sA3eB1sA3eB5w13w14w22w31w35}.

Therefore, solutions to unbalanced assignment problem for Table 1 are {j3→i1, j4→i1, j2→i2, j1→i3,

j5→i3} with the weight sum 17.

(5-1) Sort(T2,T5,T6);
(5-2) Read(T6).

In the above operation, this operation can be finished in O(1) time steps since each single

manipulation above works in O(1) steps. Finally the “Read” operation is applied to giving the exact

solutions to the unbalanced assignment problem.

2.3. A Simple Example

We take a simple example in Table 2 to walk through the entire DNA algorithm.

Table 2. Cost matrix A = [cij]2 × 3.

Cost j1 j2 j3

i1 2 4 1
i2 1 2 3

After Step (1), all possible job assignment projects are shown in Table 3. For the unbalanced

assignment problem, every job should be assigned to someone. The strands’ symbols after Step (2) are

shown in Table 4. Table 5 displays the strand symbols, which mean every individual gets at least one

job. Subsequently, the corresponding weight strands are attached to the original ones as shown in Table 6

and we get the solution strands in Table 7.

∈

Int. J. Mol. Sci. 2015, 16 25344

Table 3. DNA Sequences symbols after Step (1) for Table 2.

3′–5′ DNA Sequence 3′–5′ DNA Sequence 3′–5′ DNA Sequence 3′–5′ DNA Sequence

sA1eB1sA1eB1sA1eB1 sA1eB1sA1eB1sA1eB2 sA1eB1sA1eB1sA1eB3 sA1eB1sA1eB1sA2eB1

sA1eB1sA1eB1sA2eB2 sA1eB1sA1eB1sA2eB3 sA1eB1sA1eB2sA1eB1 sA1eB1sA1eB2sA1eB2

sA1eB1sA1eB2sA1eB3 sA1eB1sA1eB2sA2eB1 sA1eB1sA1eB2sA2eB2 sA1eB1sA1eB2sA2eB3

sA1eB1sA1eB3sA1eB1 sA1eB1sA1eB3sA1eB2 sA1eB1sA1eB3sA1eB3 sA1eB1sA1eB3sA2eB1

sA1eB1sA1eB3sA2eB2 sA1eB1sA1eB3sA2eB3 sA1eB1sA2eB1sA1eB1 sA1eB1sA2eB1sA1eB2

sA1eB1sA2eB1sA1eB3 sA1eB1sA2eB1sA2eB1 sA1eB1sA2eB1sA2eB2 sA1eB1sA2eB1sA2eB3

sA1eB1sA2eB2sA1eB1 sA1eB1sA2eB2sA1eB2 sA1eB1sA2eB2sA1eB3 sA1eB1sA2eB2sA2eB1

sA1eB1sA2eB2sA2eB2 sA1eB1sA2eB2sA2eB3 sA1eB1sA2eB3sA1eB1 sA1eB1sA2eB3sA1eB2

sA1eB1sA2eB3sA1eB3 sA1eB1sA2eB3sA2eB1 sA1eB1sA2eB3sA2eB2 sA1eB1sA2eB3sA2eB3

sA1eB2sA1eB1sA1eB1 sA1eB2sA1eB1sA1eB2 sA1eB2sA1eB1sA1eB3 sA1eB2sA1eB1sA2eB1

sA1eB2sA1eB1sA2eB2 sA1eB2sA1eB1sA2eB3 sA1eB2sA1eB2sA1eB1 sA1eB2sA1eB2sA1eB2

sA1eB2sA1eB2sA1eB3 sA1eB2sA1eB2sA2eB1 sA1eB2sA1eB2sA2eB2 sA1eB2sA1eB2sA2eB3

sA1eB2sA1eB3sA1eB1 sA1eB2sA1eB3sA1eB2 sA1eB2sA1eB3sA1eB3 sA1eB2sA1eB3sA2eB1

sA1eB2sA1eB3sA2eB2 sA1eB2sA1eB3sA2eB3 sA1eB2sA2eB1sA1eB1 sA1eB2sA2eB1sA1eB2

sA1eB2sA2eB1sA1eB3 sA1eB2sA2eB1sA2eB1 sA1eB2sA2eB1sA2eB2 sA1eB2sA2eB1sA2eB3

sA1eB2sA2eB2sA1eB1 sA1eB2sA2eB2sA1eB2 sA1eB2sA2eB2sA1eB3 sA1eB2sA2eB2sA2eB1

sA1eB2sA2eB2sA2eB2 sA1eB2sA2eB2sA2eB3 sA1eB2sA2eB3sA1eB1 sA1eB2sA2eB3sA1eB2

sA1eB2sA2eB3sA1eB3 sA1eB2sA2eB3sA2eB1 sA1eB2sA2eB3sA2eB2 sA1eB2sA2eB3sA2eB3

sA1eB3sA1eB1sA1eB1 sA1eB3sA1eB1sA1eB2 sA1eB3sA1eB1sA1eB3 sA1eB3sA1eB1sA2eB1

sA1eB3sA1eB1sA2eB2 sA1eB3sA1eB1sA2eB3 sA1eB3sA1eB2sA1eB1 sA1eB3sA1eB2sA1eB2

sA1eB3sA1eB2sA1eB3 sA1eB3sA1eB2sA2eB1 sA1eB3sA1eB2sA2eB2 sA1eB3sA1eB2sA2eB3

sA1eB3sA1eB3sA1eB1 sA1eB3sA1eB3sA1eB2 sA1eB3sA1eB3sA1eB3 sA1eB3sA1eB3sA2eB1

sA1eB3sA1eB3sA2eB2 sA1eB3sA1eB3sA2eB3 sA1eB3sA2eB1sA1eB1 sA1eB3sA2eB1sA1eB2

sA1eB3sA2eB1sA1eB3 sA1eB3sA2eB1sA2eB1 sA1eB3sA2eB1sA2eB2 sA1eB3sA2eB1sA2eB3

sA1eB3sA2eB2sA1eB1 sA1eB3sA2eB2sA1eB2 sA1eB3sA2eB2sA1eB3 sA1eB3sA2eB2sA2eB1

sA1eB3sA2eB2sA2eB2 sA1eB3sA2eB2sA2eB3 sA1eB3sA2eB3sA1eB1 sA1eB3sA2eB3sA1eB2

sA1eB3sA2eB3sA1eB3 sA1eB3sA2eB3sA2eB1 sA1eB3sA2eB3sA2eB2 sA1eB3sA2eB3sA2eB3

sA2eB1sA1eB1sA1eB1 sA2eB1sA1eB1sA1eB2 sA2eB1sA1eB1sA1eB3 sA2eB1sA1eB1sA2eB1

sA2eB1sA1eB1sA2eB2 sA2eB1sA1eB1sA2eB3 sA2eB1sA1eB2sA1eB1 sA2eB1sA1eB2sA1eB2

sA2eB1sA1eB2sA1eB3 sA2eB1sA1eB2sA2eB1 sA2eB1sA1eB2sA2eB2 sA2eB1sA1eB2sA2eB3

sA2eB1sA1eB3sA1eB1 sA2eB1sA1eB3sA1eB2 sA2eB1sA1eB3sA1eB3 sA2eB1sA1eB3sA2eB1

sA2eB1sA1eB3sA2eB2 sA2eB1sA1eB3sA2eB3 sA2eB1sA2eB1sA1eB1 sA2eB1sA2eB1sA1eB2

sA2eB1sA2eB1sA1eB3 sA2eB1sA2eB1sA2eB1 sA2eB1sA2eB1sA2eB2 sA2eB1sA2eB1sA2eB3

sA2eB1sA2eB2sA1eB1 sA2eB1sA2eB2sA1eB2 sA2eB1sA2eB2sA1eB3 sA2eB1sA2eB2sA2eB1

sA2eB1sA2eB2sA2eB2 sA2eB1sA2eB2sA2eB3 sA2eB1sA2eB3sA1eB1 sA2eB1sA2eB3sA1eB2

sA2eB1sA2eB3sA1eB3 sA2eB1sA2eB3sA2eB1 sA2eB1sA2eB3sA2eB2 sA2eB1sA2eB3sA2eB3

sA2eB2sA1eB1sA1eB1 sA2eB2sA1eB1sA1eB2 sA2eB2sA1eB1sA1eB3 sA2eB2sA1eB1sA2eB1

sA2eB2sA1eB1sA2eB2 sA2eB2sA1eB1sA2eB3 sA2eB2sA1eB2sA1eB1 sA2eB2sA1eB2sA1eB2

sA2eB2sA1eB2sA1eB3 sA2eB2sA1eB2sA2eB1 sA2eB2sA1eB2sA2eB2 sA2eB2sA1eB2sA2eB3

sA2eB2sA1eB3sA1eB1 sA2eB2sA1eB3sA1eB2 sA2eB2sA1eB3sA1eB3 sA2eB2sA1eB3sA2eB1

sA2eB2sA1eB3sA2eB2 sA2eB2sA1eB3sA2eB3 sA2eB2sA2eB1sA1eB1 sA2eB2sA2eB1sA1eB2

sA2eB2sA2eB1sA1eB3 sA2eB2sA2eB1sA2eB1 sA2eB2sA2eB1sA2eB2 sA2eB2sA2eB1sA2eB3

sA2eB2sA2eB2sA1eB1 sA2eB2sA2eB2sA1eB2 sA2eB2sA2eB2sA1eB3 sA2eB2sA2eB2sA2eB1

Int. J. Mol. Sci. 2015, 16 25345

Table 3. Cont.

3′–5′ DNA Sequence 3′–5′ DNA Sequence 3′–5′ DNA Sequence 3′–5′ DNA Sequence

sA2eB2sA2eB2sA2eB2 sA2eB2sA2eB2sA2eB3 sA2eB2sA2eB3sA1eB1 sA2eB2sA2eB3sA1eB2

sA2eB2sA2eB3sA1eB3 sA2eB2sA2eB3sA2eB1 sA2eB2sA2eB3sA2eB2 sA2eB2sA2eB3sA2eB3

sA2eB3sA1eB1sA1eB1 sA2eB3sA1eB1sA1eB2 sA2eB3sA1eB1sA1eB3 sA2eB3sA1eB1sA2eB1

sA2eB3sA1eB1sA2eB2 sA2eB3sA1eB1sA2eB3 sA2eB3sA1eB2sA1eB1 sA2eB3sA1eB2sA1eB2

sA2eB3sA1eB2sA1eB3 sA2eB3sA1eB2sA2eB1 sA2eB3sA1eB2sA2eB2 sA2eB3sA1eB2sA2eB3

sA2eB3sA1eB3sA1eB1 sA2eB3sA1eB3sA1eB2 sA2eB3sA1eB3sA1eB3 sA2eB3sA1eB3sA2eB1

sA2eB3sA1eB3sA2eB2 sA2eB3sA1eB3sA2eB3 sA2eB3sA2eB1sA1eB1 sA2eB3sA2eB1sA1eB2

sA2eB3sA2eB1sA1eB3 sA2eB3sA2eB1sA2eB1 sA2eB3sA2eB1sA2eB2 sA2eB3sA2eB1sA2eB3

sA2eB3sA2eB2sA1eB1 sA2eB3sA2eB2sA1eB2 sA2eB3sA2eB2sA1eB3 sA2eB3sA2eB2sA2eB1

sA2eB3sA2eB2sA2eB2 sA2eB3sA2eB2sA2eB3 sA2eB3sA2eB3sA1eB1 sA2eB3sA2eB3sA1eB2

sA2eB3sA2eB3sA1eB3 sA2eB3sA2eB3sA2eB1 sA2eB3sA2eB3sA2eB2 sA2eB3sA2eB3sA2eB3

Table 4. DNA Sequences symbols after Step (2) for Table 2.

3′–5′ DNA Sequence 3′–5′ DNA Sequence 3′–5′ DNA Sequence 3′–5′ DNA Sequence

sA1eB1sA1eB1sA2eB1 sA1eB1sA1eB1sA2eB2 sA1eB1sA1eB1sA2eB3 sA1eB1sA1eB2sA1eB1

sA1eB1sA1eB2sA1eB2 sA1eB1sA1eB2sA1eB3 sA1eB1sA1eB2sA2eB1 sA1eB1sA1eB2sA2eB2

sA1eB1sA1eB2sA2eB3 sA1eB1sA1eB3sA1eB1 sA1eB1sA1eB3sA1eB2 sA1eB1sA1eB3sA1eB3

sA1eB1sA1eB3sA2eB1 sA1eB1sA1eB3sA2eB2 sA1eB1sA1eB3sA2eB3 sA1eB1sA2eB1sA1eB1

sA1eB1sA2eB1sA1eB2 sA1eB1sA2eB1sA1eB3 sA1eB1sA2eB1sA2eB1 sA1eB1sA2eB1sA2eB2

sA1eB1sA2eB1sA2eB3 sA1eB1sA2eB2sA1eB1 sA1eB1sA2eB2sA1eB2 sA1eB1sA2eB2sA1eB3

sA1eB1sA2eB2sA2eB1 sA1eB1sA2eB2sA2eB2 sA1eB1sA2eB2sA2eB3 sA1eB1sA2eB3sA1eB1

sA1eB1sA2eB3sA1eB2 sA1eB1sA2eB3sA1eB3 sA1eB1sA2eB3sA2eB1 sA1eB1sA2eB3sA2eB2

sA1eB1sA2eB3sA2eB3 sA1eB2sA1eB1sA1eB1 sA1eB2sA1eB1sA1eB2 sA1eB2sA1eB1sA1eB3

sA1eB2sA1eB1sA2eB1 sA1eB2sA1eB1sA2eB2 sA1eB2sA1eB1sA2eB3 sA1eB2sA1eB2sA1eB1

sA1eB2sA1eB2sA1eB2 sA1eB2sA1eB2sA1eB3 sA1eB2sA1eB2sA2eB1 sA1eB2sA1eB2sA2eB2

sA1eB2sA1eB2sA2eB3 sA1eB2sA1eB3sA1eB1 sA1eB2sA1eB3sA1eB2 sA1eB2sA1eB3sA1eB3

sA1eB2sA1eB3sA2eB1 sA1eB2sA1eB3sA2eB2 sA1eB2sA1eB3sA2eB3 sA1eB2sA2eB1sA1eB1

sA1eB2sA2eB1sA1eB2 sA1eB2sA2eB1sA1eB3 sA1eB2sA2eB1sA2eB1 sA1eB2sA2eB1sA2eB2

sA1eB2sA2eB1sA2eB3 sA1eB2sA2eB2sA1eB1 sA1eB2sA2eB2sA1eB2 sA1eB2sA2eB2sA1eB3

sA1eB2sA2eB2sA2eB1 sA1eB2sA2eB2sA2eB2 sA1eB2sA2eB2sA2eB3 sA1eB2sA2eB3sA1eB1

sA1eB2sA2eB3sA1eB2 sA1eB2sA2eB3sA1eB3 sA1eB2sA2eB3sA2eB1 sA1eB2sA2eB3sA2eB2

sA1eB2sA2eB3sA2eB3 sA1eB3sA1eB1sA1eB1 sA1eB3sA1eB1sA1eB2 sA1eB3sA1eB1sA1eB3

sA1eB3sA1eB1sA2eB1 sA1eB3sA1eB1sA2eB2 sA1eB3sA1eB1sA2eB3 sA1eB3sA1eB2sA1eB1

sA1eB3sA1eB2sA1eB2 sA1eB3sA1eB2sA1eB3 sA1eB3sA1eB2sA2eB1 sA1eB3sA1eB2sA2eB2

sA1eB3sA1eB2sA2eB3 sA1eB3sA1eB3sA1eB1 sA1eB3sA1eB3sA1eB2 sA1eB3sA1eB3sA1eB3

sA1eB3sA1eB3sA2eB1 sA1eB3sA1eB3sA2eB2 sA1eB3sA1eB3sA2eB3 sA1eB3sA2eB1sA1eB1

sA1eB3sA2eB1sA1eB2 sA1eB3sA2eB1sA1eB3 sA1eB3sA2eB1sA2eB1 sA1eB3sA2eB1sA2eB2

sA1eB3sA2eB1sA2eB3 sA1eB3sA2eB2sA1eB1 sA1eB3sA2eB2sA1eB2 sA1eB3sA2eB2sA1eB3

sA1eB3sA2eB2sA2eB1 sA1eB3sA2eB2sA2eB2 sA1eB3sA2eB2sA2eB3 sA1eB3sA2eB3sA1eB1

sA1eB3sA2eB3sA1eB2 sA1eB3sA2eB3sA1eB3 sA1eB3sA2eB3sA2eB1 sA1eB3sA2eB3sA2eB2

sA1eB3sA2eB3sA2eB3 sA2eB1sA1eB1sA1eB1 sA2eB1sA1eB1sA1eB2 sA2eB1sA1eB1sA1eB3

Int. J. Mol. Sci. 2015, 16 25346

Table 5. DNA Sequences symbols after Step (1) for Table 2.

3′–5′ DNA Sequence 3′–5′ DNA Sequence 3′–5′ DNA Sequence 3′–5′ DNA Sequence

sA1eB1sA1eB2sA2eB3 sA1eB1sA1eB3sA2eB2 sA1eB1sA2eB2sA1eB3 sA1eB1sA2eB2sA2eB3

sA1eB1sA2eB3sA1eB2 sA1eB1sA2eB3sA2eB2 sA1eB2sA1eB1sA2eB3 sA1eB2sA1eB3sA2eB1

sA1eB2sA2eB1sA1eB3 sA1eB2sA2eB1sA2eB3 sA1eB2sA2eB3sA1eB1 sA1eB2sA2eB3sA2eB1

sA1eB3sA1eB1sA2eB2 sA1eB3sA1eB2sA2eB1 sA1eB3sA2eB1sA1eB2 sA1eB3sA2eB1sA2eB2

sA1eB3sA2eB2sA1eB1 sA1eB3sA2eB2sA2eB1 sA2eB1sA1eB2sA1eB3 sA2eB1sA1eB2sA2eB3

sA2eB1sA1eB3sA1eB2 sA2eB1sA1eB3sA2eB2 sA2eB1sA2eB2sA1eB3 sA2eB1sA2eB3sA1eB2

sA2eB2sA1eB1sA1eB3 sA2eB2sA1eB1sA2eB3 sA2eB2sA1eB3sA1eB1 sA2eB2sA1eB3sA2eB1

sA2eB2sA2eB1sA1eB3 sA2eB2sA2eB3sA1eB1 sA2eB3sA1eB1sA1eB2 sA2eB3sA1eB1sA2eB2

sA2eB3sA1eB2sA1eB1 sA2eB3sA1eB2sA2eB1 sA2eB3sA2eB1sA1eB2 sA2eB3sA2eB2sA1eB1

Table 6. DNA Sequences symbols after Step (4) for Table 2.

3′–5′ DNA Sequence 3′–5′ DNA Sequence 3′–5′ DNA Sequence

sA1eB1sA1eB2sA2eB3w11w12w23 sA1eB1sA1eB3sA2eB2w11w13w22 sA1eB1sA2eB2sA1eB3w11w13w22

sA1eB1sA2eB2sA2eB3w11w22w23 sA1eB1sA2eB3sA1eB2w11w12w23 sA1eB1sA2eB3sA2eB2w11w22w23

sA1eB2sA1eB1sA2eB3w11w12w23 sA1eB2sA1eB3sA2eB1w12w13w21 sA1eB2sA2eB1sA1eB3w12w13w21

sA1eB2sA2eB1sA2eB3w12w21w23 sA1eB2sA2eB3sA1eB1w11w12w23 sA1eB2sA2eB3sA2eB1w12w21w23

sA1eB3sA1eB1sA2eB2w11w13w22 sA1eB3sA1eB2sA2eB1w12w13w21 sA1eB3sA2eB1sA1eB2w12w13w21

sA1eB3sA2eB1sA2eB2w13w21w22 sA1eB3sA2eB2sA1eB1w11w13w22 sA1eB3sA2eB2sA2eB1w13w21w22

sA2eB1sA1eB2sA1eB3w12w13w21 sA2eB1sA1eB2sA2eB3w12w21w23 sA2eB1sA1eB3sA1eB2w12w13w21

sA2eB1sA1eB3sA2eB2w13w21w22 sA2eB1sA2eB2sA1eB3w13w21w22 sA2eB1sA2eB3sA1eB2w12w21w23

sA2eB2sA1eB1sA1eB3w11w13w22 sA2eB2sA1eB1sA2eB3w11w22w23 sA2eB2sA1eB3sA1eB1w11w13w22

sA2eB2sA1eB3sA2eB1w13w21w22 sA2eB2sA2eB1sA1eB3w13w21w22 sA2eB2sA2eB3sA1eB1w11w22w23

sA2eB3sA1eB1sA1eB2w11w12w23 sA2eB3sA1eB1sA2eB2w11w22w23 sA2eB3sA1eB2sA1eB1w11w12w23

sA2eB3sA1eB2sA2eB1w12w21w23 sA2eB3sA2eB1sA1eB2w12w21w23 sA2eB3sA2eB2sA1eB1w11w22w23

Table 7. DNA Sequences symbols after Step (5) for Table 2.

3′–5′ DNA Sequence 3′–5′ DNA Sequence 3′–5′ DNA Sequence

sA1eB3sA2eB1sA2eB2w13w21w22 sA1eB3sA2eB2sA2eB1w13w21w22 sA2eB1sA1eB3sA2eB2w13w21w22

sA2eB1sA2eB2sA1eB3w13w21w22 sA2eB2sA1eB3sA2eB1w13w21w22 sA2eB2sA2eB1sA1eB3w13w21w22

2.4. The Complexity and Feasibility of the Proposed DNA Algorithm

The following theorem tells that the algorithm proposed above really can get solutions of the

unbalanced assignment problem in O(mn) steps using DNA molecules.

Theorem 1. The solutions of the unbalanced assignment problem with n jobs and m individuals can be

obtained by the above DNA operations.

Proof. We first get all combinations of the n jobs assignment in the data pool after the first step. Since

the unbalanced assignment problem requires every job be assigned, we discard DNA strands without

some jobs information at step (2). Additionally, each individual should get at least one job in the

problem, thus we abandon DNA strands without some jobs information at step (3). Simultaneity is

required in order to find the minimum solution, thus we append the corresponding cost strands at the

Int. J. Mol. Sci. 2015, 16 25347

end of previous strands at step (4). The shortest stands in the tube T6 mean the solutions to the unbalanced

assignment problem, and we can “read” the answer at the last step.

Theorem 2. The solutions of the unbalanced assignment problem with n jobs and m individuals can be

figured out in O(mn) time steps using DNA molecules computation.

Proof. We get that the complexity of every biological operation is in O(1) time [14], the manipulation

of the total algorithm can be entirely finished in a finite time range, such as step (1), (5) in O(1) time, step

(2) in O(n), step (3) in O(m), and step (4) in O(mn). The time complexity T of the total algorithm is as

follows:

T(Step (1)) = O(1);
T(Step (2)) = O(n);
T(Step (3)) = O(m);
T(Step (4)) = O(mn);
T(Step (4)) = O(1);
T = T(Step (1)) + T(Step (2)) + T(Step (3)) + T(Step (4)) + T(Step (5));
= O(1) + O(n) + O(m) + O(mn) + O(1);
= O(mn).

Theorem 3. The solutions strands of the unbalanced assignment problem with n jobs and m individuals

can be found in the finite length range.

Proof. After the second step, we pick up the DNA strands for all possible assignment choices with n

jobs and m individuals. Here the single strands in tube T2 at step (3) can be described:

1 1 2 2 p p n ni j i j i j i jsA eB sA eB sA eB sA eB  {1, 2, , }pi m∈  , {1, 2, , }pj n∈ 

In the beginning we reasonably design the length of s, e, Ak, Bk, for

k ks A B e t= = = = mer

In order to choose the minimum cost assignment, we append the cost strands wij at the end of the

previous strands denoting j-job to i-individual at (4) step. And we let ||wij|| = cij mer and max ||wij|| = y mer.

Then T2 can be described:

1 1 2 2 1 1 2 2p p n n p p n ni j i j i j i j i j i j i j i jsA eB sA eB sA eB sA eB w w w w   

So the length range of DNA strands in tube T2 is:

1 1 2 2i j i jS s A e B s A e B= + + + + + + + +

1 1 2 2n n n ni j i j i j i js A e B w w w+ + + + + + +

1 1 1 1 1
k k k k

n n n n n

i j i j
i k i k k

s A e B w
= = = = =

= + + + +    

1

4
k k

n

i j
k

nt w
=

= +

∵ 0 ≤
k ki jw ≤ y

∴ 4tn ≤ ||T2|| ≤ (4t + y)n

The length of strands in T2 tube must be between 4tn and (4t + y)n. So we can get the solution in

step (4) in the appropriate length range.

Int. J. Mol. Sci. 2015, 16 25348

3. Experimental Section

It is shown that errors in the separation of the library strands are errors in the computation [26–32].

This means that it needs a lower rate of primary errors of hybridization in the computation. DNA

sequences should be generated to ensure library strands have little secondary structure that might inhibit

intended probe-library hybridization. The design must also exclude DNA sequences that might

encourage unintended probe-library hybridization. In order to realize the goals, we need to follow some

DNA sequence constraints. For instance, library strands should include only A, T, and C, which has a

lower secondary structure than those conditions and has higher chance to bind probes; through the

restriction every library and probe sequence should have no runs of more than four A, four T, four C or

four G, long homopolymer tracts which may have unusual secondary structures that inhibit the binding

from probes to library strands and the melting temperatures of probe and library strand hybridization

will be more similar, if they do not have any long enough homopolymer tracts. Restrictions that each

probe should have four, five, or six G in its sequence are aimed to insure that intended probe-library

pairings have uniform melting temperatures, and so on.

In this paper, the Adleman procedures [29] are simulated working on an electronic computer.

The coded algorithms are used to generate DNA sequences to solve the unbalanced assignment problem

and construct the 15-base DNA sequences for every bit of the library. For Table 1, the algorithm

generates 5-base random sequences, consisting of Ak, Bk, s, e, and confirms whether the library strands

satisfy above-mentioned restrictions when a new DNA sequence is gained [30]. If the restrictions are

satisfied, the new DNA sequence is “greedily” taken up. If the restrictions are not satisfied, then

mutations would be imported individually, in succession, into the new block until either the restrictions

are satisfied and then the new DNA sequence is accepted, or a threshold for the number of mutations is

reached, and the algorithm has finished and so it quits, printing the DNA sequence found so far. If the

whole string of bits satisfy the restrictions, the algorithm has succeeded and these DNA sequences would

be the product.

Consider the example in Table 1, the problem includes jobs {j1, j2, j3, j4, j5},and individuals {i1, i2,

i3}. Basic DNA sequences are generated by Adleman’s algorithms and modified, shown in Table 8.

Table 9 shows DNA sequences representing the job assignment schemes sAieBj (1 ≤ i ≤ m, 1 ≤ j ≤ n).

Adleman’s algorithms are also used to calculate the enthalpy, entropy, and free energy for binding of each

probe to its corresponding region on a library strand; meanwhile, the energy used is shown in Table 10.

Table 8. Sequences chosen to represent s, e, Ak, Bk, and wij in the example for Table 1.

Bit
3′–5′ DNA

Sequence
Bit

3′–5′ DNA

Sequence
Bit

3′–5′ DNA

Sequence
Bit

3′–5′ DNA

Sequence

s CTATC e AACTC A1 TAAAA B1 AATTA

A2 CTTTT B2 CATTA A3 TTCAA B3 ATCTA

B4 CAAAC B5 ATCCA w11 CCCAT w12 ATATA

w13 TTACA w14 TACCC w15 TTCTT w21 TTTCA

w22 ATAAT w23 CTACC w24 TTACA w25 CATAC

w31 CCTTC w32 ACTCA w33 TCACT w34 ACCCT

w35 TTAAC

Int. J. Mol. Sci. 2015, 16 25349

Table 9. Sequences chosen to represent the job assignment schemes sAieBj (1 ≤ i ≤ m,

1 ≤ j ≤ n) in the example for Table 1.

Job Assignment 3′–5′ DNA Sequence Job Assignment 3′–5′ DNA Sequence

sA1eB1 CTATCTAAAAAACTCAATTA sA1eB2 CTATCTAAAAAACTCCATTA

sA1eB3 CTATCTAAAAAACTCATCTA sA1eB4 CTATCTAAAAAACTCCAAAC

sA1eB5 CTATCTAAAAAACTCATCCA sA2eB1 CTATCCTTTTAACTCAATTA

sA2eB2 CTATCCTTTTAACTCCATTA sA2eB3 CTATCCTTTTAACTCATCTA

sA2eB4 CTATCCTTTTAACTCCAAAC sA2eB5 CTATCCTTTTAACTCATCCA

sA3eB1 CTATCTTCAAAACTCAATTA sA3eB2 CTATCTTCAAAACTCCATTA

sA3eB3 CTATCTTCAAAACTCATCTA sA3eB4 CTATCTTCAAAACTCCAAAC

sA3eB5 CTATCTTCAAAACTCATCCA

Table 10. The energies for of binding each probe to its corresponding region on a library strand.

Job

Assignment

Enthalpy

Energy H

Entropy

Energy S

Free

Energy G

Job

Assignment

Enthalpy

Energy H

Entropy

Energy S

Free

Energy G

sA1eB1 110.5 287.1 24.7 sA1eB2 101.2 256.7 22.9

sA1eB3 111.6 294.4 25.9 sA1eB4 107.4 281.3 24.9

sA1eB5 108.3 277.7 25.2 sA2eB1 104.2 271.3 24.9

sA2eB2 99.8 248.2 22.9 sA2eB3 105.4 270.3 24.8

sA2eB4 104.5 269.7 24.7 sA2eB5 97.7 243.1 23.3

sA3eB1 107.6 275.3 25.2 sA3eB2 111.2 289.5 25.8

sA3eB3 103.3 262.4 24.6 sA3eB4 114.7 292.1 26.3

sA3eB5 112.1 288.5 26.1

Our program also figures out the average and standard deviation for the enthalpy, entropy, and free

energy over all probe/library strand interactions. The energy levels are shown as in Table 11. Table 12

presents the library strands and the solution {j3→i1, j4→i1, j2→i2, j1→i3, j5→i3}of the unbalanced

assignment problem.

Table 11. The energies over all probe/library strand interactions.

Average 106.463 273.613 24.794

Standard Deviation 4.8018 15.3631 1.0363

Table 12. DNA sequences chosen to represent the answer of the unbalanced assignment problem.

Solutions DNA Strands Denoting Solutions

{j3→i1, j4→i1,j2→i2, j1→i3,j5→i3}
3′-CTATCTAAAAAACTCATCTACTATCTAAAAAACTCCAAAC

CTATCCTTTTAACTCCATTACTATCTTCAAAACTCAATTACTAT
CTTCAAAACTCATCCATTACATACCCATAATCCTTCTTAAC-5′

4. Conclusions

In this paper, we present DNA algorithms for solving the unbalanced assignment problem based on

biological operations in the Adleman-Lipton model. Due to electronic computers having obvious limits

in storage, speed, intelligence, and miniaturization, the methods of DNA computation have arisen,

Int. J. Mol. Sci. 2015, 16 25350

especially for their efficient parallelism. The present algorithm has the following advantages compared

with previous algorithms: firstly, the proposed algorithm actually has a lower rate of errors for

hybridization because we develop a computer program to generate good DNA sequences for generating

the solution space of the unbalanced assignment problem. Secondly, the proposed algorithm requires a

time cost and a DNA strand length that are linearly proportional to the instance size. It can finish in

O(mn) the unbalanced assignment problem with n jobs and m individuals, having certain advantages

comparing with existing algorithms, such as algorithm of paper [33] with O(nlogn(m + nlogn))

complexity. Additionally, the proposed algorithms can be easily performed in a fully automated manner

in a laboratory. The full automation manner is essential not only for the speedup of computation but also

for error-free computation. Meanwhile we simulated the DNA experiment to solve the unbalanced

assignment problem. The ability to perform complex operations in solution might help us learn more

about the nature of computation and lead to the development of better DNA-based computation, capable

of solving a wide range of complex problems. We hope that, in future studies, more highly-effective

DNA operations will be exploited to derive a DNA computing model with time efficiency and is

complete for NP-hard problems.

Acknowledgments

The project was also supported by National Natural Science Foundation of China (No. 41201400 and

No. 41201399).

Author Contributions

Zhaocai Wang designed the study, analyzed the data, and wrote the manuscript. Jun Pu carried out

theoretical proof and gave the instructions for modification. Liling Cao performed most of the

experiments. Jian Tan provided manuscript instructions and supervised the study.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Adleman, L.M. Molecular computation of solution to combinatorial problems. Science 1994, 266,

1021–1024.

2. Lipton, R.J. DNA solution of HARD computational problems. Science 1995, 268, 542–545.

3. Roweis, S.; Winfree, E.; Burgoyne, R.; Chelyapov, N.V.;Goodman, M.F.; Rothemund, P.W.K.;

Adleman, L.M. A sticker based model for DNA computation. J. Comput. Biol. 1998, 5, 615–629.

4. Ouyang, Q.; Kaplan, P.D.; Liu, S.; Libchaber, A. DNA solution of the maximal clique problem.

Science 1997, 278, 446–449.

5. Winfree, E.; Liu, F.; Wenzler, L.A.; Seeman, N.C. Design and self-assembly of two dimensional

DNA crystals. Nature 1998, 394, 539–544.

6. Sakamoto, K.; Gouzu, H.; Komiya, K.; Kiga, D.; Yokoyama, S.; Yokomori, T.; Hagiya, M.

Molecular computation by DNA hairpin formation. Science 2000, 288, 1223–1226.

Int. J. Mol. Sci. 2015, 16 25351

7. Smith, L.M.; Corn, R.M.; Condon, A.E.; Lagally, M.G.; Frutos, A.G.; Liu, Q.; Thiel, A.J.

A surface-based approach to DNA computation. J. Comput. Biol. 1998, 5, 255–267.

8. Li, W.X.; Xiao, D.M.; He, L. DNA ternary addition.Appl. Math. Comput. 2006, 182, 977–986.

9. Xiao, D.M.; Li, W.X.; Yu, J.; Zhang, X.D.; Zhang, Z.Z.; He, L. Procedures for a dynamical system

on {0,1}n with DNA molecules. BioSystems 2006, 84, 207–216.

10. Wang, Z.C.; Huang, D.M.; Meng, H.J.; Tang, C.P. A new fast algorithm for solving the minimum

spanning tree problem based on DNA molecules computation. BioSystems 2013, 114, 1–7.

11. Lee, J.Y.; Shin, S.Y.; Park, T.H.; Zhang, B.T. Solving traveling salesman problems with DNA

molecules encoding numerical values. BioSystems 2004, 78, 39–47.

12. Wang, Z.C.; Huang, D.M.; Tan, J.; Liu, T.G.; Zhao, K.; Li, L. A parallel algorithm for solving the

n-queens problem based on inspired computational model. BioSystems 2015, 131, 22–29.

13. Chang, W.L.; Lin, K.W.; Chen, J.C.; Wang, C.-C.; Lu, L.C.; Guo, M.; Ho, M. Molecular Solutions

of the RSA Public-key Cryptosystem on a DNA-based Computer. J. Supercomput. 2012, 61, 642–672.

14. Chang, W.L.; Ren, T.T.; Luo, J.; Feng, M.; Guo, M. Quantum Algorithms for Biomolecular

Solutions of the Satisfiability Problem on a Quantum Machine.IEEE Trans. Nanobiosci. 2008, 7,

215–222.

15. Wang, Z.C.; Tan, J.; Huang, D.M.; Ren, Y.C.; Ji, Z.W. A biological algorithm to solve the

assignment problem based on DNA molecules computation. Appl. Math. Comput. 2014, 244,

183–190.

16. Han, A. An improved DNA solution to the vertex cover problem. In Proceedings of the Fourth

International Conference on Natural Computation (ICNC’08), Jinan, China, 18–20 October 2008.

17. Liu, X.C.; Yang, X.F.; Li, S.L.; Ding, Y. Solving the minimum bisection problem using a

biologically inspired computational model. Theor. Comput. Sci. 2010, 411, 888–896.

18. Wang, Z.C.; Zhang, Y.M.; Zhou, W.H.; Liu, H.F. Solving traveling salesman problem in the

Adleman-Lipton model. Appl. Math. Comput. 2012, 219, 2267–2270.

19. Castellanos-Garzn, J.A.; Garca, C.A.; Novais, P.; Díaz, F. A visual analytics framework for cluster

analysis of DNA microarray data. Expert Syst. Appl. 2013, 40, 758–774.

20. Chang, W.-L.;Ho, M.; Guo, M. Fast Parallel Molecular Algorithms for DNA-based Computation:

Factoring Integers. IEEE Trans. Nanobiosci. 2005, 4, 149–163.

21. Chang, W.L.; Ren, T.T.; Feng, M. Quantum Algorithms and Mathematical Formulations of

Biomolecular Solutions of the Vertex Cover Problem in the Finite-Dimensional Hilbert Space.

IEEE Trans. Nanobiosci. 2014, 14, 121–128.

22. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness;

W.H. Freeman and Company: New York, NY, USA, 1979.

23. Zimmermann, K.H.; Ignatova, Z.; Israel, M.P. DNA Computing Models; Springer: New York, NY,

USA, 2008, 146–147.

24. Han, A.; Zhu, D.; Pan, J. DNA Solution Based on Sequence Alignment to the Minimum Spanning

Tree problem. J. Bioinform. Res. Appl. 2008, 2, 188–200.

25. Yamamura, M.; Hiroto, Y.; Matoba, T. Solutions of shortest path problems by concentration

control. Lect. Notes Comput. Sci. 2002, 2340, 231–240.

26. Zhang, Y.; Chu, C.H.; Chen, Y.; Zha, H.; Ji, X. Splice site prediction using support vector machines

with a Bayes kernel. Expert Syst. Appl. 2006, 30, 73–81.

Int. J. Mol. Sci. 2015, 16 25352

27. Braich, R.S.; Johnson, C.; Rothemund, P.W.K.; Hwang, D.; Chelyapov, N.; Adleman, L.M.

Solution of a satisfiability problem on a gel-based DNA computer, in: Proceedings of the Sixth

International Conference on DNA Computation (DNA 2000). Lect. Notes Comput. Sci. 2001, 2054,

27–42.

28. Zhang, H.Y.; Liu, X.Y. A CLIQUE algorithm using DNA computing techniques based on

closed-circle DNA sequences. Biosystems 2011, 105, 73–82.

29. Darehmiraki, M. A New Solution for Maximal Clique Problem based Sticker Model. Biosystems

2009, 95, 145–149.

30. Braich, R.S.; Johnson, C.; Rothemund, P.W.K.; Chelyapov, N.; Adleman, L.M. Solution of a

20-variable 3-SAT problem on a DNA computer. Science 2002, 296, 499–502.

31. Alonso Sanches, C.A.; Soma, N.Y. A polynomial-time DNA computing solution for the

Bin-Packing Problem.Appl. Math. Comput. 2009, 215, 2055–2062.

32. Ting, C.J.; Wu, K.C.; Chou, H. Particle swarm optimization algorithm for the berth allocation

problem. Expert Syst. Appl. 2014, 41, 1543–1550.

33. Balachandran, V. Faster strongly polynomial algorithms for the unbalanced transportation problem

and assignment problem with monge costs. Networks 2013, 62, 136–148.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

