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Abstract: A heavy crude oil has been treated with deuterated alkylating reagents (CD3I and C2D5I)
and directly analyzed without any prior fractionation and chromatographic separation by high-field
Orbitrap Fourier Transform Mass Spectrometry (FTMS) and Fourier Transform Ion Cyclotron
Resonance Mass Spectrometry (FT-ICR MS) using electrospray ionization (ESI). The reaction of
a polycyclic aromatic sulfur heterocycles (PASHs) dibenzothiophene (DBT), in the presence of
silver tetrafluoroborate (AgBF4) with ethyl iodide (C2H5I) in anhydrous dichloroethane (DCE)
was optimized as a sample reaction to study heavy crude oil mixtures, and the reaction yield
was monitored and determined by proton nuclear magnetic resonance spectroscopy (1H-NMR).
The obtained conditions were then applied to a mixture of standard aromatic CH-, N-, O- and
S-containing compounds and then a heavy crude oil, and only sulfur-containing compounds were
selectively alkylated. The deuterium labeled alkylating reagents, iodomethane-d3 (CD3I) and
iodoethane-d5 (C2D5I), were employed to the alkylation of heavy crude oil to selectively differentiate
the tagged sulfur species from the original crude oil.

Keywords: selective analysis; sulfur; crude oil; deuterium labeling; ultrahigh resolution;
mass spectrometry

1. Introduction

The demand for affordable and reliable energy leads to a continuous focus on fossil-based
materials, and nowadays the trend is shifting to heavier petroleum resources. One of the huge
disadvantage of heavy crude oils as energy supply is that they contain rich heteroatoms, such as
sulfur, nitrogen and oxygen. The sulfur content is detrimental to refining processes and harmful to
the environment after combustion, and thus must be removed. Various stringent legislations and
regulations have been implemented to limit the sulfur content of fuels [1]. A better understanding of
heavy crude oil composition is necessary for that aim.

Heavy petroleum is a supercomplex [1] mixture of hydrocarbons containing various amounts of
heteroatoms (N, O and S), and it challenges and meanwhile promotes the development of analytical
techniques [2]. Mass spectrometry has been established as the most powerful and promising method
to characterize such complex mixtures [3,4]. FT-ICR MS provides sufficient mass resolving power
and mass accuracy to identify each of the thousands of different molecules and their elemental
compositions from the most complex mixtures [5]. Recently, a new commercially available type of
the high-field Orbitrap FTMS, the Orbitrap Elite [6–8], has been evaluated and employed successfully
to analyze the petroleum samples with a resolving power of up to 900,000 at m/z 400 [9,10].
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Electrospray ionization (ESI) [11] coupled with ultrahigh resolution mass spectrometry [9,12,13]
is an excellent method employed to ionize polar species in crude oil. It efficiently ionizes the acidic or
basic molecular species in petroleum by deprotonation or protonation to form [M ´ H]´ or [M + H]+

ions [11,12,14] and even highly condensed polyaromatic compounds can be ionized by ESI as radical
cations [15].

However, PASHs are not basic enough to be efficiently ionized by ESI. Thus, some achievements
have been made to enhance ionizing efficiency of nonpolar sulfur species in ESI process.
Muller et al. [16] developed a derivatization method by forming the polar sulfonium salts in solution
prior to ESI, but the selectivity toward sulfur aromatics is achieved by relying on chromatographic
separations. Purcell et al. [17] derivatized a vacuum bottom bitumen residue by this derivatization
procedure, and observed not only sulfur compounds but also detected nitrogen and other heteroatom
containing classes at high abundance by positive ESI FT-ICR MS.

Metal complexation methods, such as Pd2+ electrospray mass spectrometry (ESI-MS) [18]
and especially Ag+ ESI-MS [19], have also been developed for the detection of sulfur-containing
compounds in petroleum by the formation of positive metal-complexes [20]. However, the relatively
flexible coordination sphere of the metal ions allows them to coordinate with a variety of ligands even
the solvents with the coordination numbers from 2 to 6, which on some level, increases the complexity
of crude oil analysis [19,21,22].

Here, on the basis of previous research, we combine the silver coordination chemistry and
nucleophilic chemistry of heteroatoms compounds with ESI-MS, and introduce the deuterium
labeling technique to develop a method that allows determination of sulfur-containing species in
a whole crude oil with high selectivity, and avoiding the complexity from the transition metal
complexation. When using the derivatization procedure with methyl iodide in a crude oil sample,
where the elements C, H, O, N, S and a few metals are usually present, it is difficult to separate
the derivatized from the non-derivatized compounds. The difference cannot really be established
because the derivatizing group contains the same elements as the compounds present in a crude
oil sample and only the increase in signal intensity of sulfur compounds can be an indication of
the reaction. Here, the usage of a deuterated reactant for the derivatization is introduced which
allows to clearly distinguish the reacted from potentially unreacted compounds and allows an
unambiguous characterization.

2. Results and Discussion

Ultrahigh-resolution MS has an unparalleled advantage for crude oil analysis, but as of yet, not
all compositions present in heavier petroleum can be completely and accurately analyzed by any
single available analytical method. Thus, simplification methods [23,24] and methods for selective
analysis need to be developed to gain a deeper insight into crude oil composition. It has been shown
that Ag+ ions kinetically coordinate preferentially to sulfur atoms instead of oxygen or nitrogen atoms
to form metal-ligand bonds [20,25]. This Ag+ selectivity towards sulfur species can now be used for
selective reactions with derivatization agents to tag sulfur heterocycles in crude oil. To achieve this
goal, the reaction has been investigated in detail in three steps: (1) The reaction was carried out using
a standard sulfur-containing compound. Here, dibenzothiophene (DBT) was chosen as a probe to
optimize the reaction condition and monitored by proton nuclear magnetic resonance (1H-NMR) and
ultrahigh resolution MS; (2) In the second stage the obtained conditions were applied for a simple
mixture of standard aromatic CH-, N-, O- and S-containing compounds to investigate the selectivity;
(3) Finally, the conditions were applied to a heavy crude oil.

It is worth noting that the feeding sequence plays an important role on the selectivity towards
sulfur. Here, a certain amount of AgBF4 was added into the mixture of standards or crude oil, by
which Ag+ is first allowed to selectively coordinate with sulfur atoms to form complex Ag+ adducts
over a short time [26], then the alkylating reagent was added dropwise to the system and the S-C
covalent bond was formed by the strong driving force of the precipitation of silver iodide (AgI).
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This derivatization procedure allows detection of sulfur compounds with very high selectivity, and
meanwhile avoids the extra complications arising from silver complexation [22,27] and silver natural
isotopes (51.84% 107Ag and 48.16% 109Ag) [20]. The implementation of multi-chemical methods
combined with the ultrahigh resolution mass spectrometry (FT-ICR MS and Orbitrap FTMS) with
electrospray ionization offers an efficient and feasible approach to detect the sulfur-containing species
directly from the heavy petroleum without any time-consuming fractionation and separation.

2.1. Ethylation of Dibenzothiophene (DBT)

The standard derivatization reaction that was previously introduced [16] was carried out under
the following condition: containing 10´2 and 4 ˆ 10´3 mmol sulfur and 1 mmol of CH3I, were
dissolved in 3 mL of dry DCE. A solution of 1 mmol AgBF4 in 2 mL of DCE was then added.
While the initial reaction that was reported by Muller et al. [16] was only implemented for the
derivatization with CH3I; here an additional derivatization agent, C2H5I, was studied as ethylating
agent. In addition, the reaction was carried out using both reagents in the deuterated form to directly
study the reaction product and distinguish derivatized from non-derivatized compounds in the crude
oil sample that was not chromatographically simplified.
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The molar ratio of DBT, CH3I (or C2H5I) and AgBF4 remains 1:2:2, and the yield of crude
product determined by 1H-NMR was 70% for CH3I and 87% for C2H5I. Similar experimental results
were obtained by Acheson et al. [28], so C2H5I was chosen for the continuous studies. In regard to
selectivity, the reaction needed to be altered. Instead of adding equal molar ratio of CH3I and AgBF4

(1 mmol) that are 250 times the concentration of sulfur, as mentioned by Muller et al., [16] the reaction
condition depicted in Scheme 1 were optimized to produce a high yield of sulfonium salt.

When the molar ratio of DBT, AgBF4 and C2H5I remains 1:2:8, i.e., the amount of AgBF4 is only
2 times more than DBT, the yield determined by 1H-NMR increases significantly (99%), as shown in
Figure 1 (top).
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The 1H-NMR spectrum of the above salt is simple because of the molecular symmetry (see 
Figure 1 top). The 4 groups of protons with the integral ratio 2:2:2:2 in the downfield belong to the 
aromatic rings; the 2 groups of protons with the integral ratio 2:3 in the upfield are attributed to the 
ethyl group. With the appropriate splitting according to the relevant environments of each proton, 
the structure of 5-ethyldibenzo[b,d]thiophenium tetrafluoroborate was ambiguously determined. 
1H-NMR (300 MHz, CDCl3): δ 8.41 (d (doublet), J = 7.6 Hz, 2H, 2 × Ph), 8.12 (d, J = 7.1 Hz, 2H, 2 × Ph), 
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2 × CH2CH3), 0.90 (t, J = 7.1 Hz, 3H, 3 × CH2CH3). 
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colorless needles. It was determined by the positive HRMS (ESI FT-ICR MS) in Figure 1 (bottom) at 
m/z 213.07322 (calcd 213.07325) for C14H13S+. A tiny peak of [M + H] was also observed at m/z 
185.04197, and explanation might be given by the loss of the ethyl group under ESI condition. It was 
shown, that when using a heated nebulizer the derivatization group can be removed during the 
ionization process [1]. 

2.2. Ethylation of a Mixture of Standards (ANTH, DBT, ACR and DBF) 

Based on the results of the reaction of a pure standard sulfur compound, the conditions were 
applied to a mixture of standards (antracene (ANTH), dibenzothiphene (DBT), acrinine (ACR) and 
dibenzofuran (DBF)). The HR ESI-MS spectrum of the ethylated mixture of standards was obtained 
as shown in Figure 2. No corresponding signals of derivatized ANTH, ACR and DBF were observed 
(calcd. m/z values at 207.11683, 208.11208 and 197.09609), and only DBT was selectively ethylated 
among this standards mixture. Besides the peaks from DBT, a very minor signal [M + H]+ from 
underivatized ACR at m/z 180.08084 was detected. Additionally, minor traces of the disubstituted 
product of DBT was observed as well. From the results obtained above, we can see, even in the 
presence of other polyromantic heterocyclic compounds, the nucleophilic substitution of sulfur 
aromatic compound works with high selectivity towards sulfur species due to activation by the 
silver ions. 
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The 1H-NMR spectrum of the above salt is simple because of the molecular symmetry
(see Figure 1 top). The 4 groups of protons with the integral ratio 2:2:2:2 in the downfield belong
to the aromatic rings; the 2 groups of protons with the integral ratio 2:3 in the upfield are attributed to
the ethyl group. With the appropriate splitting according to the relevant environments of each proton,
the structure of 5-ethyldibenzo[b,d]thiophenium tetrafluoroborate was ambiguously determined.
1H-NMR (300 MHz, CDCl3): δ 8.41 (d (doublet), J = 7.6 Hz, 2H, 2 ˆ Ph), 8.12 (d, J = 7.1 Hz, 2H,
2 ˆ Ph), 7.87 (t (triplet), J = 7.6 Hz, 2H, 2 ˆ Ph), 7.76 (t, J = 7.9 Hz, 2H, 2 ˆ Ph), 4.21 (q (quartet),
J = 7.1 Hz, 2H, 2 ˆ CH2CH3), 0.90 (t, J = 7.1 Hz, 3H, 3 ˆ CH2CH3).

The ethylated DBT salt, 5-ethyldibenzo[b,d]thiophenium tetrafluoroborate was obtained as
colorless needles. It was determined by the positive HRMS (ESI FT-ICR MS) in Figure 1 (bottom)
at m/z 213.07322 (calcd 213.07325) for C14H13S+. A tiny peak of [M + H] was also observed at
m/z 185.04197, and explanation might be given by the loss of the ethyl group under ESI condition.
It was shown, that when using a heated nebulizer the derivatization group can be removed during
the ionization process [1].

2.2. Ethylation of a Mixture of Standards (ANTH, DBT, ACR and DBF)

Based on the results of the reaction of a pure standard sulfur compound, the conditions were
applied to a mixture of standards (antracene (ANTH), dibenzothiphene (DBT), acrinine (ACR) and
dibenzofuran (DBF)). The HR ESI-MS spectrum of the ethylated mixture of standards was obtained
as shown in Figure 2. No corresponding signals of derivatized ANTH, ACR and DBF were observed
(calcd. m/z values at 207.11683, 208.11208 and 197.09609), and only DBT was selectively ethylated
among this standards mixture. Besides the peaks from DBT, a very minor signal [M + H]+ from
underivatized ACR at m/z 180.08084 was detected. Additionally, minor traces of the disubstituted
product of DBT was observed as well. From the results obtained above, we can see, even in
the presence of other polyromantic heterocyclic compounds, the nucleophilic substitution of sulfur
aromatic compound works with high selectivity towards sulfur species due to activation by the
silver ions.
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made to a molar ratio of crude oil, AgBF4 and CD3I of 1:2:10. 
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Figure 3. It is worth noting that the dramatic change of heteroatom class distribution before and after 
deuterium labeled methylation in Figure 4 is immense. Before the derivatization reaction, the more 
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acridine (ACR) and dibenzofuran (DBF)).

2.3. Methylation and Ethylation of a Heavy Crude Oil

Deuterated alkylating reagents (CD3I and C2D5I) were utilized to alkylate the whole heavy crude
oil instead of the standard reagents to distinguish the compounds present in a crude oil that contain
CH-, N-, S- and O- elements from the derivatized ones. An adjustment for CD3I had to be made to a
molar ratio of crude oil, AgBF4 and CD3I of 1:2:10.

Positive ESI Orbitrap FTMS analysis was performed for the untreated and methylated heavy
crude oil. For a better signal-to-noise ratio, up to 500 scans in the mass range of m/z 150–1200
were accumulated, and a difference of the mass spectra before and after methylation can be seen
in Figure 3. It is worth noting that the dramatic change of heteroatom class distribution before and
after deuterium labeled methylation in Figure 4 is immense. Before the derivatization reaction, the
more polar compounds are detected as expected. Here, the majority of signals that were assigned
belong to the N1[H] class, with additional signals from the N1S1[H] and in very minor amounts from
the O1S1[H] class. Note that the protonated molecules that were detected are distinguished by [H].
Radial ions would be described without [H].
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usually not ionized by ESI are detected at high abundance. The deuterated version of the 
derivatization agent now also makes it possible to readily distinguish that the sulfur species detected 
are arising from the derivatization reaction and not only from the crude oil. After the reaction the 
sulfur species are present as S-methyl (d3) sulfonium salts. A small amount of S1 compounds (2.6%) 
can also be detected. 

The details of the results are shown in Figure 5. The N1[H] class in the non-derivatized sample 
generated from protonation has a DBE range between 4 and 24 with a carbon number distribution 
from 11 to 86. The N1S1[H] class meanwhile has a DBE range of 5–25 and carbon number of 10–83. 
The deuterated S1[H] class spans a range of DBE (2–25) and carbon number (9–84), where the 
compounds with DBE value of 2 are assumed to be the aliphatic sulfides containing a ring or a 
double bond. The deuterated S2[H] class has a DBE range of 3–25 and carbon number (8–73). 
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crude oil, as shown in Figure 6. Here, the results of the ethylation reaction are consistent with those 
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After methylation, the compound classes that were assigned changed drastically. Now, instead
of the polar compounds that are usually ionized by ESI, the nonopolar S1 and S2 classes which
are usually not ionized by ESI are detected at high abundance. The deuterated version of the
derivatization agent now also makes it possible to readily distinguish that the sulfur species detected
are arising from the derivatization reaction and not only from the crude oil. After the reaction the
sulfur species are present as S-methyl (d3) sulfonium salts. A small amount of S1 compounds (2.6%)
can also be detected.

The details of the results are shown in Figure 5. The N1[H] class in the non-derivatized sample
generated from protonation has a DBE range between 4 and 24 with a carbon number distribution
from 11 to 86. The N1S1[H] class meanwhile has a DBE range of 5–25 and carbon number of 10–83.
The deuterated S1[H] class spans a range of DBE (2–25) and carbon number (9–84), where the
compounds with DBE value of 2 are assumed to be the aliphatic sulfides containing a ring or a double
bond. The deuterated S2[H] class has a DBE range of 3–25 and carbon number (8–73).
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Additional ESI(+) FT-ICR MS analyses were performed on the deuterated ethylated heavy crude
oil, as shown in Figure 6. Here, the results of the ethylation reaction are consistent with those from
the methylation reaction. The nonpolar sulfur-containing compounds (S1, S2 and S1O1 species) can
be selectively detected by ESI(+) and differentiated by the C2D5-group from the original crude oil.
In comparison with the methylation procedure, a small difference in S1O1 class (2.5%) distribution
appears which could result from different reactivities of the alkylating reagents. Still in both cases the
S1 class is the dominant class in both alkylation reactions, followed by the S2 class.
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Figure 7. DBE versus carbon number plots for the D5S1 and D5S2 classes from the deuterated ethylated
heavy crude oil.

When considering the results from this study, the most interesting point is that sulfur containing
compounds in a very complex crude oil mixture can be selectively analyzed by ESI-MS after
derivatization. While in theory, the pyridine nitrogen is a better nucleophile than the thiophene sulfur
to react in an SN2 reaction with alkylating reagents in the polar aprotic solvent (DCE), things change
when Ag+ ions are involved in the reaction with crude oil. Here, the coordination chemistry of the
silver ions plays an important role to kinetically favor the sulfur atoms and form weak silver-ligand
bonds. When we then add the alkyl iodide to the above system, the relatively weak metal-ligand
bond will be broken and a much stronger S-C covalent bond will be formed accompanied by the
strong thermodynamic drive of releasing solid silver iodide (AgI) from the solution. The generated
AgI could also further react with nitrogen compounds, to form insoluble coordination compounds of
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larger size that can subsequently be removed from the system [29]. An important factor for the better
selectivity toward sulfur compounds in crude oil is therefore, the right amount of AgBF4.

3. Materials and Methods

3.1. Alkylation

DBT, DCE, AgBF4, anthracene (ANTH), dibenzofuran (DBF), acetic acid (AcOH) and dichloromethane
(DCM) were purchased from Sigma-Aldrich (high purity, St. Louis, MO, USA). C2H5I, acridine
(ACR), CD3I and C2D5I were purchased from Sigma-Aldrich (high purity, Steinheim, Germany).
A heavy crude oil of North American origin was used.

10 mg of DBT were dissolved in 1 mL anhydrous DCE. During mixing, a solution of 2 molar eq.
AgBF4 (21.13 mg) in 0.5 mL DCE was added. After 2 min, 8 molar eqivalents (28 µL) of C2H5I was
then added and yellow silver iodide precipitated immediately. After 4 h, the solid was removed by
centrifugation and washed with 0.5 mL of DCE. A final concentration of 500 µg/mL of the ethylated
DBT was obtained through dilution with DCM; the procedure above was successively applied to a
mixture of standard compounds: 6.5 mg of ANTH, 2.75 mg of DBT, 0.25 mg of ACR, 0.5 mg of DBF.
The same procedure was further employed to 10 mg of the heavy crude oil by replacing C2H5I with
CD3I and C2D5I. For a comparison, a heavy crude oil sample with a final concentration of 500 µg/mL
in DCE containing 0.2% AcOH was used for ESI analysis.

3.2. Nuclear Magnetic Resonance Spectroscopy

1H-NMR spectra were recorded on a Bruker Advance 300 NMR spectrometer. The chemical
shifts and the coupling constants were obtained through analysis of the spectra using Bruker TopSpin
NMR-Software version 2.1 (Karlsruhe, Germany). The chemical shifts of 1H-NMR spectra is reported
as in units of parts per million (ppm). The 1H-NMR spectrum is referenced through the solvent lock
(2H) signal according to IUPAC (International Union of Pure and Applied Chemistry) recommended
secondary referencing method and the manufacturer’s protocols based on impurity of CHCl3 in
CDCl3. Multiplicities were given as: s (singlet); br s (broad singlet); d (doublet); t (triplet); q (quartet);
m (multiplets), etc. The number of proton (n) for a given resonance is indicated by nH. The ethylated
DBT was evaporated to dryness under reduced pressure to remove DCE and the excess of C2H5I.
The dry ethylated DBT was then dissolved in 0.5 mL of CDCl3 was used for for 1H-NMR analysis.

3.3. ESI Orbitrap FTMS Analysis

Mass analyses were performed on a hybrid mass spectrometer combining the dual linear ion
trap with a novel high field Orbitrap mass analyzer (LTQ Orbitrap Elite FTMS, Thermo Scientific,
Bremen, Germany) [9]. Up to 500 spectra were collected in positive mode using the ESI source
(Thermo Fisher, Bremen, Germany). A standard data acquisition and instrument control system was
employed (Thermo Scientific, Bremen, Germany). Acquisition mass range was 150 < m/z < 1200 and
the target value (AGC value) was set between 1E5 and 1E6; typical ESI conditions were as follows:
flow rate 5 µL/min; spray voltage 3.0 kV; a sheath gas flow of 5 (arbitrary unit), an auxiliary gas
flow of 2 (arbitrary unit). MS data were recorded with a resolving power of 480,000 at m/z 400
using a 1.5 s transient and up to 900,000 at m/z 400 using transient signals of 3 s for comparison.
These parameters allow separating all important mass splits throughout the detected scan range.
The instrument was calibrated with the Thermo Scientific Pierce LTQ Velos ESI positive ion calibration
solution. In addition, external calibration was performed using a mixture of the Agilent electrospray
calibration solution with masses at 300.04812, 622.02896, 922.00980, thus the whole mass range was
covered in the samples. The mass accuracy below 1 ppm and the resolving power up to 480,000 at
m/z 400 allows the analysis of the crude oil by the high-field Orbitrap.
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3.4. ESI FT-ICR MS Analysis

Corresponding mass analysis was performed on a 7 T linear quadrupole ion-trap (LTQ) FT-ICR
MS (Thermo Fisher, Bremen, Germany). The same ESI source was employed. Mass acquisition,
ESI condition, AGC control and mass calibration follow the same setting implemented on ESI
Orbitrap FTMS.

3.5. Data Analysis

The obtained mass data were imported into Composer software V1.06 (Sierra Analytics,
Modesto, CA, USA). The following chemical constraints were applied: number of H 1000, 0 < D < 3
for reaction with CD3I and 0 < D < 5 for reaction with C2D5I, 0 < C < 100, 0 < S < 3, 0 < O < 3,
0 < N < 3, and 0 < double bond equivalent (DBE) < 40, with a maximum mass error of 1.5 ppm.
The calculated molecular formulas were sorted into their heteroatom class (NnOoSs) according to
their denoted Kendrick mass defects, double bond equivalence (DBE = number of rings plus double
bonds involving carbon) distribution, and carbon number distribution [30].

4. Conclusions

Ultrahigh-resolution FT-ICR MS is an undoubtedly powerful analytical method for the analysis
of incredibly complex petroleum samples. Nowadays, the high-field Orbitrap FTMS with a
resolving power of up to 900,000 at m/z 400 is becoming an attractive alternative to FT-ICR MS
for petroleum analysis as shown in this work and others [9,10]. Different chemical methods, such
as protonation and alkylation, have certain selectivity toward some classes of compounds in crude
oil, and although MS has an unmatched advantage for the analysis of petroleum-type samples,
it is still not able to fully characterize such tremendously complex mixtures. The combination
of various selective methods [31], such as chemical derivatization, chromatographic methods, etc.,
might make a comprehensive characterization of a crude oil possible. Herein, by combining
the coordination chemistry and organic chemistry together with the ultrahigh resolution mass
spectrometry (FT-ICR MS and high-field Orbitrap FTMS) coupled with positive ESI, we demonstrate
a highly selective method toward sulfur-containing compounds analysis in a whole heavy crude
oil without any fractionation and chromatographic separation. Deuterium labeling is utilized to
introduce specific information of isotopically labeled atoms which are not present at high abundance
in crude oil and allow unambiguous differentiation of the nonpolar sulfur species formed from CD3

or C2D5 from the original crude oil in positive ESI. Using the labeling procedure also allows to
fully assigning all reacted components within the very complex crude oil mixture, thus allowing
full characterization of the reaction.
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