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Abstract: Protein-protein interaction (PPI) is essential for almost all cellular processes and 

identification of PPI is a crucial task for biomedical researchers. So far, most computational 

studies of PPI are intended for pair-wise prediction. Theoretically, predicting protein partners 

for a single protein is likely a simpler problem. Given enough data for a particular protein, 

the results can be more accurate than general PPI predictors. In the present study, we assessed 

the potential of using the support vector machine (SVM) model with selected features 

centered on a particular protein for PPI prediction. As a proof-of-concept study, we applied 

this method to identify the interactome of progesterone receptor (PR), a protein which is 

essential for coordinating female reproduction in mammals by mediating the actions of 

ovarian progesterone. We achieved an accuracy of 91.9%, sensitivity of 92.8% and specificity 

of 91.2%. Our method is generally applicable to any other proteins and therefore may be of 

help in guiding biomedical experiments. 
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1. Introduction 

Proteins determine the phenotype of all organisms. Typically, proteins are not functional in isolated 

forms; it has been estimated that over 80% of all proteins do not operate alone but in complexes 

through protein–protein interaction (PPI) [1]. Uncovering PPI helps to elucidate protein functions and 
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further understand various biological processes in the cell. PPI is also a critical regulatory event in 

pathology [2]. Inappropriate PPI is linked to many diseases and therefore represents an important 

target for drug discovery [3]. 

Various experimental techniques have been developed for large scale PPI analysis, such as  

yeast-two-hybrid (Y2H) and affinity purification combined with mass spectrometry (APMS). The 

limitation of these approaches is that they have experienced high rates of noise and false positives [4]. 

In addition, these approaches are time-consuming and expensive. As a result, experimentally-determined 

PPI pairs currently cover only a small fraction of the complete PPI space [5,6]. Although recent 

technical improvements are expected to increase the confidence of results and lower the costs, 

identification of PPI with high coverage and quality remains a challenge. Alternatively, computational 

methods have been proposed for PPI prediction. In general, these methods fall into two categories, 

those based on structural information of proteins, and those based on primary sequences [7]. Several 

groups have demonstrated the feasibility of these methods in the prediction of genome-wide PPI 

network in model organisms, such as yeast [8,9] and human [9–12]. 

So far, most computational studies are intended for pair-wise prediction of PPI in the whole 

genome. Theoretically, predicting protein partners for a single protein is likely a simpler problem. 

Given enough data for a particular protein, the results can be more accurate than general PPI 

predictors. In the present study, we developed a machine learning method based on a support vector 

machine (SVM) with selected features centered on a particular protein. As a proof-of-concept study, 

we applied this method to predict the interactome of progesterone receptor (PR), a protein which is 

essential for coordinating female reproduction in mammals by mediating the actions of the ovarian 

progesterone [13]. Our method was more accurate than general PPI models. It will be useful in guiding 

biomedical experiments. 

2. Results 

2.1. Performance Evaluation of the Support Vector Machine (SVM) Model 

The goal of the present study was to assess the potential of efficient prediction of PPI partners for  

a particular protein using a machine learning approach. Our method was developed using a support 

vector machine (SVM), which has been widely adopted in predicting PPI [7]. Given a data set in which 

each sample is characterized by an n-dimensional vector, an SVM learns a boundary between positive 

and negative samples with maximum margin. The remaining uncharacterized samples in the data set 

are then classified according to the decision boundary. 

As a proof-of-principle study, the progesterone receptor (PR) protein was chosen. PR is a  

ligand-activated transcription factor. It interacts with many associated factors, forming a typical 

protein complex [13]. To construct the positive training set, we searched the PINA2 database and 

identified 69 non-redundant PR-interacting proteins. A negative training set of the same size was 

randomly chosen from the whole genome. Random selection was employed because we expected  

a sizable proportion of proteins in the whole genome were not physiologically relevant to PR. The final 

training data set included 69 PR-interacting protein and 68 non-interacting proteins (Table S1). 
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For predicting PPI by sequences, one of the main computational challenges is to find a suitable  

way to fully describe the important information of PPI. To solve this problem, we proposed  

a descriptor which considered both amino acid composition and functional domain annotation. Finally, 

a 433-dimension feature vector (20 for amino acids plus 413 for functional domains) was built to 

represent each protein. We employed an SVM to generate computational models incorporating these 

features. The radial basis function (RBF) was selected as the kernel function. To validate the prediction 

performance in a self-consistent way, 5-fold cross validation was carried out. We evaluated the 

performance of the SVM model in terms of sensitivity, specificity and accuracy. 
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True positives (TP) were actual interacting proteins that were predicted correctly. True negatives 

(TN) were non-interacting proteins that were predicted correctly. False positives (FP) were  

non-interacting proteins that were predicted as interacting proteins. False negatives (FN) were 

interacting proteins that were missed. 

In order to achieve good results, the capacity parameter C and the kernel parameter γ of the SVM 

were tried using a grid search method in the range of C = 2−4, 2−3, …, 24 and γ = 2−10, 2−9, …, 210, 

respectively. Meanwhile, feature selection was performed during parameter optimization. The accuracy 

profile of the 5-fold cross validation on the training set versus the variations of parameters C and γ was 

shown in Figure 1A. Obviously, the prediction accuracy had a maximum peak at (C, γ) = (2, 0.5) with 

234 selected features, indicating that the optimal values of C and γ for constructing SVM model were  

2 and 0.5, respectively. With these parameters, we used the receiver operating characteristic (ROC) 

curve to present the inter-relationship between specificity and sensitivity (Figure 1B). The area under 

the curve (AUC) statistics provides a useful metric for the performance of a classifier. Whereas an 

AUC value close to 1 indicates an excellent classifier, a curve that lies close to the diagonal (AUC = 0.5) 

has no information content. Our classifier achieved an AUC of 0.970. At the maximum point of 

accuracy (91.9%), the sensitivity and specificity were 92.8% and 91.2%, respectively. 

In order to analyze the influence of negative training set on the performance of SVM model,  

we repeated the random selection process 100 times. The average accuracy was 91.8% (ranging from 

85.8% to 95.4%) (Figure 1C), suggesting that our model was very robust to random selection of 

negative data set. In order to overcome overfitting, we also generated larger negative training sets.  

An upsampling factor of 1 to 5 was used. The accuracy was significantly improved when the 

upsampling factor was larger than 3 (Figure 1D). 
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Figure 1. Characteristics of support vector machine (SVM) classifier with radial basis 

function (RBF) kernel on training set. (A) Accuracy surface of 5-fold crossover validation 

on training set versus the variations of parameters C and γ. The best accuracy was achieved 

at C = 2 and γ = 0.5. The number of selected features was 234; (B) The receiver-operating 

characteristic (ROC) curve and corresponding area under the curve (AUC) statistics for  

the SVM classifier with the parameters C = 2 and γ = 0.5; (C) Histogram showing the 

influence of randomly selected negative data set on the performance of SVM model.  

The selection procedure was repeated 100 times; (D) The importance of upsampling on the 

performance of SVM model. The positive data set was upsampled by a factor from 1 to 5. 

Then a balanced negative data set was constructed by random selection. For each upsampling 

factor, negative data set selection was repeated 10 times. Accuracy values were shown as 

mean ± std. 

Androgen receptor (AR) and estrogen receptor (ER), together with PR, are members of steroid 

receptors [14]. They are considered to share a common ancestor (Figure 2A). In humans, the similarity 

of PR to AR is 35% and PR to ER is 14%. It has been shown that all steroid receptors recruit a similar set 

of cofactors [15]. Therefore, we prepared two independent test sets based on AR- and ER-interacting 

proteins. The performance of our SVM model was summarized in Figure 2B. The prediction accuracy 

values for AR and ER data sets achieved by our method were 81.5% and 78.2%, respectively. The ER 

data set had a relatively lower accuracy, which may reflect the relatively lower homology of ER to PR 

compared with AR. These results demonstrated that our model trained on the PR dataset was also able 

to predict AR and ER partners with high accuracy. 
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Figure 2. The performance of SVM classifier on different test sets. (A) The close homology 

between progesterone receptor (PR), androgen receptor (AR) and estrogen receptor (ER). 

The phylogenetic tree was constructed using maximum-likelihood method based on human 

protein sequences. The scale bar below the tree indicates amino acid change frequency;  

(B) SVM performance on independent data sets of AR and ER. 

2.2. Complete Scan of the Human Proteome for PR-Binding Proteins 

To find new proteins that potentially interact with PR, we ran our SVM model against all human 

protein records in the UniProt database. The proteins in the training set were excluded. During 

prediction, the class probability estimated by the SVM was enabled, providing a convenient measure 

of prediction confidence. Of all 17,847 proteins, the SVM model predicted 827 non-redundant proteins 

as potential candidates by a threshold of p ≥ 0.96 (Figure 3) (Table S2). This threshold was selected 

because all correctly classified proteins in the training set exhibited p ≥ 0.96. 

 

Figure 3. Genome-wide prediction of PR-interacting proteins. SVM classification 

probability, which measures the confidence of the prediction, was shown as frequency 

histogram. Bin width of 0.1% was used. PR-interacting proteins were selected using  

a probability threshold of 0.96. 

The known and newly predicted PR-interacting proteins were assigned to molecular functional 

categories according to the annotation from gene ontology. It turned out that known PR-interacting 

proteins showed a strong preference for transcription regulatory activity, nucleic acid binding activity, 

kinase activity, and signal transduction activity (Figure 4A). As expected, most of the newly predicted 

PR-interacting proteins fell into the same functional categories. However, a lower portion of  

proteins with transcription regulatory activity and a larger portion of proteins with kinase activity  

were observed in newly predicted PR-interacting proteins compared to known ones. Interestingly,  
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we discovered that a novel category termed cytoskeletal activity was unique to predicted  

PR-interacting proteins (Figure 4B). This category might provide new clues for PR regulation and 

function, thus deserving further investigation. 

 

Figure 4. Functional clustering analysis of PR-interacting proteins. Proteins were mapped 

to GOslim terms under the molecular function category. This analysis was applied on the 

two different protein lists: (A) known PR-interacting proteins and (B) newly predicted  

PR-interacting proteins. 

3. Discussion 

Protein-protein interaction (PPI) is essential for almost all cellular processes and identification of 

PPI is a crucial task for biomedical researchers. So far, several computational tools have been 

developed for genome-wide prediction of PPI using general pair-wise features in various model 

organisms. However, for biologists, they are usually interested in getting a list of potential PPI partners 

for a single protein. Theoretically, predicting protein partners for a particular protein is likely a simpler 

problem and the results can be more accurate than general PPI predictors, as protein-specific 

information can be used. As a proof-of-concept study, we applied this method to predict the 

interactome of progesterone receptor (PR), a protein which is essential for coordinating female 

reproduction in mammals by mediating the actions of ovarian progesterone. Previously, Li et al. [16] 

reported a PPI prediction system using pair-wise features with a very high performance. The sensitivity, 

specificity and accuracy were 89.17%, 92.17% and 90.67%, respectively. However, when applied to 

our PR dataset, their method achieved an accuracy of 60.14%. Although the sensitivity was 95.71%, 

the specificity was as low as 23.53% due to a large number of false positives. In the present study,  

we developed a machine learning method based on an SVM with selected features centered on  

a particular protein. Our model had a balanced performance: an accuracy of 91.9%, sensitivity  

of 92.8% and specificity of 91.2%. In order to see the general effectiveness, we applied our method  

to another 10 proteins, three of which are transcription factors (STAT3, MYC and E2F1). The average 

accuracy was 89.5% (Figure S1). No preference for transcription factors was observed. These data 

suggest that our method can be used in a variety of applications. 

Our model was built merely on protein sequences. In fact, the majority of existing PPI prediction 

methods are based on protein sequences but not protein structures [7]. Although structure-based 

models can provide further details of residual-level PPI interface, they are hindered by the unavailability 

of complete 3D structure data for most proteins. As in the case of PR, only the ligand binding domain 
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and the DNA binding domain at the C-terminal were structurally determined [17,18], whereas the 

activation function domain at the N-terminal which is believed to be the main interface of PPI has not 

been determined yet. Structure-based models are apparently not suitable for PR. In the present study, 

we extracted 433 features for each protein (20 for amino acids plus 413 for functional domains).  

In order to reduce the number of features, feature selection was performed. Finally, 234 features were 

selected. The importance of these features was ranked by F-score. Among the top 10 features, 4 were 

amino acids, namely cysteine, threonine, glycine, and isoleucine. Their ranks were 1, 2, 3 and 9, 

indicating that amino acid composition was the most discriminative features in our model. The other 

six were functional domians, including IPR011009 (protein kinase-like domain), IPR024736 

(oestrogen-type nuclear receptor final C-terminal domain), IPR011011 (zinc finger FYVE/PHD-type), 

IPR001452 (src homology-3 domain), IPR018359 (bromodomain) and IPR004367 (cyclin C-terminal 

domain). According to cross validation, the performance of SVM model was slightly improved by 

feature selection, from 90.5% to 91.9%. To further improve the predictive accuracy of our model,  

we also employed an upsampling procedure. This procedure results in a more accurate representation 

of the negative set. As expected, when an upsampling factor of 4 or 5 was used, the accuracy was as 

high as 98%. 

PR is a member of the nuclear receptor superfamily of ligand-activated transcription factors [19]. 

Ligand-occupied PR is recruited to DNA to activate or repress transcription [20]. Transcriptional 

specificity of PR depends on the availability of PPI cofactors in target cells [21]. Under gene ontology, 

these PPI cofactors belong to the category of transcription regulatory activity. Known PR PPI cofactors 

include EP300 [22], NCOA1-3 [23,24], and NCOR1-2 [25]. PR can also interact with other transcription 

factors with nucleic acid binding activity, such as SP1 [26], AP1 [27], FOXO1 [28] and STAT3 [29], 

to modulate their transcriptional activity. In addition, it has been shown that the activity of PR can  

be modulated by phosphorylation at Ser345 [26]. Therefore, protein kinases present another type of  

PR-interacting proteins. Within gene ontology, proteins with transcription regulatory activity, nucleic 

acid binding activity or kinase activity may be cross-classified into the category of signal transduction 

activity. By applying our SVM model, we scanned the whole genome to find new human proteins that 

potentially interact with PR. We obtained a total of 827 new candidates. In general, the majority of 

new candidates fell into the four categories as mentioned above. Examples included the following: 

TRRAP, TRIM28, TRIM66, CREBBP and NSD1 in the category of transcription regulatory activity; 

PPARG and NFKB1-2 in the category of nucleic acid binding activity; and EGFR, AKT1-3 and JAK1-3 

in the kinase activity category. Interestingly, we discovered a novel category termed cytoskeletal activity 

which was unique to the newly predicted PR-interacting proteins. Free PR is located in the cytoplasm. 

Upon progesterone binding, ligand-occupied PR is transported into the nucleus [20]. Considering that 

cytoskeletal proteins play an important role in transportation, we suspected that the interaction between 

PR and cytoskeletal proteins may facilitate PR translocation from cytoplasm into nucleus. Our analysis 

might provide new clues for PR regulation and function, thus deserving further investigation. 

In conclusion, our work demonstrated that it is possible to reliably prediction of PPI partners of  

a particular protein by using the SVM model. When applying to PR, we achieved an accuracy of 

91.9%, sensitivity of 92.8% and specificity of 91.2%. Notably, our method requires simple input data 

and could be used in a wide variety of applications. We believe that our method will be useful in 

guiding biomedical experiments. 
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4. Materials and Methods 

4.1. Data Collection and Data Set Construction 

Known progesterone receptor (PR, UniProt: P06401)-interacting proteins were collected from 

PINA2 database [30], which integrates up-to-date protein-protein interactions available in IntAct [31], 

BioGRID [32], MINT [33], DIP [34], HPRD [35] and MIPS [36]. A total of 71 interacting  

proteins were retrieved. Considering that the predictive model will possibly be biased to homologous 

sequences in the training set, we removed homologous sequences with more than 70% identity by 

using CD-HIT [37]. Since the non-interacting proteins were not readily available, we used a random 

way to select negative proteins [38]. Two requirements were met: (i) the non-interacting proteins 

cannot appear in the positive data set, or exhibit more than 70% identity with any proteins in the 

positive data set by CD-HIT-2D [37]; and (ii) the number of negative proteins is equal to that of 

positive proteins. We repeated the negative data set construction procedure 100 times. The influence of 

random selection was evaluated. Additionally, positive data set was upsampled by a factor of 1 to 5. 

We then constructed larger negative data sets by random selection. The robustness of upsampling 

factor was evaluated. 

For independent testing, we collected another two data sets for androgen receptor (AR UniProt: 

P10275) and estrogen receptor (ER, UniProt: P03372). The same criteria were employed as described 

above. There were 299 interacting protein and 296 non-interacting proteins in final testing data set for 

AR. The final testing data set for ER contained 547 interacting protein and 531 non-interacting proteins. 

4.2. Feature Extraction 

For amino acid composition, each protein sequence was represented using a vector {xi, i = 1, 2, …, n}. 

The vector xi has 20 elements corresponding to the occurrences of 20 amino acids normalized with the 

total number of residues in the protein. We also considered amino acid dipeptide composition with  

400 elements specified the occurrences of 400 amino acid dipeptides normalized with the total number 

of dipeptides in the protein. We finally excluded dipeptide composition in the feature vector, because  

it did not improve the performance of the SVM classifier. 

The interacting domain between proteins is indicative of PPI. Previous studies have shown the 

feasibility of using functional domain information to predict PPI [39,40]. In this work, protein domains 

were investigated as features for classifying PR-interacting proteins from non-interacting ones. We 

retrieved domain information of each protein in the training data set by referring to its corresponding 

InterPro records [41] in the UniProt database [42]. For each protein, a feature vector of ones and zeros was 

constructed: one for presence and zero for absence of a certain functional domain. The feature selection 

tool for libsvm was used to reduce the number of features and the relative importance of each feature was 

calculated based on F-score (http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/fselect/fselect.py). 

4.3. Model Construction 

The software libsvm 3.20 (http://www.csie.ntu.edu.tw/cjlin/libsvm/) was employed in this work. 

The radial basis function (RBF) was chosen as the kernel function, which is defined as:  



Int. J. Mol. Sci. 2015, 16 4782 
 

 

( , ) exp( γ || ||)k u v u v= − −  (4)

where u and v are two data vectors and γ is the kernel width parameter. We evaluated the predictive 

performance of the constructed model by 5-fold cross validation. During this process, the training  

data set was divided into five equal or nearly equal groups. In one round of cross validation, one 

subgroup was regarded as the test set, and the remaining four subgroups were treated as the training 

set. The cross-validation process was repeated five rounds, with each of the five subgroups used  

as the test set in turn. Then, all the results were combined to produce a single estimation. During  

the process of 5-fold cross validation, the regularization parameter C and the kernel width parameter  

γ were optimized to maximize predictive accuracy using a grid search approach. Finally, the 

parameters that yielded the highest accuracy were employed to construct the predictive model.  

ROC curve and AUC were calculated during 5-fold cross validation using a MATLAB script 

(http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/roc/plotroc.m). 

4.4. Functional Clustering Analysis of PR-Interacting Proteins 

For functional clustering analysis, we adopted the gene ontology terms defined by MGI GOslim 

(http://www.informatics.jax.org/gotools/MGI_GO_Slim.html). The ontology covers three categories: 

biological process, cellular component and molecular function. Known PR-interacting proteins and newly 

predicted PR-interacting proteins were mapped to GOslim terms under the molecular function category. 

Supplementary Materials 

Supplementary materials can be found at http://www.mdpi.com/1422-0067/16/03/4774/s1. 
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