Supplementary Information

A tom #	2		3		4		5		6		7		8	
Atom #	δ _C	m [#]												
2	83.12	d	79.81	d	79.52	d	79.52	d	79.64	d	79.86	d	79.59	d
3	71.73	d	72.82	d	72.78	d	71.99	d	72.00	d	72.82	d	72.78	d
4	197.53	S	185.69	S	184.44	S	190.83	S	191.32	S	185.71	S	184.50	S
4 a	100.34	S	110.46	S	105.19	S	100.32	S	100.64	S	110.46	S	105.28	S
5	163.36	S	150.81	S	151.92	S	163.30	S	163.28	S	150.81	S	151.92	S
6	96.17	d	111.51	d	105.84	d	96.79	d	96.60	d	111.50	d	105.80	d
7	167.28	S	156.27	S	165.06	_	168.2 *	_	167.40	S	156.27	S	164.91	S
8	95.15	d	109.25	d	101.04	d	95.76	d	95.53	d	109.25	d	101.04	d
8a	162.53	S	162.25	S	163.12	S	162.19	S	162.29	S	162.27	S	163.13	S
10	87.49	d	87.68	d	87.64	d	87.69	d	88.47	d	88.46	d	88.42	d
11	49.56	d	49.72	d	49.76	d	49.74	d	49.47	d	49.43	d	49.48	d
11a	127.76	S	129.29	S	129.18	S	129.22	S	129.66	S	129.71	S	129.61	S
12	115.10	d	122.21	d	122.03	d	122.03	d	121.91	d	122.07	d	121.90	d
13	130.47	S	128.72	S	129.12	S	129.11	S	128.66	S	128.37	S	128.76	S
14	116.24	d	123.07	d	122.95	d	122.89	d	122.84	d	123.00	d	122.88	d
15	140.93	S	133.10	S	133.06	S	133.09	S	133.08	S	133.07	S	133.04	S
15 a	147.06	S	151.15	S	151.01	S	151.02	S	151.12	S	151.21	S	151.09	S
16	131.46	S	139.37	S	139.43	S	139.42	S	131.06	S	131.01	S	131.07	S
17	110.62	d	110.31	d	110.29	d	110.31	d	110.27	d	110.27	d	110.25	d
18	147.65	S	150.97	S	150.97	S	150.97	S	147.70	S	147.69	S	147.69	S
19	146.69	S	139.18	S	139.17	S	139.18	S	146.82	S	146.82	S	146.80	S
20	115.37	d	123.07	d	123.07	d	123.08	d	115.45	d	115.43	d	115.44	d
21	119.08	d	117.83	d	117.79	d	117.82	d	118.74	d	118.75	d	118.71	d
22	65.11	t	64.87	t	64.90	t	64.90	t	64.77	t	64.74	t	64.76	t
18-OMe	55.72	q	55.81	q	55.81	q	55.82	q	55.64	q	55.63	q	55.63	q
3-CO	—	—	168.54	S	168.62	S	168.74	S	168.73	S	168.55	S	168.63	S

Table S1. ¹³C NMR data of prepared compounds (DMSO- d_6 , 30 °C).

Atom #	2		3		4		5		6		7		8	
	δ _C	m#	δ _C	m [#]	δ _C	m#	δ _C	m [#]						
5-CO	_	_	168.53	S	168.55	_	_	_	_	_	168.53	S	168.55	S
7-CO	_	_	168.21	S	-	_	_	_	_	_	168.21	S	_	_
15-CO	_	_	168.26	S	168.26	S	168.28	S	168.24	S	168.21	S	168.22	S
19-CO	_	_	168.53	S	168.52	S	168.54	S	_	_	_	_	_	_
22-CO	170.39	S	170.31	S	170.31	S	170.33	S	170.33	S	170.32	S	170.32	S
3-Ac	_	_	20.05	q	20.11	q	20.11	q	20.09	q	20.06	q	20.12	q
5-Ac	_	_	20.73	q	20.85	q	_	_	_	_	20.73	q	20.85	q
7-Ac	_	_	20.91	q	_	_	_	_	_	_	20.91	q	_	_
15-Ac	_	_	20.35	q	20.35	q	20.37	q	20.38	q	20.36	q	20.37	q
19-Ac	_	_	20.40	q	20.40	q	20.41	q	_	_	_	_	_	_
22-Ac	20.62	q	20.52	q	20.51	q	20.54	q	20.53	q	20.52	q	20.52	q

 Table S1. Cont.

* HMBC (Heteronuclear Multiple Bond Correlation) readout.

		2			3			4			5			6			7			8	
Atom #	$\delta_{\rm H}$	m#	J _{H-H} [Hz]	$\delta_{\rm H}$	m#	J _{H-H} [Hz]	$\delta_{\rm H}$	m#	J _{H-H} [Hz]	$\delta_{\rm H}$	m#	J _{H-H} [Hz]	$\delta_{\rm H}$	m##	J _{H-H} [Hz]	$\delta_{\rm H}$	m#	J _{H-H} [Hz]	$\delta_{\rm H}$	m#	J _{H-H} [Hz]
2	5.020	d	11.2	5.720	d	12.4	5.544	d	12.1	5.546	d	11.8	5.560	d	11.9	5.714	d	12.4	5.540	d	12.1
3	4.517	dd	6.1, 11.2	5.971	d	12.4	5.757	d	11.1	5.924	d	11.8	5.943	d	11.9	5.968	d	12.4	5.757	d	12.1
6	5.896	d	2.0	6.790	d	2.2	6.259	d	2.2	5.922	d	2.0	5.967	d	2.1	6.786	d	2.2	6.265	d	2.2
8	5.848	d	2.0	6.904	d	2.2	6.314	d	2.2	5.901	d	2.0	5.944	d	2.1	6.907	d	2.2	6.322	d	2.2
10	5.439	d	7.7	5.717	d	6.6	5.714	d	6.4	5.715	d	6.4	5.571	d	6.8	5.568	d	6.9	5.566	d	6.8
			0.6,			0.9,						0.8,			0.7,			0.8,			0.8,
11	2 761	dddd	5.8,	2 9 1 1	dddd	5.9,	2 9 1 2		_	3.844	dddd	5.7, 6.4,	3.809	dddd	5.8,	2 000	dddd	6.1,	2 201	4444	6.0,
11	5.704	aaaa	7.4,	7.4, ^{3.844}	uuuu	6.6,	5.645	111			uuuu				6.7,	5.808		6.8,	5.801	uuuu	6.6,
			7.7			6.7						6.9			6.8			6.9			6.8
12	6 802	dd	0.6,	7 175	dd	0.9,	7 442	dd	0.6,	7 121	dd	0.8,	7 408	dd	0.7,	7 453	dd	0.8,	7 420	dd	0.8,
12	0.892	uu	1.7	7.475	, uu	1.7	1.772	uu	1.6	7.424	uu	1.7	7.408	uu	1.6	7.435	uu	1.7	7.420	uu	1.7
14	6.865	d	1.7	7.272	d	1.7	7.244	d	1.6	7.228	d	1.7	7.212	d	1.6	7.249	d	1.7	7.221	d	1.7
17	6.984	d	2.0	7.159	d	2.0	7.156	d	1.9	7.155	d	2.0	6.949	d	1.8	6.950	d	1.9	6.947	d	1.8
20	6.780	d	8.1	7.105	d	8.2	7.105	d	8.2	7.105	d	8.2	6.772	d	8.0	6.770	d	8.0	6.770	d	8.1
21	6 873	dd	2.0,	6 070	dd	2.0.	6 967	dd	1.9,	6 967	dd	2.0.	6 703	dd	1.8.	6 704	dd	2.0.	6 700	dd	1.8.
21	0.823	uu	8.1	0.970	uu	8.2	0.907	uu	8.2	0.907	uu	8.2	0.795	uu	8.0	0.794	uu	8.0	0.790	uu	8.1
220	1 375	dd	5.8,	4 3 7 1	dd	5.9,	4 380	dd	5.6,	1 377	dd	5.7,	1 3 3 7	dd	5.8,	1 3 2 7	dd	6.1,	1 3 2 7	dd	6.0,
220	ч.575	uu	11.0	ч. <i>3</i> /1	uu	11.0	4.500	uu	11.2	ч.577	uu	11.1	ч. <i>331</i>	uu	11.0	4.327	uu	11.2	4.527	uu	11.1
22B	4 249	dd	7.4,	4 344	dd	6.7,	4 347	dd	7.0,	4 345	dd	6.9,	4 3 1 1	dd	6.7,	4 304	dd	6.8,	4 305	dd	6.6,
220	7.277	uu	11.0		uu	11.0	1.517	uu	11.2	т.5т5	uu	11.1	4.511	uu	11.0	4.504	uu	11.2	4.505	uu	11.1
3-ОН	5.744	d	6.1	-	-	-	_	-	-	-	-	-	_	-	-	-	-	-	-	-	-
5-OH	11.898	s	-	-	-	-	-	-	-	11.451	s	-	11.426	S	-	-			-		
7-OH	10.859	br.s.	-	-	-	-	11.119	br.s.	-	n.d.	-	-	11.021	br.s.	-	-			11.129	br.s.	-
15-OH	9.412	S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
18-OMe	3.769	S	-	3.768	S	-	3.769	S	-	3.768	S	-	3.752	S	_	3.750	S	-	3.751	S	_

Table S2. ¹H NMR data of prepared compounds (DMSO- d_6 , 30 °C).

Table S2. Cont.

	2			3		4			5			6			7			8			
Atom #	$\delta_{\rm H}$	m#	J _{H-H} [Hz]	$\delta_{\rm H}$	m##	J _{H-H} [Hz]	$\delta_{\rm H}$	m#	J _{H-H} [Hz]	$\delta_{\rm H}$	m#	J _{H-H} [Hz]									
19-OH	9.047	S	_	_	_	-	-			_			9.064	S	_	9.064	S	_	9.061	S	_
3-Ac	_	-	_	1.942	s	_	1.927	S	_	1.954	S	_	1.963	S	_	1.948	S	_	1.933	S	-
5-Ac	_	-	_	2.300	s	_	2.260	S	_	-			_			2.300	S	_	2.261	S	-
7-Ac	-	-	_	2.281	S	_	-			-			-			2.282	S	-	-		
15-Ac	_	-	-	2.293	S	_	2.292	S	-	2.292	s	_	2.272	s	_	2.272	s	-	2.270	s	_
19-Ac	_	-	_	2.252	s	_	2.252	S	_	2.251	S	_	_			-			-		
22-AC	1.974	S	_	1.993	s	_	1.992	s	_	1.996	S	_	1.983	S	-	1.978	S	_	1.978	S	_

Figure S1. HPLC chromatogram of compounds **3**, **5**, **6**, **7**. Method: Jasco 880-PU (Jasco Europe, Cremella, Italy) pump equipped with a Jasco 875-UV/V detector; RP-18e (5 μ m) column (Purosphere STAR, 100 mm × 3 mm, Merck, Germany; solvent system A: MeCN/H₂O/HCO₂H (5/95/0.1 *v*/*v*/*v*) and B: MeCN/HCO₂H (100/0.1 *v*/*v*). Gradient 0–1 min 30% B, 1–20 min 30%–80% B, 20–22 min 80% B, 22–24 min 30% B. Flow rate was 1.1 mL/min. The data were acquired at 285 nm. (Method B).

Figure S2. HPLC chromatogram of compounds **3**, **6**, **7**, **8**. Method: Jasco 880-PU (Jasco Europe, Cremella, Italy) pump equipped with a Jasco 875-UV/V detector; RP-18e (5 μ m) column (Purosphere STAR, 100 mm × 3 mm, Merck, Germany); solvent system A: MeCN/H₂O/HCO₂H (5/95/0.1, *v*/*v*/*v*) and B: MeCN/HCO₂H (100/0.1, *v*/*v*). Gradient 0–1 min 40% B, 1–20 min 40%–70% B, 20–22 min 70% B, 22–24 min 40% B. Flow rate was 1.1 mL/min. The data were acquired at 285 nm. (Method B).

Figure S3. TLC (Thin layer chromatography) of the reaction mixture catalyzed by lipase PS after 100 h. Compound **3** (3,5,7,15,19,22-hexa-*O*-acetyl silychristin) was a starting material for the alcoholysis catalyzed by lipase PS. Co-chromatography was performed with **3** and reaction mixture. CHCl₃/toluene/acetone/HCO₂H, 12/2/2/0.1 was used as mobile phase. TLC plate was developed with Pancaldi reagent ((NH₄)₆MoO₄ 42 g, Ce(SO₄)₂ 2 g, H₂SO₄ 62 mL, H₂O 1 L).

Figure S4. TLC of the reaction mixture catalyzed by Novozym 435 after 52 h. Compound **3** (3,5,7,15,19,22-hexa-*O*-acetyl silychristin) was a starting material for the alcoholysis catalyzed by Novozym 435. Co-chromatography was performed with **3** and reaction mixture. CHCl₃/toluene/acetone/HCO₂H 12/2/2/0.1 was used as mobile phase. TLC plate was developed with Pancaldi reagent ((NH₄)₆MoO₄ 42 g, Ce(SO₄)₂ 2 g, H₂SO₄ 62 mL, H₂O 1 L).

Figure S5. HPLC chromatogram of the inseparable mixture of two products 3,5,15,19,22-penta-*O*-acetyl-silychristin (4) and 3,15,19,22-tetra-*O*-acetyl silychristin (5). Twin Watrex (Prague, Czech Republic) Deltachrom SDS (030) pumps equipped with Thermo Separation Spectra 100 UV/V detector; RP-18e Chromolith [®] SpeedRod (50 mm × 4.6 mm, Merck, Darmstadt, Germany); solvent system A: MeOH/H₂O/HCO₂H (20/80/0.1, v/v/v) and B: MeOH/HCO₂H (100/0.1, v/v). Gradient: 0–2 min 100% A, 2–3 min 100%–60% A, 3–5 min 60%–20 % A, 5–10 min 20%–60% A, 10–17 min 60%–100% A. (gradient depicted by the grey graph); flow rate 0.9 mL/min; signal at 285 nm was acquired. (Method C).

Figure S6. ¹H NMR spectrum of the mixture of compounds 4 and 5. NMR spectrum was recorded on a Bruker Avance III 600 MHz spectrometer (600.23 MHz for ¹H 30 °C) in DMSO- d_6 .

Figure S7. ¹³C NMR spectrum of the mixture of compounds 4 and 5. NMR spectrum was recorded on a Bruker Avance III 600 MHz spectrometer (150.93 MHz for ¹³C at 30 °C) in DMSO- d_6 .

perACSCH solvent: DMSO-d6 temp:303.2 K

Figure S8. ¹H NMR spectrum of the compound **3**. NMR spectrum was recorded on a Bruker Avance III 600 MHz spectrometer (600.23 MHz for ¹H 30 °C) in DMSO- d_6 .

perACSCH

solvent: DMSO-d6 temp:303.2 K

Figure S9. ¹³C NMR spectrum of the compound 3. NMR spectrum was recorded on a Bruker Avance III 600 MHz spectrometer (150.93 MHz for ¹³C at 30 °C) in DMSO- d_6 .

S11

EV-PG-4 solvent: DMSO-d6 temp:303.2 K

Figure S10. ¹H NMR spectrum of the compound **5**. NMR spectrum was recorded on a Bruker Avance III 700 MHz spectrometer (700.13 MHz for ¹H 30 °C) in DMSO- d_6 .

EV-PG-4 solvent: DMSO-d6 temp:303.2 K

Figure S11. ¹³C NMR spectrum of the compound **5**. NMR spectrum was recorded on a Bruker Avance III 700 MHz spectrometer (176.07 MHz for ¹³C at 30 °C) in DMSO- d_6 .

EV-PG-3 solvent: DMSO-d6 temp:303.2 K

Figure S12. ¹H NMR spectrum of the compound **6**. NMR spectrum was recorded on a Bruker Avance III 600 MHz spectrometer (600.23 MHz for ¹H 30 °C) in DMSO- d_6 .

EV-PG-3 solvent: DMSO-d6 temp:303.2 K

Figure S13. ¹³C NMR spectrum of the compound **6**. NMR spectrum was recorded on a Bruker Avance III 600 MHz spectrometer (150.94 MHz for ¹³C at 30 °C) in DMSO- d_6 .

EV-PG-1 solvent: DMSO-d6 temp:303.2 K

Figure S14. ¹H NMR spectrum of the compound 7. NMR spectrum was recorded on a Bruker Avance III 600 MHz spectrometer (600.23 MHz for ¹H 30 °C) in DMSO- d_6 .

EV-PG-1 solvent: DMSO-d6 temp:303.2 K

Figure S15. ¹³C NMR spectrum of the compound 7. NMR spectrum was recorded on a Bruker Avance III 600 MHz spectrometer (150.94 MHz for ¹³C at 30 °C) in DMSO- d_6 .

EV-PG-2 solvent: DMSO-d6 temp:303.2 K

Figure S16. ¹H NMR spectrum of the compound **8**. NMR spectrum was recorded on a Bruker Avance III 600 MHz spectrometer (600.23 MHz for ¹H 30 °C) in DMSO- d_6 .

Figure S17. ¹³C NMR spectrum of the compound **8**. NMR spectrum was recorded on a Bruker Avance III 600 MHz spectrometer (150.94 MHz for ¹³C at 30 °C) in DMSO- d_6 .

EV-PG-2 solvent: DMSO-d6 temp:303.2 K