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Abstract: B-Raf kinase is an important target in treatment of cancers. In order to design 

and find potent B-Raf inhibitors (BRIs), 3D pharmacophore models were created using the 

Genetic Algorithm with Linear Assignment of Hypermolecular Alignment of Database 

(GALAHAD). The best pharmacophore model obtained which was used in effective 

alignment of the data set contains two acceptor atoms, three donor atoms and three 

hydrophobes. In succession, comparative molecular field analysis (CoMFA) and 

comparative molecular similarity indices analysis (CoMSIA) were performed on 39 

imidazopyridine BRIs to build three dimensional quantitative structure-activity relationship 

(3D QSAR) models based on both pharmacophore and docking alignments. The CoMSIA 

model based on the pharmacophore alignment shows the best result (q2 = 0.621,  

r2
pred = 0.885). This 3D QSAR approach provides significant insights that are useful for 

designing potent BRIs. In addition, the obtained best pharmacophore model was used for 

virtual screening against the NCI2000 database. The hit compounds were further filtered 

with molecular docking, and their biological activities were predicted using the CoMSIA 

model, and three potential BRIs with new skeletons were obtained. 
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1. Introduction 

Cancer as the second cause of mortality is a major health problem all over the world [1],  

so it is still important to discover new anticancer drugs in spite of the progress in medicine.  

The Ras-Raf-MEK-ERK pathway, also called ERK/MAP or MAPK kinase pathway, is important for 

cell proliferation and survival, and its hyper-activation has been reported in up to 30% of human 

cancers [2–4]. Raf kinase exists as three isoformsin this pathway: A-, B-, and C-Raf. B-Raf kinase has 

been identified as the primary activator [5], and the mutations in B-Raf kinase have been observed in 

approximately 7% of human cancers, with a different frequency in a variety of human cancers, such as 

melanoma (50%–70%), ovarian (35%), thyroid (30%), and colorectal (10%) cancers [6]. Therefore,  

B-Raf kinase has recently emerged as an important and exciting target in cancer treatment [7–9]. 

Pharmacophore modeling can offer a valuable insight into interactions between receptors and 

ligands. A pharmacophore model reveals the ensemble of steric and electrostatic characteristics of 

different compounds, by which new classes of inhibitors can be discovered when one class of 

inhibitors is found. Therefore, pharmacophore searching is a good way to find various chemical 

structures with the same features in a virtual screening [10–12]. 

Quantitative structure-activity relationship (QSAR) methods have been successfully employed to 

assist the design of new small molecule drug candidates and explore the ligand-protein interaction 

mechanism [13–20]. Comparative molecular field analysis (CoMFA) and comparative molecular 

similarity indices analysis (CoMSIA) are two of the most widely used 3D QSAR methodologies. 

Lennard-Jones and Coulomb potential functions are introduced by CoMFA to calculate the energies of 

steric and electrostatic interactions between the compound and the probe atom, and the obtained results 

can be represented as a three-dimensional “coefficient contour” map [21]. However, in order to avoid 

some inherent deficiencies caused by Lennard-Jones and Coulomb potential functions, Gaussian 

function is used by CoMSIA to calculate the energies of interactions between the compound and the 

probe atom, and the obtained coefficient contour maps can show how steric fields, electrostatic fields, 

hydrophobic fields, hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA) influence the 

activity of inhibitors [22]. 

Recently, a series of imidazopyridines as B-Raf inhibitors (BRIs), shown in Table 1, have been 

reported in the literature [23]. To understand the structural basis for inhibitory activity and design 

potent inhibitors, pharmacophore models were created and 3D QSAR studies were performed for  

these imidazopyridines by using CoMFA and CoMSIA based on both pharmacophore and docking 

alignments. In addition, in order to discover new classes of BRIs, the obtained pharmacophore model 

was used as a 3D query for virtual screening against the NCI2000 database. The hit compounds were 

further filtered by molecular docking, and the biological activities of the hit compounds were predicted 

by the obtained 3D QSAR model. 
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Table 1. Chemical structures and bioactivity values of the imidazopyridines in the current study. 

Compound General Structure Substituents IC50 (nM) pIC50
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H 61 7.215 
5  Me 40 7.398 
6 Et 59 7.229 

7 a i-Pr 60 7.222 
8 t-Bu 69 7.161 

9 b Cyclobutyl 31 7.509 
10 4-Piperidine 107 6.971 
11 3-Piperidine 167 6.777 
12 

F

F

N
H

S
O O

H
N

O

N

N

N
H

R

H 3.6 8.444 
13 4-F 4.4 8.357 

14 a 4-Cl 2.2 8.658 
15 4-Br 2.2 8.658 

16 a 3-F 3.1 8.509 
17  3-Cl 1.1 8.959 

18 b 3-Br 0.76 9.119 
19 2-F 8.0 8.097 
20 2-Cl 27 7.569 

21 a 2-Br 27 7.569 
22 3,4-di-F 3.4 8.469 
23 3,4-di-Cl 1.5 8.824 

24 b 4-MeO 1.1 8.959 
25 a 4-Me 1.3 8.886 
26 b 4-CF3 1.4 8.854 
27 4-CF3O 2.4 8.620 

28 a 4-CN 2.7 8.569 
29 4-MeSO2 1.4 8.854 
30 3-MeO 1.2 8.921 

31 b 3-CF3 1.0 9.000 
32 a 4-Pyridyl 3.2 8.495 
33 3-Pyridyl 3.0 8.523 

34 b F

F

N
H

S
O O

H
N

O

NN
H

R

H 1.0 9.000 
35 a 4-F 1.1 8.959 

36 4-Cl 2.4 8.620 

37 b F

F

N
H

S
O O

H
N

O
N

N

NR

H 4.6 8.337 
38 4-F 11 7.959 

39 a 4-Cl 8.2 8.086 

a Test set compounds; b Compounds used to generate pharmacophore models. 
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2. Results and Discussion 

2.1. Pharmacophore Generation 

After the Genetic Algorithm with Linear Assignment of Hypermolecular Alignment of Database 

(GALAHAD) run, twenty pharmacophore models were generated with default parameters, for which 

statistical values are listed in Table 2. Among the conflicting demands of maximizing pharmacophore 

consensus, maximizing steric consensus, and minimizing energy, each obtained model represents  

a different tradeoff. As shown in Table 2, each model has Pareto rank 0, which implies no one model is 

superior to any other one. Model_12 has a high energy, which is due to steric clashes [24]. The good 

models should have small value of energy, high values of Specificity, N_hits, Sterics, H-bond and 

Mol_Qry [25]. Therefore, Model_06 was considered to be the best model and its statistical values are 

listed in Table 2. This model was not only used for the molecular alignment to produce CoMFA and 

CoMSIA models in the 3D QSAR studies, but also was converted into a UNITY query for virtual 

screening studies. As shown in Figure 1, this model contains two acceptor atoms, three donor atoms and 

three hydrophobes, and the nitrogen atom attached to –SO2– group acts both acceptor and donor atoms. 

Table 2. The statistical values of pharmacophore models after GALAHAD run. 

No. Specificity N_hits Features Pareto Rank Energy Sterics H-Bond Mol_Qry

Model_01 4.37 8 10 0 11.15 3574.20 1683.50 561.51 
Model_02 2.93 8 11 0 19.35 3488.20 1822.20 381.41 
Model_03 1.57 8 13 0 11.63 3390.50 1685.10 703.76 
Model_04 1.34 8 12 0 18.07 3287.20 1854.60 319.43 
Model_05 0.24 8 8 0 15.77 3370.20 1791.80 282.04 
Model_06 4.96 8 8 0 28.49 3242.80 1901.20 439.41 
Model_07 3.10 8 10 0 19.61 3365.90 1761.60 479.45 
Model_08 −0.15 8 10 0 35.19 3639.30 1767.30 367.28 
Model_09 0.11 8 8 0 48.42 3312.90 1775.00 562.73 
Model_10 2.11 8 11 0 25.32 3130.60 1806.20 445.97 
Model_11 3.53 8 8 0 13.04 3727.10 1786.60 165.73 
Model_12 4.37 8 10 0 144.90 3504.50 1757.90 399.20 
Model_13 3.40 8 13 0 10.95 2673.80 1743.10 583.52 
Model_14 2.48 8 8 0 10.03 2992.50 1768.10 249.76 
Model_15 4.30 8 10 0 9.35 3189.60 1715.70 235.40 
Model_16 2.06 8 12 0 13.21 2832.40 1762.00 445.41 
Model_17 3.12 7 10 0 6.94 3084.10 1587.70 304.97 
Model_18 3.34 8 9 0 17.22 3054.40 1746.00 423.70 
Model_19 −0.01 8 9 0 13.59 3423.70 1699.30 225.07 
Model_20 4.82 8 9 0 6.82 2660.50 1576.80 355.02 

The selected model (Model_06) is indicated in boldface. 
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Figure 1. The selected GALAHAD model includes two acceptor atoms (green), three donor 

atoms (magenta) and three hydrophobes (cyan). The sphere sizes indicate query tolerances. 

2.2. 3D QSAR Studies 

The structural alignment of compounds is a crucial step in the development of successful 3D QSAR 

models. In order to obtain reasonable results, all compounds of the data set were aligned according to 

both pharmacophore and molecular docking to derive CoMFA and CoMSIA models in current study. 

Figure 2a,b show pharmacophore-based and docking-based alignments of all the 39 molecules used in 

3D QSAR models, respectively. 

(a) 

 
(b) 

 

Figure 2. (a) Pharmacophore-based alignment of the total data set; and (b) Docking-based 

alignment of the total data set. 

2.2.1. CoMFA and CoMSIA Statistical Results 

In order to get an effective 3D QSAR model, a series of statistical parameters, cross-validated 

coefficient (q2/r2
cv), standard error estimate (SEE) and F-statistic values (F) were calculated as defined 

in SYBYL. The CoMFA and CoMSIA statistical results based on both pharmacophore-based and 

docking-based models are shown in Table 3, which shows that the pharmacophore-based modeling 
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yielded q2(r2
cv) = 0.501 for CoMFA model and q2(r2

cv) = 0.621 for CoMSIA model, while the  

docking-based modeling gave q2(r2
cv) = 0.690, for CoMFA model, q2(r2

cv) = 0.541 for CoMSIA  

model, respectively. 

Table 3. Summary of CoMFA and CoMSIA statistical results. 

Components 
Pharmacophore-Based Model Docking-Based Model 

CoMFA CoMSIA CoMFA CoMSIA 

q2(r2
cv) 0.501 0.621 0.690 0.541 

SEE 0.185 0.063 0.019 0.312 
F value 113.846 410.567 3206.612 47.971 

r2
pred

 0.786 0.885 0.590 0.607 
No. of compounds 29 29 29 29 

No. of optimal components 4 10 14 3 

Contributions     
Steric 0.579 0.196 0.542 0.185 

Electrostatic 0.421 0.201 0.458 0.185 
Hydrophobic - 0.291  0.338 
H-bond donor - 0.161  0.165 

H-bond acceptor - 0.151  0.127 

2.2.2. Validation of 3D QSAR Models 

In order to validate the 3D QSAR models, the predictive correlation (r2
pred) was used to assess the 

predictive abilities of the CoMFA and CoMSIA models from the test set (Table 1) which was not 

included in the generation of the models. As shown in Table 3, the pharmacophore-based models 

exhibit better predictive ability than the docking-based models, where the pharmacophore-based 

modeling yielded r2
pred = 0.786 for CoMFA model and r2

pred = 0.885 for CoMSIA model, while the 

docking-based modeling gave r2
pred = 0.590 for CoMFA model and r2

pred = 0.607 for CoMSIA  

model, respectively. 

We mainly focus on the CoMSIA obtained from pharmacophore-based alignment due to its 

satisfactory statistical results and its best predictive ability. As shown in Table 3, this CoMSIA model 

has a q2(r2
cv) of 0.621 with ten optimal components, SEE of 0.063 and F value of 410.567, which 

indicates it is a quite good model. The corresponding field contributions of steric, electrostatic, 

hydrophobic, HBD and HBA are 0.196, 0.201, 0.291, 0.161 and 0.151, respectively, which suggests 

that each field gives similar contribution to activity. The observed and predicted pIC50 by the CoMSIA 

model of the training and test sets are given in Table 4, and the correlations between the observed and 

predicted pIC50 of training and test sets are depicted in Figure 3. 
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Table 4. Observed and predicted pIC50 of the training and test sets from the CoMSIA model. 

Compound Observed pIC50 
Pharmacophore-Based CoMSIA 

Predicted pIC50 Residual 

1 7.377 7.343 0.034 
2 7.745 7.761 −0.016 
3 6.607 6.583 0.024 

4 a 7.215 7.630 −0.415 
5 7.398 7.410 −0.012 
6 7.229 7.173 0.056 

7 a 7.222 7.478 −0.256 
8 7.161 7.137 0.024 
9 7.509 7.534 −0.025 

10 6.971 7.004 −0.033 
11 6.777 6.817 −0.040 
12 8.444 8.549 −0.105 
13 8.357 8.511 −0.154 

14 a 8.658 8.551 0.107 
15 8.658 8.645 0.013 

16 a 8.509 8.384 0.125 
17 8.959 8.956 0.003 
18 9.119 9.149 −0.030 
19 8.097 8.076 0.021 
20 7.569 7.563 0.006 

21 a 7.569 7.850 −0.281 
22 8.469 8.412 0.057 
23 8.824 8.860 −0.036 
24 8.959 8.872 0.087 

25 a 8.886 8.782 0.104 
26 8.854 8.802 0.052 
27 8.620 8.572 0.048 

28 a 8.569 8.588 −0.019 
29 8.854 8.863 −0.009 
30 8.921 8.923 −0.002 
31 9.000 8.996 0.004 

32 a 8.495 8.259 0.236 
33 8.523 8.500 0.023 
34 9.000 8.976 0.024 

35 a 8.959 8.608 0.351 
36 8.620 8.618 0.002 
37 8.337 8.283 0.054 
38 7.959 8.030 −0.071 

39 a 8.086 8.521 −0.435 
a Test set compounds. 
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Figure 3. Plots of observed vs. predicted activities of the training set and test set molecules 

from CoMSIA analysis. 

2.2.3. CoMSIA Contour Maps 

CoMSIA not only calculates steric and electrostatic fields as in CoMFA, but also additionally 

computes hydrophobic, HBD and HBA fields. The CoMSIA contour maps of steric, electrostatic, 

hydrophobic, HBD, and HBA fields are revealed in Figure 4a–e. Compound 18 and compound 10 

were selected to be superimposed into the contour maps because compound 18 is the most active 

compound in all 39 imidazopyridines and compound 10 is the least active compound in 30 compounds 

(compounds 4–33) in which there is a substituent group attached to the imidazole ring. For each field, 
the favorable and disfavored contours represent 80% and 20% level contributions, respectively. 

The steric contour map with compounds 18 and 10 is shown in Figure 4a, in which green contours 

refer to sterically favored regions, while yellow contours indicate sterically disfavored areas. A large 

green contour near the phenyl group attached to the imidazole ring of compound 18 indicates that a 

bulky group in this region is favorable to bioactivity. It is confirmed by the fact that compounds  

12–39 with bulky substitution in this region have higher bioactivity than compounds 1–11 with no 

substitution. A large yellow contour near the piperidine group attached to the imidazole ring of 

compound 10 suggests that a bulky group in this area is unfavorable to bioactivity. This is supported 

by the lower activity of compounds 10–11 with large substituents in this area, compared with the 

higher activity of compounds 4–9 with small substituents. 

The electrostatic contour map with compound 18 is shown in Figure 4b, where a negative potential 

is favorable to activity in the red areas while a positive potential is favorable in the blue areas. A red 

contour near the 4-position of the benzene ring and a blue contour near the 2-position of the benzene 

ring suggest that an electronegative atom on the 4-position of the benzene ring can increase the 

bioactivity while an electronegative atom on the 2-position of benzene ring is able to reduce the 

bioactivity. This can be validated by the higher activity of compounds 13, 14 and 15, compared with 

the lower activity of compounds 19, 20 and 21, respectively. Figure 4b also shows that a blue contour 

is near the nitrogen atom of the imidazole ring, which means that the nitrogen atom is unfavorable to 

activity. This is supported by the fact that compounds 12 and 13 with a nitrogen atom at that position 

are less active than compounds 34 and 35 with no nitrogen atom, respectively. 
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Figure 4. Cont. 
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(e) 

 

Figure 4. (a) Steric contour maps in combination with compounds 18 and 10: green 

contours refer to sterically favored regions; yellow contours indicate sterically disfavored 

areas; (b) Electrostatic contour maps in combination with compound 18: blue contours 

refer to regions where positively charged substituents are favored; red contours indicate 

regions where negatively charged substituents are favored; (c) Hydrophobic contour maps 

in combination with compounds 18 and 10: yellow contours indicate regions where 

hydrophobic substituents are favored; white contours refer to regions where hydrophilic 

substituents are favored; (d) HBD contour map in combination with compound 18: cyan 

contours indicate HBD substituents in this region are favorable to activity; purple contours 

represent that HBD groups in this area are unfavorable; and (e) HBA contour maps in 

combination with compound 18: magenta contours show regions where HBA substituents 

are expected; red contours refer to areas where HBA substituents are unexpected. 

The hydrophobic contour map in combination with compounds 18 and 10 is shown in Figure 4c, in 

which yellow contours refer to regions where hydrophobic groups are favored while white contours 

represent areas where hydrophilic groups are favored. Two large yellow contours near the phenyl 

group attached to the imidazole ring of compound 18 means that a hydrophobic group in this region is 

favorable to bioactivity while a large white contour near the piperidine group attached to the imidazole 

ring of compound 10 suggests that a hydrophobic group in this area is unfavorable. This can be seen by 

the fact that compounds 12–39 with a benzene ring near the yellow contour have higher bioactivity 

while compounds 5–11 with a hydrophobic group in white contour have lower bioactivity. Figure 4c 

also displays that there is a yellow contour near the 3-position of benzene ring, which hints that a 

hydrophilic group on the 3-position of benzene ring is able to decrease the bioactivity. This can be 

proved by the descending activities of compounds 18, 17 and 16. 

The HBD contour map in combination with compound 18 is shown in Figure 4d, where cyan 

contours indicate that HBD groups in this area are favorable to activity while purple contours represent 

that HBD substituents in this region are unfavorable. Three cyan contours are close to the three –NH 

groups of the compound 18, which suggests the necessity of the hydrogen atoms at these positions for 

high bioactivity. This can be validated by the fact that compounds 12–36 with three –NH groups have 

higher bioactivity than the other compounds with two –NH groups. 

The HBA contour map in combination with compound 18 is shown in Figure 4e, in which magenta 

and red contours represent areas where HBA substituents are favored and disfavored, respectively. 

Two large magenta contours are located near the oxygen atoms of –CO– and –SO2– groups and one 
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large magenta contour is next to the nitrogen atom of the pyridine ring, which implies that the two 

oxygen atoms and one nitrogen atom are HBA atoms. Figure 4e also shows there is a large red contour 

near the nitrogen atom of the imidazole ring, which indicates that the nitrogen is unfavorable to the 

activity. This is proved by the lower activity of compounds 12 and 13 with a nitrogen atom, compared 

with the higher activity of compounds 34 and 35 with no nitrogen atom, respectively, which is 

consistent with the result derived from electrostatic contour map. 

2.3. Virtual Screening 

2.3.1. Pharmacophore Model Validation 

In order to validate the pharmacophore model in the virtual screening, the QFIT (pharmacophoric 

match between query and the hit compound) values of all the 39 imidazopyridine inhibitors were  

tested by using the obtained best pharmacophore model (Model_06), and the correlations between the 

QFIT values and pIC50 values of the 39 inhibitors are depicted in Figure 5. It can be seen that 37 of  

39 inhibitors have high QFIT values (QFIT > 45), which indicates that the Model_06 is a potent 

pharmacophore model in the virtual screening. In order to screen the dataset effectively, the QFIT 

values of hit compounds were set to more than 45 in this study. 
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Figure 5. Plots of QFIT values vs. biological activity (pIC50 values) of 39 inhibitors. 

2.3.2. Docking Model Validation 

In order to validate the docking model in the virtual screening, the C_score values of all the 39 

imidazopyridine inhibitors were assessed by using Surflex-Dock, and the correlations between the 

C_score values and pIC50 values of the 39 inhibitors are depicted in Figure 6. It can be shown that  

all the 39 inhibitors have high C_score values (C_score > 5.0), which suggests that the protomol 

generated by Surflex-Dock is an effective docking model in the virtual screening. In order to screen the 

dataset effectively, the C_score values of hit compounds were set to more than 5.0 in this study. 
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Figure 6. Plots of C_score values vs. biological activity (pIC50 values) of 39 inhibitors. 

2.3.3. Screening of NCI2000 Database 

The obtained best GALAHAD model (Model_06) was converted into an UNITY query, which was 

screened against NCI2000 database (234,054 compounds). The “3D Search” option was implemented 

to perform virtual screening, primary filters such as Lipinski’s rule of five and Van der Waals bumps 

were applied to reduce the dataset [26], and the QFIT values of hit compounds were set to more than 

45. The screening of the pharmacophore query yielded eight hit compounds that met the specific 

requirements. The eight hit compounds were further subjected to molecular docking by using the 

Sulflex-Dock. Three compounds were selected based on the docking C_score values (C_score > 5.0). 

The pIC50 values of the three hit compounds were predicted by the obtained CoMSIA model based on 

pharmacophore alignment. Chemical structures and predicted pIC50 values of the three hit compounds 

are listed in Table 5. The three hit compounds show quite good predicted pIC50 values (pIC50 > 7.6), 

which are expected to design novel BRIs with new skeleton. 

Table 5. Chemical structures and predicted activity values of the hit compounds. 

Hit Compound Structure QFIT Value Docking C_Score Predicted pIC50

NCI 94680 
N

N

H2N

OH

N

H

N

H

COOH

66.50 6.84 8.520 

NCI 527880 

N

N

NN
H

N
OH

HO OH

67.58 5.55 8.263 

NCI 183519 
N

N

NN N

H

OH
62.80 5.28 7.667 
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3. Experimental Section 

3.1. Compounds and Biological Data 

A series of imidazopyridines as BRIs were used for this study, and their structures and bioactivity 

values are shown in Table 1 [23]. The pIC50 (−log IC50) values were used to derive 3D QSAR models. 

The whole data set of 39 compounds was divided into two groups in an approximate ratio of 3:1;  

a training set with 29 compounds, and a test set with 10 compounds (Table 1). The selection of the 

training and test sets was performed manually such that high, moderate and low activity compounds 

were selected in roughly equal proportions in both sets. The training set was used to build predictive 

models, while the test set was used to validate the predictive ability of the models. 

3.2. Molecular Modeling 

The SYBYL 7.3 molecular modeling package from Tripos Inc., St. Louis, MO, USA, which was 

installed on Red Hat Linux workstations [27], was used to perform 3D QSAR modeling analyses, 

calculations and visualizations. Identification of the bioactive conformation is a very crucial step  

in a 3D QSAR study [28], so the conformation of compound 4 was obtained from the protein data bank 

(PDB code: 4MBJ) [23], where the compound 4 is combined with B-Raf kinase. The compound 4 was 

modified by adding hydrogen atoms after extracted from the complex, and then minimized with the 

following three steps: (i) using Steepest Descent with initial optimization of 200 simplex iterations in 

the condition of Tripos force field and Gasteiger-Marsili charge to optimize the energy; (ii) using conjugate 

gradient to optimize the energy; and (iii) using BFGS to optimize the energy [29]. Each conformation 

of other inhibitors was constructed based on the compound 4, and energy minimizations were 

performed according to the above procedure. 

3.3. Pharmacophore Hypothesis 

The pharmacophore hypothesis includes two main stages: firstly, the ligands are aligned to each 

other in internal coordinate space; secondly, the produced conformations are aligned in Cartesian 

space, which was performed by using GALAHAD module of SYBYL. The features used to generate 

the pharmacophore model include HBD atoms, HBA atoms, hydrophobic and charged centers [30–32]. 

Eight compounds with high activity (Table 1) were selected to create the pharmacophore hypothesis in 

the current study, and the conformers for all molecules were generated by genetic algorithm. 

3.4. Molecular Docking 

The molecular docking was carried out by using the Surflex-Dock module of SYBYL, and all 

parameters were set with default values in the whole process. All the molecules were docked to the 

binding site of B-Raf kinase crystal structure in complex with compound 4 (PDB code: 4MBJ) [23]. 

Before docking, the ligand was extracted, all the water molecules were removed and hydrogen atoms 

were added to the receptor. The protomol was generated using the docking based method; with the 

ligand location in the same coordinate space in the receptor. In our study, each conformer of all  

39 inhibitors was docked into the binding site 10 times and the C_score values were used to evaluate 
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the docking analysis. The top ranked conformations for each molecule were extracted and aligned 

together for the subsequent 3D QSAR study [33]. The Surflex-Dock was also used to filter the hit 

compounds in the virtual screening. 

3.5. Molecular Alignment 

The 3D molecular alignment plays a very important role in 3D QSAR studies, and affects the 

outcome of the CoMFA and CoMSIA statistical analysis. There are three main different molecular 

alignments for 3D QSAR: maximum common substructures overlap, pharmacophore-based alignment 

and docking-based alignment [29]. In order to get reasonable results, both of the pharmacophore-based 

and docking-based alignment procedures were performed in our study. Pharmacophore-based alignment 

was performed using GALAHAD and docking-based alignment was done by using Surlflex-Dock. 

3.6. CoMFA and CoMSIA Models 

CoMFA models use a Lennard-Jones potential to calculate steric fields and a Coulombic potential 

to compute electrostatic fields. During the calculation of CoMFA fields, a 3D cubic lattice with grid 

spacing of 2.0 Å in three-dimensional directions was generated by SYBYL, and the grid pattern 

stretched 4.0 Å in all directions of each molecule. A sp3 carbon probe atom as steric probe and a +1.0 

charge as an electrostatic probe were taken to calculate the probe-ligand interaction energies at each 

lattice point. The electrostatic contributions were ignored at lattice points with maximal steric 

interaction and the cut-off for energies was set to ±30 kcal/mol [21]. However, five different similarity 

fields (steric, electrostatic, hydrophobic, HBD, and HBA) were computed in CoMSIA models.  

The same lattice box as in CoMFA was used to derive CoMSIA models, in which a probe of  

charge +1, a radius of 1, hydrophobicity and hydrogen bonding properties of +1 were use to calculate the 

five fields, and an attenuation factor was set to 0.3 for the Gaussian distance-dependent function [22]. 

3.7. Statistical Analysis 

The pIC50 values were used as dependent variables and CoMFA and CoMSIA descriptors as 

independent variables in the 3D QSAR models. The optimal number of components was obtained 

according to q2(r2
cv) when the partial least squares (PLS) method with cross-validation (leave-one-out) 

was used in SYBYL. Based on the obtained optimal number of components, the final model was 

generated with the training set after a PLS analysis was performed with no validation and column 

filtering 2.0. The quality of the 3D QSAR models can be evaluated by the obtained q2 and the 

predictive capability of the models can be determined by r2
pred. The predicted activities for the test set 

were obtained from the model produced by the training set. 

4. Conclusions 

B-Raf kinase has proven to be an important target for treatment of cancers. In order to design and 

search for potent BRIs, a combined pharmacophore modeling, 3D QSAR and virtual screening studies 

on imidazopyridines were performed. Pharmacophore models were derived from eight compounds 

with high activity and diverse structure by using GALAHAD, and the best pharmacophore model 
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obtained included two acceptor atoms, three donor atoms and three hydrophobes. 3D QSAR 

techniques based on both pharmacophore and docking alignments, CoMFA and CoMSIA, were 

applied for the 39 imidazopyridine BRIs. The CoMSIA model obtained from the pharmacophore-based 

alignment showed the best result (q2 = 0.621, r2
pred = 0.885), and the CoMSIA contour maps indicated 

that the phenyl group attached to the imidazole ring and –NH, –CO–, –SO2– groups in imidazopyridine 

molecules can increase the inhibitory activity, while the nitrogen atom of the imidazole ring may 

reduce the inhibitory activity. In addition, the best pharmacophore model obtained was used for virtual 

screening against the NCI2000 database, and eight hit compounds were obtained. Three compounds 

were selected using molecular docking, which showed perfect predicted pIC50 values. The present 

pharmacophore modeling, 3D QSAR, and virtual screening approach provides useful information to 

design and synthesize novel BRIs. 
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