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Abstract: The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) 

signaling pathway plays crucial roles in cell proliferation, angiogenesis, migration, and 

survival. Aberration in FGFRs correlates with several malignancies and disorders. FGFRs 

have proved to be attractive targets for therapeutic intervention in cancer, and it is of 

high interest to find FGFR inhibitors with novel scaffolds. In this study, a combinatorial 

three-dimensional quantitative structure-activity relationship (3D-QSAR) model was 

developed based on previously reported FGFR1 inhibitors with diverse structural skeletons. 

This model was evaluated for its prediction performance on a diverse test set containing 

232 FGFR inhibitors, and it yielded a SD value of 0.75 pIC50 units from measured inhibition 

affinities and a Pearson’s correlation coefficient R2 of 0.53. This result suggests that  

the combinatorial 3D-QSAR model could be used to search for new FGFR1 hit structures 

and predict their potential activity. To further evaluate the performance of the model,  

a decoy set validation was used to measure the efficiency of the model by calculating EF 
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(enrichment factor). Based on the combinatorial pharmacophore model, a virtual screening 

against SPECS database was performed. Nineteen novel active compounds were 

successfully identified, which provide new chemical starting points for further structural 

optimization of FGFR1 inhibitors. 

Keywords: pharmacophore; combinatorial 3D-QSAR; virtual screening; FGFR1 inhibitors 

 

1. Introduction 

Fibroblast growth-factor receptors (FGFRs), a sub-family of the receptor tyrosine kinase (RTK) 

superfamily, play critical roles in many physiologic process such as embryogensis, cell proliferation and 

migration, and angiogenesis by binding with fibroblast growth factors (FGF) and heparan sulfate 

proteoglycans (HPSG) [1]. FGFRs (FGFR1-4) are single-pass, transmembrane, tyrosine kinase  

receptors. The cytoplaxmic portion contains a conserved tyrosine kinase domain and a COOH tail, 

while the extracellular domain contains an acidic box containing eight consecutive acidic residues and 

three immunoglobulin-like (Ig) fragments that Ig-I, together with the acidic box, involves in receptor  

auto-inhibition, Ig-II and Ig-III form FGF and HPSG binding domains. When binding to FGF and  

HPSG, FGFRs perform dimerization and then cause autophosphorylation and substrate phosphorylation 

on tyrosine. Subsequently, those phosphorylations trigger the cascade reactions of several signal 

transduction pathways, such as phospholipase-γ (PLC-γ) pathway and mitogen-activated protein kinase 

(MAPK) pathway, and finally regulate a variety of physiological processes [2,3]. It has been shown 

that aberrant FGF signaling is involved in the development of tumors such as bladder cancer,  

lung cancer, gastric cancer, endometrial cancer and so on [4]. Accordingly, FGFR is an important 

target for cancer treatment. In recent years, there have been a variety of compounds reported as 

FGFR inhibitors [5–10], and many NCEs (new chemical entities) have been in clinical development 

such as TKI258 [11], E-3810 [12], BGJ398 [13] and so on. The most widely designed inhibitors are 

small competitive inhibitors targeting the ATP-binding site of the cytoplaxmic tyrosine kinase 

domain through hydrogen bonds or polar interactions. For any further information, one may refer to 

the following excellent reviews [1,4,14–16]. 

Although a large group of promising compounds has been synthesized, the inhibition activities of 

new designed molecules against FGFR could not be conformed until experimentally validated, which 

are time-consuming and expensive. Therefore, it is necessary to develop consistent in silico tools for 

activity prediction. Pharmacophore and QSAR model have become important tools in computer-aided 

drug design such as virtual screening and lead optimization. In this study, we focus on a new 

combinatorial 3D-QSAR model for activity prediction. 

A pharmacophore model can be built either in a (target-) structure-based manner or a ligand-based 

manner. Structure-based pharmacophore is based on the apo protein structure or protein-ligand  

complex, which needs to analyze the complementary chemical features of activities site and their spatial 

relationships, and then to build pharmacophore assembly with selected features. The limitation of this 

kind of model is that too many chemical features can be identified to apply for practical applications. 

Additionally, it cannot reflect the quantitative structure-activity relationship (QSAR) as it just 



Int. J. Mol. Sci. 2015, 16 13409 

 

 

considers a single target or a single target-ligand complex [17]. Compared with structure-based model,  

ligand-based pharmacophore is more frequently used, which extracts common chemical features from 

aligned compound structures interacting with the same target, based on the hypothesis that compounds 

interacting with the same protein target may share similar chemical structure and physicochemical 

properties [18,19]. The pivotal issues of the ligand-based model are the modeling of ligand flexibility, 

the alignment methods of molecules and the selection of training set. Different pharmacophore models 

could be derived from different training sets because it is easily affected by the type of the ligand,  

the site of the dataset and chemical diversity [17]. 

QSAR model, which quantifies the correlation between structures of a series of compounds and 

biological activities, is based on the hypothesis that compounds with similar structures or physiochemical 

properties have similar activities [20]. The development of a QSAR model involves a series of 

consecutive steps, including: (1) Collect ligands with known activity with the same target; (2) Extract 

descriptors representing the molecule; (3) Select best descriptors from a larger set of descriptors;  

(4) Map the molecular descriptors into the biological activity; and (5) Internal and external validation of 

the QSAR model [21]. Compared with classical QSAR method using fragment-based descriptors such 

as electronic, hydrophobic and steric features, 3D-QSAR model is based on 3D descriptors such as 

various geometric, physical characteristics and quantum chemical descriptors, which are useful in 

describing the ligand-receptor interactions [22]. Statistical tools such as multivariable linear regression 

analysis (MLR), principal component analysis (PCA) and partial least square analysis (PLS) can be  

used for linear QSAR modeling, while there are also many non-linear models established using neural 

network, Bayesian neural network and others machine learning techniques. To validate the QSAR 

model, internal cross validation is used and to calculate the cross validated R2 or Q2. Besides that, 

external validation is also necessary, which is performed by predicting the activity of external test sets 

not used for model building [20]. These 3D-QSAR models have done well when the molecules used for 

model developing are based on congeneric series of molecules [23–25]. 

Since QSAR model is more suitable for congeneric series of molecules, developing a single model 

for various chemical structures like inhibitors of FGFR with diverse core skeletons is challenging. In an 

attempt to design novel chemical entities with FGFR1 inhibition activities, in this study, we performed 

pharmacophore modeling and 3D-QSAR analyses for different chemical classes of FGFR1 inhibitors, 

and developed a combinatorial pharmacophore-based 3D QSAR model. For each class of inhibitors,  

4-point, 5-point and 6-point pharmacophore hypotheses were generated, respectively, using the active 

compounds in a training set. Then, alignment conformations of all compounds were generated for 

subsequent 3D-QSAR modeling [26]. The model was validated by an external test set and a decoys set. 

Furthermore, virtual screening protocol based on the resulted combinatorial pharmacophore model was 

performed against a commercial chemical database. Finally, several compounds were short-listed as 

potential FGFR1 inhibitors by experimental evaluation with biological assay of a fraction of top 

ranked compounds. 

2. Results and Discussion 

Figure 1 shows the flowchart of developing the combinatorial 3D-QSAR model. In each group of 

inhibitors, hundreds of pharmacophore hypotheses that would be subsequently used for QSAR modeling 
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were generated. The final 3D-QSAR model of each group was selected based on a series of statistic 

parameters, including R2, F, p and stability. R2 is the mean value of square of the correlation coefficient 

of regression. F is the ratio of model variance to the observed activity variance and a larger F indicates 

a more statistically significant regression. p is significance level of variance ratio and smaller values 

represent a greater degree of confidence. Stability value reflects the stability of the model predictions 

with changes in the training set composition. Therefore, an ideal QSAR model should have large R2, 

small standard deviation (SD), large F, small p and large stability. Table 1 lists statistic parameters  

of the combinatorial QSAR model. The R2 and stability value of all groups are above 0.8 and 0.5, 

respectively, suggesting that all the components of the combinatorial model are stable and present good 

correlation between the experimental and predicted values. 

 

Figure 1. The flowchart to develop the combinatorial pharmacophore-based three-dimensional 

quantitative structure-activity relationship (3D-QSAR) model. 

Table 1. Statistic parameters of the combinatorial QSAR model for the training set. 

Group Number of Compounds R2 SD F p Stability

1 (ARRR) 83 0.81 0.41 114.50 7.35 × 10−29 0.51 
2 (ADRRR) 29 0.89 0.32 75.30 3.10 × 10−13 0.61 

3 (AAAARR) 62 0.86 0.32 121.70 5.14 × 10−25 0.74 
4 (DDRRR) 99 0.81 0.38 134.70 2.82 × 10−34 0.53 
5 (ADHRR) 18 0.99 0.09 362.60 1.67 × 10−13 0.53 
6 (ADDH) 25 0.96 0.14 170.90 6.58 × 10−15 0.89 
7 (ADHR) 20 0.98 0.15 237.80 1.78 × 10−13 0.56 

8 (DRRRR) 39 0.98 0.21 649.80 9.81 × 10−31 0.85 
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It should be noted that the predictive ability of the whole dataset rather than each subset is of more 

interests. Figure 2 shows the scatter plots of the whole training set and test set. The R2 of training set and 

test set are 0.81 and 0.53, respectively, showing that our model could well reflect the linear relationship 

of the experimental activities and the predicted ones. Additionally, each individual QSAR model was 

used to predict the entire test set of 232 compounds and the prediction performance of these individual 

QSAR models were compared to that of the combinatorial QSAR model. As listed in Table 2, the R2 

and the SD of the combinatorial QSAR model is higher and lower than any other single QSAR model, 

respectively, suggesting that the combinatorial QSAR model has advantage over any single QSAR 

models when predicting the whole test set. Besides, all the R2 of each individual model on classified 

subsets are larger than that on the whole test set. The potential reason is that QSAR models are more 

effective for congeneric series of molecules and the predictive ability decreases as the structural or 

physicochemical properties of new molecules varies from that in the training set [20]. This phenomenon 

suggests that the combinatorial QSAR model is more appropriate for activity prediction of structurally 

diversified compounds. Based on their similarity to each group of training data, our method predicts a 

variety of molecules using different QSAR models, which successfully avoid the above disadvantages. 

 

Figure 2. Scatter plot of the observed versus predicted activity generated by the combinatorial 

3D-QSAR model of (A) the training set and (B) the test set. 

Table 2. Prediction performance of single QSAR model and combinatorial QSAR model on 

test set. 

Group 
Test Set Grouped Based on Similarity Total Test Set (232) 

Matched Hits R2 SD Matched Hits R2 SD 

1 (ARRR) 51 0.53 0.64 229 0.00 * 1.12 

2 (ADRRR) 16 0.37 0.71 231 0.00 * 1.16 

3 (AAAARR) 29 0.41 0.68 227 0.01 1.09 

4 (DDRRR) 43 0.17 0.87 227 0.00 * 1.12 

5 (ADHRR) 9 0.66 0.79 232 0.00 * 1.09 

6 (ADDH) 16 0.54 0.68 184 0.00 * 1.00 

7 (ADHR) 23 0.37 0.90 216 0.03 1.10 

8 (DRRRR) 42 0.87 0.33 229 0.12 1.01 

Combinatorial QSAR Model – – – 229 0.53 0.75 

* indicates that the R2 is less than 0.01. 
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Take group 1 as an example, the predictive 3D-QSAR model and the associated four-point hypothesis 

are shown in Figure 3, which contains one hydrogen bond acceptor and three aromatic ring features. The 

core structure of this group is oxindole, which is one of the first discovered structural category of FGFR 

inhibitors [15]. The ketonic oxygen of the reference ligand (BindingDB50279269) was mapped to the 

hydrogen bind acceptor, while three phenyl groups mapped to aromatic ring features. 

 

Figure 3. (A) The hypothesis (ARRR) that yielded the 3D-QSAR model of group 1;  

(B) Visualization of the 3D-QSAR model of group 1; Decomposed effects from (C) H-bond 

donor; (D) Hydrophobic/non-polar and (E) Electron-withdrawing of reference ligand 

(BindingDB50279269). The interaction is represented by clouded cubes where the blue ones 

indicate a favorable effect and the red ones indicate unfavorable effects. The colored circles 

indicate favorable and unfavorable interaction domains of the 3D-QSAR model. 

Figure 3B shows the 3D-QSAR model containing two favorable (domain a, domain b) and two 

unfavorable (domain c, domain d) domains. The favorable and unfavorable interactions are combined 

effects of different interaction types such as H-bond donor, hydrophobic/non-polar and so on. In order to 

understand whether a specific feature is favored or disfavored to activity, we decomposed the interaction 

shown in Figure 3B into the effects from (Figure 3C) H-bond donor, (Figure 3D) hydrophobic/non-polar 

and (Figure 3E) electron-withdrawing. Given the reference ligand BindingDB50279269, we may find 

that two H-bond donors, N-1 of the oxindole and the N on the side chain of C-3 oxindole, are just located 

close to the H-bond donor favorable regions, which may explain the good activity of the compound. 

Moreover, a survey of existing crystal structures (PDB: 1AGW and PDB 1FGI) [27] revealed that the 

hydrogen bond interactions are indeed present at these regions. The favorable domain a and unfavorable 

domain d shown in Figure 3B correspond to hydrophobic interactions, by comparing the contour 

maps of Figure 3B,D. The electron-withdrawing effects shown in Figure 3E suggested that the 
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methyl acetate group on the C-6 of oxindole structure is beneficial to activity. Figure 4 illustrates 

favorable and unfavorable interactions of several compounds mapped to the 3D-QSAR model. 

Compound BindingDB50421033 (Figure 4A) well occupies two favorable domains and has fewer 

interactions at unfavorable domains, which shows the highest activity among the training set. 

Compound BindingDB504210112 (Figure 4D), which, taking up two unfavorable domains 

(unfavorable domain c and d), is the least active molecule. Intuitively, activity will decrease when 

molecules take up the unfavorable domain c, as reflected by comparing BindingDB50421015 (Figure 4B) 

and BindingDB50421012 (Figure 4D). The absence of favorable domain a leads to the activity 

decrease in comparison of BindingDB50421015 (Figure 4B) and BindingDB4811 (Figure 4C). Sun 

et al. [28] reported that a substitution of electron-withdrawing groups on the phenyl ring of the oxindole 

can improve the inhibitory activity, which is consistent with the conclusion that the domain b has a 

positive contribution for maintaining the activity. 

 

Figure 4. The QSAR model visualized in the context of the most active (A); moderately 

active (B,C); and the least active (D) molecules in training set. 
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A decoy set of 7897 compounds including 232 inhibitors was used to further evaluate the ability of 

this combinatorial model to identify actives from a relatively large dataset. As shown in Table 3,  

the maximum EF values of all groups appear at 1%–2%, meaning that when we screen the database,  

true positive compounds can be efficiently recognized among the top ranked compounds. Figure 5 

shows the EF curve of the combinatorial QSAR model against the whole decoy dataset. The curve shows 

a peak when the percent of database screened is less than 5%, illustrating that our model is suitable for 

screening potential actives from a large database. 

Table 3. Enrichment factor (EF) values of each decoy dataset. 

Group 
Number of Hits/Size of Dataset EF 

Decoy Set Decoys Inhibitors 1% 2% 5% 10% 

1 2063/2804 2012/2750 51/54 11.56 7.89 5.50 3.34 
2 836/915 820/899 16/16 26.13 18.44 11.20 6.84 
3 1048/1121 1019/1092 29/29 14.46 10.33 8.34 6.54 
4 629/716 586/673 43/43 14.63 14.63 12.74 8.59 
5 737/773 728/764 9/9 0.00 10.92 6.64 3.32 
6 93/109 77/93 16/16 5.81 5.81 4.65 3.49 
7 542/593 519/570 23/23 23.57 17.14 9.60 4.80 
8 585/866 543/824 42/42 9.29 4.64 2.40 2.60 

Total 6533/7897 6304/7665 229/232 10.09 7.84 5.06 3.15 

 

Figure 5. EF curve of the whole decoys database. 

One application of our model is to perform virtual screening to find hits with desired activity from  

a large chemical database. After screening the SPECS database, 100 compounds were purchased for 

biological assay, and those with potential PAINS (Pan Assay Interference Compounds) structures [29] 

were excluded. Figure 6 illustrates the results of experimental assays. The selected compounds were 

firstly screened at 50 μM concentrations in vitro FGFR1 kinase assays, and 19 of them displayed ≥50% 

inhibition of FGFR1 at 50 μM compound concentration. Then, the 19 compounds were further tested at 
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10 μM compound concentration, and five compounds display ≥40% FGFR1 inhibition, i.e., compound 

56, 75, 88, 91, 97. Table 4 shows the structure and the inhibition ratios of these active compounds.  

To investigate the structural novelty of the hit compounds, we further compared the similarity between 

the hits and the all the reported active FGFR1 compounds from BindingDB. For each hit compound,  

the structure of the most similar known FGFR1 inhibitor in BindingDB (and the corresponding FCFP4 

similarity) is list in Table 4. The low similarity values highlighted that the hits identified in this study 

are of excellent structural novelty. In the end, the five compounds display ≥40% FGFR1 inhibition were 

further evaluated to determine their IC50 values against FGFR1 kinase. Among them, compounds 88, 91 

and 97 rapidly precipitated at higher concentrations due to poor solubility. Compounds 56 and 75 showed 

IC50 values of 7.9 and 55.5 μM, respectively. 

 

Figure 6. Inhibition ratio of FGFR1 at (A) 50 μM and (B) 10 μM compound concentrations. 
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Table 4. FGFR1 enzyme inhibition rate of hit compounds, and the corresponding most 

similar compounds from BindingDB. 

Compound  

ID 

Hit Compound  

Structure 

Inhibition (%) a 
Similar Structure in BindingDB Similarity b 

50 μM 10 μM 

6 

 

59.20 19.65 
 

0.25 

BindingDB4812 

42 

 

54.20 28.25 

 

0.27 

BindingDB50307880 

47 

 

51.80 33.20 

 

0.23 

BindingDB50421018 

53 
 

104.30 24.75 
 

0.37 

BindingDB50234144 

56 

 

80.60 54.00 

 

0.32 

BindingDB50420994 

75 

 

85.40 48.00 

 

0.26 

BindingDB50279238 

76 
 

56.80 29.15 0.29 

BindingDB13533 
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Table 4. Cont. 

Compound  

ID 

Hit Compound  

Structure 

Inhibition (%) a 
Similar Structure in BindingDB Similarity b 

50 μM 10 μM 

82 

 

63.40 27.30 

 

0.35 

BindingDB50121980 

83 

 

55.40 21.80 

 

0.32 

BindingDB3855 

88 
 

74.50 50.00 

 

0.35 

BindingDB3933 

89 53.00 24.95 

 

0.30 

BindingDB50431812 

91 

 

53.70 45.00 
 

0.30 

BindingDB50420968 

92 

 

57.10 15.75 

 

0.25 

BindingDB50185172 

93 

 

54.30 37.35 0.38 

BindingDB50185180 
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Table 4. Cont. 

Compound  

ID 

Hit Compound  

Structure 

Inhibition (%) a 
Similar Structure in BindingDB Similarity b 

50 μM 10 μM 

95 

 

86.40 18.30 

 

0.28 

BindingDB3051 

96 

 

83.70 2.80 

 

0.28 

BindingDB50279045 

97 

 

77.10 45.00 

 

0.28 

BindingDB11242 

98 

 

64.00 23.85 
 

0.28 

BindingDB50345445 

99 

 

52.30 27.45 
 

0.27 

BindingDB6619 

a Inhibition of FGFR1 activity at 50 and 10 μM concentrations of listed compounds. The results present an 

average value of two independent experiments performed in duplicate; b Similarities between hits and the 

corresponding most similarity compounds from BindingDB. 

3. Experimental Section 

3.1. Dataset 

A reasonable dataset is of great importance for model establishment and several criteria should be 

satisfied: (i) As many as possible compounds should be included to ensure the statistical significance;  

(ii) The range of biological activity should be wide enough; and (iii) The range of biological activity of 

the training set and the test set should be same or comparable [30]. The dataset used in this study was 

collected from the BindingDB database [31], which contains 1174 entries of experimentally measured 

IC50 of FGFR1 inhibition. Finally, a database containing 713 compounds was obtained after filtering 

redundancy. Then, the dataset was randomly divided into a training set (481 compounds) and a test set 

(232 compounds) using Discovery Studio 3.0 in a ratio of 2:1. As shown in Figure 7, the biological 

activity range and median value of training set and test set are similar, suggesting that the dataset we 

used for QSAR modeling was reasonable. 
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Figure 7. Biological activity range of training set and test set. 

In view of the structural diversity of FGFR1 inhibitors, it is unpractical to develop a single model to 

interpret all types of structure-activity relationships. To address the issue, the compounds in training set 

were firstly divided into different groups according to their core skeletons. If the number of compounds 

of a group was less than 15, the group was not taken into consideration due to less statistical significance. 

Finally, eight groups of FGFR1 inhibitors were generated (Table 5). BindingDB IDs of compounds in 

training set and test set are provided in Supplementary file 1. 

Table 5. Skeletons and number of molecules in training set and test set of each group. 

Group Skeleton Size of Training Set Size of Test Set 

1 

 

83 54 

2 

 

29 16 

3 

 

62 29 

4 99 43 

5 18 9 
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Table 5. Cont. 

Group Skeleton Size of Training Set Size of Test Set

6 

 

25 16 

7 20 23 

8 

 

39 42 

3.2. Pharmacophore Hypothesis Generation 

3.2.1. Conformation Analysis 

Pharmacophore hypotheses were generated using the Phase 3.1 implemented in the Maestro 9.0 

software package (Schrödinger, LLC). Phase translates the ligands into bit strings by applying a  

tree-based partitioning algorithm and distinguishes multiple binding modes using a bi-directional 

clustering approach [32]. Since pharmacophore modeling requires all-atom 3D structures to represent 

the active form of the inhibitor, it is crucial to consider a variety range of conformations so as to increase 

the possibility of finding the one close to the natural bound structure. Training ligands were firstly 

cleaned up to ensure the structures are in 3D, and the count ions and water molecules are excluded. 

Additionally, parameters were set to retain specified chiralities, generate a maximum of 32 stereoisomers 

and ionize at target pH 7.4. Once the clean-up ligand structures were generated, a conformational search 

was carried out using the ConfGen module of Maestro with default parameters, to generate a set of 

conformers for each structure. Potential energy calculation was carried out using the OPLS_2005 force 

field. An RMSD cutoff of 1.00 Å was used for eliminating redundant conformations. 

3.2.2. Generate Common Pharmacophore Hypothesis (CPH) 

This procedure contains two steps: (1) Create sites and (2) Find common pharmacophores.  

In order to develop reliable QSAR models, a training set should contain a widely range of biological 

activity including high active, moderate active and inactive molecules. The high active molecules were 

used for pharmacophore modeling, while all of molecules were for QSAR modeling and testing.  

In this study, pIC50 values greater than 7.0 were defined as highly active molecules, pIC50 values less 

than 5.0 were defined as inactive molecules and the remaining in-between values were considered to be 

moderately active. Pharmacophore sites for ligands including hydrogen bond acceptor (A), hydrogen 

bond donor (D), hydrophobic group (H), negatively charged group (N), positively charged group (P) and 

aromatic ring (R) were generated in the step of creating site. 
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In the step of finding common pharmacophores, pharmacophores of all actives were examined and 

those containing identical features with similar spatial arrangements were grouped together. In this 

section, CPHs with 4, 5 and 6 pharmacophore sites were considered. For most of the groups, all the 

actives must be matched to the CPH. However, if no CPH was found, the number of actives that must 

be matched would be reset as a number that is less than the total but higher than two-third of the total 

number of actives. With a tree-based partitioning technique, CPHs were searched according to their 

inter-site distance. 

3.2.3. Score Hypotheses 

The function of score hypothesis step measures the quality of alignment and provides a ranking of 

different hypotheses. The top 10% of the pharmacophore hypotheses were kept according to their 

survival score, which was combined by alignment score, vector score and volume score with specific 

weights. Ligands with vector scores above 0.5 Å and RMSD values of inter-site distances to the reference 

below 1.2 Å were retained. Then, the retained hypotheses were clustered to eliminate those that resemble 

each other or have very similar scores. One single representative for each cluster was retained for 

the followed QSAR modeling. 

3.3. Build QSAR Models 

The 3D-QSAR modeling can be classified into atom-based and pharmacophore-based types, in which 

the structure of ligand is represented by van der Waals models of atoms and pharmacophore features 

with a specified radius, respectively. The atom-based QSAR model may work well in the case of 

compounds that contain only limited structural flexibility or have some common structure features, 

whereas the pharmacophore-based QSAR models may be more appropriate when the structures are 

highly flexible and exhibit significant diversity [32]. In this study, an atom-based 3D-QSAR model was 

constructed for each group of compounds as the compounds share the same or similar scaffolds. There 

are six atom types in atom-based model: hydrogen-bond donor (D), hydrophobic or nonpolar (H), 

negative ionic (N), positive ionic (P), electron-withdrawing (includes hydrogen-bond acceptors, W), and 

miscellaneous (X). Each atom of a compound is assigned to a specific atom type and represented by a 

sphere with the van der Waals radius [19]. Then, cubes with 1 Å grid were defined to cover the space 

occupied by these aligned conformations, and then assigned to zero or ones based on whether the cube 

was occupied by atoms or sites. Thus, a molecule can be represented by a string of zeros and ones and 

treated as a pool of independent variables. Finally, QSAR models were built by adding PLS factors to 

these independent variables [32]. Here, the PLS factor was set to three to avoid over-fitting. A regression 

coefficient was assigned to each bit to facilitate the identification of specific chemical features that 

favorable or unfavorable to the activity. A leave-one-out (LOO) cross validation analysis was performed 

to evaluate the predictive ability of QSAR model. Finally, a series of 3D-QSAR models were generated. 

3.4. Construct Combinatorial 3D-QSAR Model 

In each group of inhibitors, multiple pharmacophore-based 3D-QSAR model candidates were 

generated. A filtering procedure was then performed to retain a single QSAR model for each group, 
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based on several statistic parameters, including R2, F, p and stability. Finally, the resulted eight 

pharmacophore-based QSAR models were used in combination when predicting the activity of a new 

compound. Since there are eight different QSAR models, a test compound can obtain different prediction 

values. Here, only one appropriate QSAR model was selected for one test compound, which was 

determined by the chemical similarity between the test compound and the training compounds used to 

establish the model. Given a test compound, it was compared to each compound in every group of the 

training set to calculate Tanimoto coefficient (Tc) of the pairwise chemical similarity. The averaged Tc 

values of 8 groups was then sorted, and the corresponding QSAR model of the group yielding the highest 

average Tc value was selected to predict the activity of the test compound. 

3.5. Model Validation 

The combinatorial QSAR model was firstly validated by an external test set with known activities. 

To further evaluate our model for virtual screening, namely, the ability of the combinatorial QSAR 

model in assigning high ranks to the known actives, a decoy dataset composed of 7665 compounds was 

collected from the SPECS database (http://www.specs.net) in a proportion of 36:1 to the test set, using 

DecoyFinder [33]. Of note here is that DecoyFinder may introduce potential biases for the ligand-based 

virtual screening, and it should be compared with other structure-based approaches with caution [34,35]. 

Compounds in the decoy dataset were also divided into 8 groups based on the similarity comparison 

described above. Each structure was subjected to ligand preparation using Ligprep and conformations 

generation using the ConfGen. The corresponding QSAR model was used to predict the activity using 

the “find matches to hypothesis” option, which finds matches from a database to a selected hypothesis 

and calculates activity if the hypothesis has a QSAR model. We then calculated enrichment factors 

(EF) of the decoy set to evaluate the ability of identifying actives from inactives. EF is calculated 

by Equation (1) [36]: 

s

s
t

t

s

s

Hit
NEF Hit

N

  (1)

where Hitss is the number of actives in the selected front fraction of the ranked list, Hitst is the quantities 

of actives in database, Ns is the total number of compounds in the selected fraction of the database and 

Nt is the quantities of compounds in database. 

3.6. Pharmacophore-Based Virtual Screening and 3D-QSAR Analysis 

In this study, the combinatorial 3D-QSAR model was used to virtually screen the commercial 

chemical SPECS database. Firstly, the database was filtered by Lipinski rule of 5 to ensure that the 

selected compounds have better drug-like properties; Secondly, the compounds were prepared using the 

same procedures in pharmacophore modeling, and each of them was assigned to a specific group for 

pharmacophore mapping. The mapped compounds were extracted for activity prediction using the 

combinatorial 3D-QSAR model; Finally, the top ranked 100 compounds with predicted activity more 

than 5.0 were purchased for experimental evaluation with enzyme assay. 
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3.7. Enzyme Assay 

Enzyme-linked immunosorbent assay (ELISA) was used for enzyme assay in this study. Immunoplates 

were coated with 125 mL/well of 20 mg/mL of enzyme reaction substrate Poly for 12–16 h at 37 °C. 

Wells were washed with 200 mL of T-PBS and dried. The reaction was initiated by the addition of  

50 μL FGFR1 kinase domains recombinant protein in a shaker after ATP buffer (49 μL) and diluted 

samples (1 μL) being loaded and samples incubated at 37 °C for one hour. The reaction was terminated 

by adding 100 μL PY99 antibody dilution to each well and incubated in a shaker for 0.5 h at 37 °C. 

The precipitations were washed three time with T-PBS. Then, 100 μL of HRP-conjugated goat  

anti-mouse antibodies were added and incubated in the same way. Following three washing cycles in 

T_PBS, the chromogenic reaction was induced by 100 mL/well of 2 mg/mL OPD developing solution, 

and the reaction was allowed to proceed for 1–10 min in the dark at 25 °C. The reaction was stopped 

with 50 μL of 2 M H2SO4 and absorbance at 490 nm was measured with VERSA max. The IC50 values 

were calculated by fitting with the parameter of the Hill equation. 

4. Conclusions 

FGFR1 is an important therapeutic target for various malignancies and disorders, and it has attracted 

a lot of attention from pharmaceutical companies and researchers to find novel FGFR1 inhibitors. 

In this study, we developed an effective strategy for identifying novel FGFR1 inhibitors using 

pharmacophore-based virtual screening and 3D-QSAR analyses. Various FGFR1 inhibitors were 

categorized into different groups based on their core structures, and each group was used for 

pharmacophore and 3D-QSAR modeling. Then, the resulted models were combined to construct  

a combinatorial 3D-QSAR model, where a new molecule must be assigned to a specific group based on 

similarity searching prior to the activity prediction using a particular 3D-QSAR model. The performance 

of the combinatorial 3D-QSAR model has been validated using an external test set and a large decoy 

dataset. Subsequently, the SPECS database was screened by multiple pharmacophores and 3D-QSAR 

predictions. Nineteen hits exhibited more than 50% FGFR1 inhibition at 50 μM concentration. Among 

the nineteen compounds, two compounds appeared over 50% inhibition of FGFR1 and five compounds 

displayed over 40% FGFR1 inhibition at 10 μM concentration. IC50 values of compound 56 and 

compound 75 were 7.9 and 55.5 μM, respectively. Although the activities are not strong compared to 

known FGFR1 inhibitors, these compounds possess novel scaffolds not previously reported as FGFR1 

inhibitors. Overall, the presented method is a useful alternative to traditional virtual screening methods, 

and the obtained active compounds provide new chemical starting points for further structural 

optimization of FGFR1 inhibitors. 
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