
Supplemental Information 

1. DeepCNF Model 

As shown in Supplemental Figure S1, DeepCNF consists of two modules: (a) the Conditional 

Random Fields (CRF) [17] module consisting of the top layer and the label layer; and (b) the deep 

convolutional neural network (DCNN) [20] module covering the input to the top layer. When only one 

hidden layer is used, this DeepCNF becomes Conditional Neural Fields (CNF), a probabilistic graphical 

model described in [19]. 

 

Figure S1. The architecture of DeepCNF, where ݅ is the residue index, ௜ܺ the associated 

input features, ܪ௞ represents the kth hidden layer, and ܻ is the output label. All the layers 

from the 1st to the top layer form a deep convolutional neural network (DCNN). The top 

layer and the label layer form a conditional random field (CRF).  ܹ௞{݇ = 1,2, … , ܷ  ,{ܭ  and ܶ  are the model parameters where ܶ  is used to model correlation among  

adjacent residues. 

1.1. Conditional Random Field (CRF) 

Given a protein sequence of length ܮ, let ࢅ = ( ଵܻ, … , ௅ܻ) denote its SS where ௜ܻ is the SS type at 

residue ݅. Let ࢄ = ( ଵܺ, … , ܺ௅) denote the input feature where ௜ܺ is a column vector representing the 

input feature for residue ݅. Using DeepCNF, we calculate the conditional probability of ࢅ on the input ࢄ as follows, 

(ࢄ|ࢅ)ܲ = exp൭෍ሾΨ(ࢅ, ,ࢄ ݅) + Φ(ࢅ, ,ࢄ ݅)ሿ௅
௜ୀଵ ൱ (1) (ࢄ)ܼ/

where Ψ(ࢄ,ࢅ, ݅) is the potential function quantifying correlation among adjacent SS types at around 

position ݅, Φ(ࢄ,ࢅ, ݅) is the potential function modeling relationship between ௜ܻ and input features for 

position ݅, and ܼ(܆) is the partition function. Formally, Ψ()	 and Φ() are defined as follows, Ψ(ࢄ,ࢅ, ݅) =෍ ௔ܶ,௕δ( ௜ܻ = ܽ)δ( ௜ܻାଵ = ܾ)௔,௕  (2)
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Φ(ࢅ, ,ࢄ ݅) =෍ ෍ ܷ௔,௠ܪ௠(ࢄ, ݅,ܹ)δ( ௜ܻ = ܽ)௠௔ (3)

where ܽ and ܾ represent secondary structure states, δ() is an indicator function, ܪ௠(ࢄ, ݅,ܹ) is a 

neural network function for the m-th neuron at position ݅ of the top layer, and ܹ, ܷ, and ܶ are the 

model parameters to be trained. Specifically, ܹ is the parameter for the neural network, ܷ is the 

parameter connecting the top layer to the label layer, and ܶ is for label correlation. Below see the details 

of the deep convolutional neural network for ܪ௠(ࢄ, ݅,ܹ). 

 

Figure S2. The feed-forward connection between two adjacent layers in the deep convolutional 

neural network. 

1.2. Deep Convolutional Neural Network (DCNN) 

Supplemental Figure S2 shows two adjacent layers. Let ܯ௞ be the number of neurons for a single 

position at the ݇-th layer. Let ௜ܺ(݉) be the ݉-th feature at the input layer for residue ݅ and ܣ௜௞(݉) 
denote the output value of the ݉-th neuron of position ݅ at layer ݇. When ݇ =  is actually the ࢑࡭ ,1

input feature ࢄ. Otherwise, ࢑࡭ is a matrix of dimension ܮ ௞. Let 2ܯ	× ௞ܰ + 1 be the window size at 

the ݇-th layer. Mathematically, ܣ௜௞(݉) is defined as follows. ܣ௜௞(݉) = ௜ܺ(݉),                                         if ݇ = (݉)௜௞ାଵܣ  ;1 = ℎ(∑ ∑ ௜ା௡௞ܣൣ (݉ᇱ) ∗ ௡ܹ௞(݉,݉ᇱ)൧ெೖ௠ᇲୀଵேೖ௡ୀିேೖ ),  if ݇ < ,ࢄ)௠ܪ  ;ܭ ݅,ܹ) = ݇ ௜௞(݉),                                   ifܣ =  ܭ

(4)

Meanwhile, ℎ() is the activation function, either the sigmoid (i.e., 1/(1 + exp(−ݔ))) or the tanh 

(i.e., (1 − exp(−2ݔ))/(1 + exp(−2ݔ)) ) function. ௡ܹ௞	  where (− ௞ܰ ≤ ݊ ≤ ௞ܰ)  is a 2D weight 

matrix for the connections between the neurons of position ݅ + ݊ at layer ݇ and the neurons of position ݅ at layer ݇ + 1. ௡ܹ௞(݉,݉ᇱ) is shared by all the positions in the same layer, so it is position-independent. 

Here ݉ᇱ and ݉ index two neurons at the ݇-th and (݇ + 1)-th layers, respectively. 
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Figure S3. Illustration of calculating the gradient of deep convolutional neural network from 

layer k + 1 to layer k. 

2. Training Method 

Similar to CRF [17], we train the model parameters by maximum-likelihood. The log-likelihood is  

as follows. 

logܲ(ࢄ|ࢅ) =෍ሾΨ(ࢅ, ,ࢄ ݅) + Φ(ࢅ, ,ࢄ ݅)ሿ௅
௜ୀଵ − logܼ(ࢄ) (5)

To train the model parameters, we need to calculate the gradient with respect to each parameter. We 

calculate the gradient first for CRF and then for DCNN. The gradient of the log-likelihood with respect 

to the parameters ܶ and ܷ is given by, ೌ்ߘ,್ = ൤෍ δ( ௜ܻ = ܽ)δ( ௜ܻାଵ = ܾ)௅௜ୀଵ ൨− ,ܷ,ܹ,෩ቚܺࢅ௉ቀܲܺܧ ܶቁ ൤෍ δ൫ పܻ෩ = ܽ൯δ൫ ෨ܻ௜ାଵ = ܾ൯௅௜ୀଵ ൨ (6)

௎ೌ,೘ߘ = ൤෍ δ( ௜ܻ = ,ࢄ)௠ܪ(ܽ ݅,ܹ)௅௜ୀଵ ൨− ,ܹ,ࢄ෩ቚࢅ௉ቀܲܺܧ ܷ, ܶቁ ൤෍ δ൫ ෨ܻ௜ = ܽ൯ܪ௠(ࢄ, ݅,ܹ)௅௜ୀଵ ൨	 (7)

where ܲܺܧ is the expectation function and can be calculated efficiently using the forward-backward 

algorithm [19]. As shown in Supplemental Figure S3, we can calculate the neuron error values at the ݇-th layer in a back-propagation mode as follows. ܧ௜௞(݉) = ((݉)௜௞ܣ)݃ ∗ ∑ (ܽ)௜ܧൣ ∗ ܷ௔,௠൧௔ ,                      if ݇ =   ;ܭ
where ܧ௜(ܽ) = ሾδ( ௜ܻ = ܽ)ሿ − ,ܷ,ܹ,ࢄ෩ቚࢅ௉ቀܲܺܧ ܶቁൣδ൫ ෨ܻ௜ = ܽ൯൧;  ܧ௜௞(݉) = ((݉)௜௞ܣ)݃ ∗ ∑ ∑ ௜ି௡௞ାଵ(݉ᇱ)ܧൣ ∗ ௡ܹ௞(݉ᇱ,݉)൧ெೖశభ௠ᇲୀଵேೖ௡ୀିேೖ ,     if ݇ <  ܭ

(8)

where ݃() is the derivative of the activation function; it is ݃(ݔ) = (1 − (ݔ)݃ and ݔ(ݔ = 1 −  ଶ forݔ

the sigmoid and tanh function, respectively. ࢑ࡱ is the neuron error value matrix at the ݇-th layer, with 

dimension ܮ  ௜(ܽ) is the error of the log-likelihood function with respect to the label at the ݅-thܧ .௞ܯ	×
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position and can be calculated by the forward-backward algorithm. Finally, the gradient of the parameter ܹ at the ݇-th layer is: ߘௐ೙ೖ(௠,௠ᇲ) =෍ (݉)௜௞ାଵܧൣ ∗ ௜ା௡௞ܣ (݉ᇱ)൧௅௜ୀଵ  (9)

3. L2 Regularization and L-BFGS 

To reduce over-fitting, the log-likelihood objective function is penalized with a L2-norm of the model 

parameters. Thus, our final objective function is as follows. max஘ log ஘ܲ(ࢄ|ࢅ) − λ‖θ‖ଶ (10)

where θ is the set of model parameters and λ is the regularization factor used to avoid overfitting. 

Although DeepCNF has a large number of model parameters, by setting the regularization factor large 

enough, we can make the L2-norm of the model parameters small and thus, restrict the search space of 

the model parameter and avoid overfitting. However, a very large regularization factor (e.g., infinity) 

may restrict the model parameter into too small a search space and the resultant model may not  

learn enough from the training data (i.e., under-fitting). We will determine the regularization factor  

by cross-validation. 

Since the log-likelihood function is not convex, usually we can only solve the objective function to a 

local instead of global optimum. Although a typical way to train a deep network is to do it layer-by-layer, 

in our implementation we train all the model parameters simultaneously. We use the L-BFGS [42] to 

search for the optimal model parameters, which has also been successfully used to train CRF and CNF. 

In addition to learning the model parameters simultaneously, we can also train them layer-by-layer in a 

supervised mode. Starting from the first layer (i.e., input feature), we train the model parameter	ܹ1 by 

removing the third to the ܭ-th layers but keeping the label layer. After ܹ1 is trained, we generate the 

neuron output values for the second layer and use them as input to train the model parameter ܹ2 by 

removing the fourth to the ܭ-th layers but keeping the label layer. We repeat this procedure until all the 

parameters are trained, and finally we fine-tune these parameters by simultaneous training. 


