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Abstract: Cisplatin is a clinically important chemotherapeutic agent known to target purine 

bases in nucleic acids. In addition to major deoxyribonucleic acid (DNA) intrastrand  

cross-links, cisplatin also forms stable adducts with many types of ribonucleic acid (RNA) 

including siRNA, spliceosomal RNAs, tRNA, and rRNA. All of these RNAs play vital roles 

in the cell, such as catalysis of protein synthesis by rRNA, and therefore serve as potential 

drug targets. This work focused on platination of two highly conserved RNA hairpins from 

E. coli ribosomes, namely pseudouridine-modified helix 69 from 23S rRNA and the  

790 loop of helix 24 from 16S rRNA. RNase T1 probing, MALDI mass spectrometry, and 

dimethyl sulfate mapping revealed platination at GpG sites. Chemical probing results also 

showed platination-induced RNA structural changes. These findings reveal solvent and 

structural accessibility of sites within bacterial RNA secondary structures that are 

functionally significant and therefore viable targets for cisplatin as well as other classes of 

small molecules. Identifying target preferences at the nucleotide level, as well as determining 

cisplatin-induced RNA conformational changes, is important for the design of more potent 

drug molecules. Furthermore, the knowledge gained through studies of RNA-targeting by 

cisplatin is applicable to a broad range of organisms from bacteria to human. 
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1. Introduction 

Since its discovery as an anticancer agent in the 1960s, cis-diamminedichloridoplatinum(II), or 

cisplatin, has been used to treat a variety of human carcinomas [1,2]. The cytotoxic activity of this 

platinum-based compound is believed to be associated with deoxyribonucleic acid (DNA) lesions that 

influence key cellular functions [2]. Cisplatin is a neutral molecule that becomes positively charged upon 

displacement of a chlorido ligand with water to form the active monoaquated complex 1 (Figure 1) [3,4]. 

The positive charge on 1 directs it to negatively charged nucleic acids. The active species coordinates to 

the N7 of purine bases and forms stable adducts on DNA [5,6]. Although DNA is considered to be the 

major target of cisplatin, ribonucleic acid (RNA) and proteins are also susceptible to platinum-adduct 

formation [7–11]. Recent studies directed towards understanding RNA-cisplatin interactions have 

revealed that different cellular RNAs are targets of cisplatin and its analogs [12–18]. 

 

Figure 1. Cisplatin and model rRNA constructs. (a) Cis-diamminedichloridoplatinum(II) 

forms cis-diammine(aqua)chloridoplatinum(II), 1, in water by displacement of a chlorido 

ligand; (b) Three RNA constructs were used: unmodified H69 with uridines at 1911, 1915, 

and 1917 (E. coli numbering); modified H69 containing pseudouridine (Ψ) at the same 

positions; and the 790 loop. The 790 loop contains an additional G-C base pair (782–800). 

The base structure of Ψ is compared to uridine. 

Previous studies to determine the Pt(II) distribution in cells indicated rRNA as one of the major targets 

of cisplatin [16]. Cisplatin and several of its analogs also impact ribosome-related activities such as 

subunit association and translation [8,9,11]. In addition, cisplatin cytotoxicity was shown to be 

modulated by compounds that target the ribosome and inhibit protein synthesis [19]. Therefore, even if 

the ribosome itself does not have a direct role in the anticancer activity of cisplatin, it may mediate drug 

toxicity and resistance. In contrast to work with DNA, the RNA-Pt(II) adducts have not been well 

characterized. Due to differences in their secondary structures, such as groove widths, sugar puckers, 

and backbone phosphate-phosphate distances, DNA and RNA may have different adduct profiles and/or 

nucleotide preferences. Although rRNA also has a complex tertiary structure, X-ray crystallographic and 

NMR studies have shown that several of its secondary structure motifs are in fact good representations 

of the full-length rRNA structures within the contexts of individual subunits, including dynamic 
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structural changes that occur upon drug binding or subunit association [20,21]. The goal of this study 

was to examine several functionally important motifs that reside in the subunit interface and are known 

to play key roles in protein synthesis as well as drug interactions. The chosen motifs also have highly 

conserved sequences that include GpG sites, which are predicted to be targets of cisplatin. In this case, 

bacterial models were employed due to the availability of high-resolution X-ray structures as well as 

solution structures [22–24]; however, we believe that the results regarding adduct preferences can be 

applied to other organisms because of high rRNA sequence conservation across phylogeny. 

In this work, reactions of complex 1 with three rRNA constructs representing helix 69 (H69) and the 

790 loop of E. coli ribosomes were carried out (Figure 1). Ribosomes have three important functional 

regions, namely the decoding region, the peptidyltransferase center, and the subunit interface, which all 

involve unique RNA structural motifs [22,25]. At the subunit interface, helix 69 in the large subunit and 

the 790 loop of helix 24 (h24) in the small subunit both play key roles in translation. Helix 69 is located 

in domain IV of bacterial 23S rRNA and has a highly conserved nucleotide sequence [26]. Together 

with helix 44 of the small subunit, H69 forms bridge B2a of complete 70S ribosomes [25]. Moreover, 

H69 is involved in translation initiation and ribosome recycling [27–29]. Studies on small RNA 

constructs, as well as full-length 23S rRNA in 50S and 70S ribosomes, showed that H69 undergoes 

conformational changes that are dependent upon the natural pseudouridine (Ψ, Figure 1) modifications at 

positions 1911, 1915, and 1917 (E. coli numbering) [30–32]. The 790 loop is located in the central domain 

of 16S rRNA and also contains a highly conserved nucleotide sequence [33]. Previous studies revealed 

that this region is exposed on the surface of the 30S subunit and directly involved in subunit association 

and translation initiation [24,34–36]. Both of these RNA motifs are known target sites for small 

molecules [37,38]. 

A combination of chemical and enzymatic probing can be used to interrogate modified or metalated 

RNAs. RNase T1 causes hydrolysis of the RNA backbone at G residues [39]. Dimethyl sulfate (DMS) 

reacts primarily with G N7, A N1, and to a lesser extent C N3 sites [40]. Further chemical treatment with 

sodium borohydride and aniline leads to strand scission at G sites that are modified at N7. Either  

matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI MS) or 32P-end 

labeling combined with denaturing polyacrylamide gel electrophoresis can be used to identify the 

number of platination events as well as the sites of adduct formation on RNA fragments. 

The influence from pseudouridine (Ψ) modifications on platination of rRNA was also investigated by 

using the model rRNA hairpins. Platination of unmodified H69, which contains uridines at positions 

1911, 1915, and 1917 (E. coli numbering), was compared to that of modified H69 possessing Ψs at the 

same positions. The impact of nucleotide sequence on cisplatin coordination was evaluated by using the 

790 loop, which contains an identical type and number of nucleotides (A5G5U4C5) as unmodified H69. 

Our results revealed that complex 1 forms two adducts with H69 RNAs and one adduct with the 790 

loop. Mass spectrometry, RNase T1 digestion, and chemical-probing analysis suggested consecutive Gs 

as the most plausible platination sites in all three rRNA hairpins. The DMS-probing experiments also 

revealed structural changes induced by cisplatin coordination to the H69 rRNA hairpins. This work 

suggests that H69 rRNA and the 790 loop are potential cisplatin targets in E. coli ribosomes, and adduct 

formation could possibly interfere with ribosome function and contribute to drug cytotoxicity in bacteria as 

well as other organisms due to high sequence conservation. 
  



Int. J. Mol. Sci. 2015, 16 21395 

 

 

2. Results and Discussion 

2.1. Matrix-Assisted Laser Desorption-Ionization Time-of-Flight (MALDI) Mass Spectrometry and 

RNase T1 Mapping Studies 

A number of studies revealed RNA as a target for platinum-based drugs, as well as other drug classes. 

In this study, the coordination of cisplatin with three 19-nucleotide model rRNAs hairpins representing 

E. coli H69 (unmodified and modified) and the 790 loop was investigated. Comparisons were made with 

unmodified H69 to determine whether Ψs (modified H69) or altered nucleotide sequences (790 loop) 

would influence platination. The data indicate minimal influence of Ψs and sequence for platination 

target selectivity; however, structural and/or stability effects on residues distant to the target sites were 

observed, and a possible sequence influence to this effect was identified. 

Platination was carried out between complex 1 and rRNA hairpins, and the products were isolated by 

gel electrophoresis and characterized by MALDI MS to first determine the number of adducts. Mass 

data were collected in the positive-ion mode, and analysis of the H69 and 790 RNAs produced [M + H]+ 

and [M + 2H]2+ peaks. The experimental and expected masses of full-length RNA molecules are listed 

in Table 1 and shown in Figures 2–4. Following the reaction with complex 1, two molecular ion peaks 

([M + Pt-H]+ or [M + 2Pt-3H]+) were observed for both unmodified and modified H69 (Figures 2 and 3, 

respectively). Platination of the 790 loop produced a single molecular ion peak ([M + Pt-H]+) (Figure 4). 

The experimental masses obtained correspond well to the predicted masses. An increase in mass by 229 

or 458 Da corresponds to coordination of one or two Pt(NH3)2 moieties to the RNA, respectively, with 

loss of the aqua and chlorido ligands, indicating one or two platination sites for each RNA [41,42]. This 

observation is supported by the addition of a Pt(NH3)2 group to DNA detected by MALDI MS [43,44]. 

Next, platination sites were determined through RNase T1 digestion. Mass increases for the fragments 

obtained from enzyme digestion of platinated RNAs indicated the general locations of the adducts.  

The experimental and expected masses of the RNase T1 fragments are listed in Table 1 and shown in 

Figures 2–4. RNase T1 digestion occurs via a 2′,3′–cyclic phosphate intermediate [39]. Therefore, under 

partial digestion conditions, RNase T1 treatment led to RNA fragments containing either a 2′, 3′, or  

2′,3′–cyclic phosphate (indicated as >p). The digestion of H69 RNA produced mass peaks corresponding 

to fragments CCG>p, (U/Ψ)AAC(U/Ψ)A(U/Ψ)AACG>p, and CCGΨAACΨAΨAACG>p (in modified 

H69 only). RNase T1 digestion of the 790 loop generated mass peaks assigned as fragments CAG>p, 

AUUAG>p, and AUACCCUG>p. In contrast, the mass spectrum obtained after treatment of  

platinated H69 RNAs revealed two new peaks corresponding to GGCCG>p + Pt(NH3)2 and 

(U/Ψ)AAC(U/Ψ)A(U/Ψ)AACGGUC + Pt(NH3)2. RNase T1 digestion of the platinated 790 loop 

produced a new peak corresponding to CAGGAUUAG>p + Pt(NH3)2. The production of RNase T1 

fragments CCG>p, (U/Ψ)AAC(U/Ψ)A(U/Ψ)AACG>p, and CCGΨAACΨAΨAACG>p (modified H69 

only) of H69 RNAs indicated G1907, G1910 and G1921 as the enzyme cleavage sites (Figures 2 and 3). 

In contrast, the absence of fragments resulting from cleavage between G1906-07 or G1921-22, as well 

as production of GGCCG>p and (U/Ψ)AAC(U/Ψ)A(U/Ψ)AACGGUC fragments with a 229 Da mass 

increase, indicated G1906-07 and G1921-22 as the most plausible platinum target sites on H69 RNAs. 

The production of GGCCG>p with Pt(NH3)2 revealed that G1910 was still available for RNase T1 

cleavage and not a likely platination site. Combined, these results demonstrated that the presence of Ψ did 
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not alter the site preference of 1 for H69 RNAs, and GpGs were the most likely platination sites in these 

rRNA hairpins. 

The production of CAG>p, AUUAG>p and AUACCCUG>p fragments by RNase T1 digestion on 

the 790 loop indicated G782, G785, G786, G791, and G799 as the enzyme cleavage sites (Figure 4). 

Following platination and digestion of the 790 loop, the AUACCCUG>p fragment was observed, 

indicating cleavage at G791 and G799. In contrast, the intensity of the AUUAG>p fragment peak 

diminished, suggesting blockage of RNase T1 cleavage at G786. Production of the CAGGAUUAG>p 

fragment with an increased mass of 229 Da, and blocked RNase T1 cleavage with concomitant loss of 

the CAG>p fragment suggested platination at G785-86. The reaction at G782 was not blocked, thus 

platination at this site is not likely. All of the RNase T1 fragments resulting from platinated RNA 

digestion contain consecutive G residues (G1906-G1907 and G1921-G1922 on H69, and G785-G786 

on the 790 loop), revealing that GpG sites are preferred for complex 1 coordination to the studied rRNA 

constructs. However, we could not rule out GpA as a potential reactive site by this approach. 

Table 1. Predicted and experimental masses of unmodified H69, modified H69, and 790 

loop RNA (parent strands, platinated products, and RNase T1 digestion fragments). 

Construct [RNA]+ 
Predicted Mass a  

m/z 
Experimental Mass 

m/z 

unmodified H69 

Parent strand + H+ 6061.7 6061.3 

Parent strand + [Pt(NH3)2]2+ − H+ 6288.7 6287.9 

Parent strand + 2[Pt(NH3)2]2+ − 3H+ 6515.7 6514.9 

5′CCG>p3′ + H+ 956.6 957.2/956.9 b 

5′UAACUAUAACG>p3′ + H+ 3521.1 3521.8 

5′GGCCG>p3′ + [Pt(NH3)2]2+ − H+ 1873.9 1874.7 

5′UAACUAUAACGGUC3′ + [Pt(NH3)2]2+ − H+ 4642.7 4642.5 

modified H69 

Parent strand + H+ 6061.7 6061.1 

Parent strand + [Pt(NH3)2]2+ − H+ 6288.7 6288.1 

Parent strand + 2[Pt(NH3)2]2+ − 3H+ 6515.7 6515.0 

5′CCG>p3′ + H+ 956.6 957.0/957.0 b 

5′ΨAACΨAΨAACG>p3′ + H+ 3521.1 3521.9 

5′CCGΨAACΨAΨAACG>p3′ + H+ 4476.7 4476.8 

5′GGCCG>p3′ + [Pt(NH3)2]2+ − H+ 1874.0 1874.6 

5′ΨAACΨAΨAACGGUC3′ + [Pt(NH3)2]2+ − H+ 4642.7 4642.7 

790 loop 

Parent strand + H+  

Parent strand + [Pt(NH3)2]2+ − H+ 

6061.7  

6288.7 

6061.5  

6287.4 

5′CAG>p3′ + H+ 980.6 981.0 

5′AUUAG>p3′ + H+ 1616.9 1617.4/1617.7 b 

5′AUACCCUG>p3′ + H+ 2532.5 2532.9/2533.4 b 

5′CAGGAUUAG>p3′ + [Pt(NH3)2]2+ − H+ 3168.7 3169.9 
a The expected mass values for the parent RNA constructs and the digestion fragments were obtained from 

Mongo Oligo Calculator v2.06 (http://mods.rna.albany.edu/masspec/Mongo-Oligo); b m/z values correspond 

to fragments derived from unplatinated/platinated RNA. The production of cyclic phosphates at the 3′ ends (or 

2′ or 3′ phosphates) from RNase T1 digestion is denoted as >p. 
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Figure 2. Mass analysis of platinated unmodified H69 is shown. Mass spectra of  

(a) unmodified H69 parent RNA (unplatinated H69); (b) RNase T1 digestion of unplatinated 

H69; (c) platinated unmodified H69; and (d) RNase T1 digestion of platinated unmodified 

H69 are given. Arrows indicate RNase T1 cleavage sites. 

 

Figure 3. Mass analysis of platinated modified H69 is shown. Mass spectra of (a) modified 

H69 parent RNA (unplatinated RNA); (b) RNase T1 digestion of unplatinated H69;  

(c) platinated modified H69; and (d) RNase T1 digestion of platinated modified H69 are 

given. Arrows indicate RNase T1 cleavage sites. 
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Figure 4. Mass analysis of platinated 790 loop is shown. Mass spectra of (a) 790 loop parent 

strand (unplatinated 790 loop); (b) RNase T1 digestion of unplatinated 790 loop;  

(c) platinated 790 loop; and (d) RNase T1 digestion of platinated 790 loop are shown. 

Arrows indicate RNase T1 cleavage sites. 

2.2. Dimethyl Sulfate Probing of Platination Sites 

Guanine-specific chemical reactions were carried out to provide further evidence of platination of the 

H69 and 790 loop RNAs at nucleotide resolution. The RNAs were treated with DMS to methylate the 

accessible G N7 positions followed by sodium borohydride and aniline treatments to initiate strand 

scission and allow identification of the modified sites [45]. In cisplatin reactions with DNA, platination 

occurs at G N7 [5]. Therefore, similar adduct formation on H69 or the 790 loop was expected to prevent 

DMS methylation and cause a disappearance of cleavage bands in sequencing gels [12,46]. 

DMS probing was carried out on unplatinated and platinated versions of H69 and the 790 loop. 

Autoradiograms of 20% denaturing polyacrylamide gels containing DMS-treated, 3′-end-labeled RNA 

constructs are shown in Figure 5. Bands corresponding to G1921 and G1922 of H69 and G785 and G786 

of the 790 loop were diminished significantly in the DMS-treated platinated RNA samples (Figure 5, 

panels a–c; see lane 3 compared to lane 4). Due to poor band resolution at the 5′ end of the 3′-labeled 

RNA, DMS probing was also carried out using 5′-labeled H69 RNAs, which revealed platination at 

G1906 and G1907 (Figure 6; panel a, lane 2; panel b, lane 6). DMS treatment led to methylation and 

cleavage at G1910 for both platinated and unplatinated H69 (Figure 5, panels a and b, lanes 3 and 4), 

indicating that G1910 is not a platination site, although it should be noted that the cleavage products 

shift (i.e., slower mobility) due to presence of the platinum adduct at the 5′ end. Similarly, DMS 

treatment of the 790 loop produced a cleavage band at G791 (Figure 5, panel c, lanes 3 and 4), indicating 

the absence of a platinum adduct at this site. In this case, the DMS-cleavage products of both  

platinum-treated and non-treated samples were observed to co-migrate, since these RNA fragments did 

not contain any platinum adducts. Together, these results support a model in which complex 1 reacts 

preferentially at consecutive Gs in RNA (G1906-G1907 and G1921-G1922 for H69 and G785-G786 for 

the 790 loop) and forms stable bis-adducts (intrastrand adduct type 1,2-GpG), as observed with DNA 

(1,2-d(GpG)) [47]. 
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Figure 5. DMS probing of H69 and the 790 loop is shown. Autoradiograms show the  

results for 3′-end-labeled (a) unmodified H69; (b) modified H69; and (c) 790 loop  

(T1: RNase T1 reaction on unplatinated RNA; AH: alkaline hydrolysis ladder on 

unplatinated RNA). Note that T1 and AH fragments migrate slower than the DMS products 

due to different chemical composition of the ends (5′ OH vs. 5′ phosphate, respectively).  

In panels a and b, the fragments corresponding to DMS reaction and cleavage at G1910 

migrate more slowly in lane 3 compared to lane 4 because of the presence of the platinum 

adduct. Guanine residues that show slower mobility (dots) or decreased DMS reactivity 

(boxes) due to platination are indicated in red. 
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Figure 6. Dimethyl sulfate (DMS) probing of H69 using 5′-labeled RNA is shown. 

Autoradiograms show the DMS-probing results on 5′-end-labeled (a) unmodified H69 and 

(b) modified H69 (T1: RNase T1 reaction on unplatinated RNA; AH: alkaline hydrolysis 

ladder on unplatinated RNA). Guanine residues that show differences due to platination are 

indicated with red boxes. Residue A1918/19 (circled) is more sensitive to DMS reactivity 

following platination. 

In the determination of platinum-coordination sites on 3′-labeled H69 through DMS reactions, 

unexpected hydrolysis (likely due to contaminating RNases, although highly reproducible) was observed 

at U/Ψ1915 and U/Ψ1917 (Figure 5, panels a and b, lanes 4 and 5). The hydrolysis mechanism for these 

two products is supported by the fact that the bands migrate with the alkaline hydrolysis products in  

lane 2. Hydrolysis at these sites did not occur on the platinated H69 (Figure 5; panel a, lanes 3 and 6; 

panel b, lanes 3 and 7), suggesting that platination alters the structure of H69 at or near these residues. 

In contrast, reactivity at U/Ψ1911 and A1913 was observed in DMS probing of 5′-labeled H69 for both 

platinated and unplatinated RNAs (Figure 6; panel a, lanes 2 and 3; panel b, lanes 6 and 7), indicating a 

minimal influence of platination on DMS-sensitivities of these nucleotides. However, a new fragment 

band corresponding to either A1918 or A1919 appeared in the DMS-treated, platinated H69 RNA 
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samples (Figure 6; panel a, lane 2; panel b, lane 6). Collectively, these observations demonstrate that 

certain H69 residues become either more or less reactive towards DMS, as well as having altered 

sensitivity to hydrolysis, following platination with complex 1, indicating different responses of the 

RNA nucleotides to drug binding. 

The observation that residues in H69 have altered DMS or RNase sensitivity upon platination 

suggests that structural alterations in the hairpin loop region have occurred. This effect on the loop 

residues upon cisplatin coordination at distant stem GpG sites is not surprising since platination of DNA 

causes significant distortion of the backbone [48]. In addition, other drug molecules have been shown to 

bind to the H69 stem and cause structural changes in the loop region. Aminoglycoside binding to a  

2-aminopurine-modified H69 was shown to affect the loop nucleotides, in which residue A1913 became 

more solvent exposed [49]. These results were consistent with X-ray crystal structures of bacterial 70S 

ribosomes with neomycin bound to the stem region of H69 near residues G1906, 1921, and 1922 and 

base exposure of A1913 (Figure 7) [50]. Therefore, complex 1 coordination to the same residues, as 

revealed in the present study, could induce structural changes in H69 in both the stem and loop regions. 

In the 2-aminopurine modified H69 studies, structural changes in the loop region were prominent only 

for the modified H69 (Ψ containing), whereas in the current work, platination of both unmodified and 

modified H69 RNAs caused similar effects on the loop (i.e., altered DMS or RNase sensitivity). These 

results support the expected conclusion that impacts on RNA conformation would depend on the drug 

types and their binding modes, particularly with respect to specific nucleotide contacts. 

 

Figure 7. The interactions of H69 with neomycin are shown. Neomycin (cyan) interacts 

through H69 residues G1906, G1921, and G1922. Residue A1913 is flipped out from the 

loop. The residues that coordinate to cisplatin are shown in grey and the remaining residues 

are in blue. The figure was created by using PDB file 4GAQ [50]. 
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Many structural effects such as bending, unwinding, helix destabilization, and base destacking have 

been shown to result from cisplatin binding to DNA [51]. Likewise, the current study showed structural 

changes due to cisplatin coordination to the rRNA hairpins. The structural effects of platination on  

DNA have been suggested to interfere with replication, transcription, and repair. Similarly, the structural 

effects of platination on rRNA could interfere with protein synthesis and impact drug cytotoxicity. The 

modified and unmodified H69 RNAs gave similar results for reactions with complex 1 in which stem 

GpG sites were targeted. The two target GpG sites in H69 are involved in either G-C or GU pairs within 

a duplex region. Similar reactivity was observed with the 790 loop in which a stem GpG site was 

targeted, although only one adduct was identified in this case. Unmodified H69 and the 790 loop have 

identical types and numbers of nucleotides (A5G5U4C5), but different sequences, with the 790 loop 

containing one and H69 having two GpG sites. Chemical probing of both H69 RNAs showed  

platination-induced DMS sensitivity in the loop region, whereas no such effect was observed for the 790 

loop. Furthermore, probing of modified and unmodified H69 revealed that these two constructs have 

similar reactivities with complex 1 and DMS, suggesting similar solvent accessibilities and chemical 

properties. Therefore, unlike the case of aminoglycosides, a minimal influence from pseudouridines on 

structural changes induced by cisplatin coordination was seen. Collectively, these data indicate a greater 

impact of the primary nucleotide sequences than the modified nucleotides on platination and subsequent 

secondary structural rearrangements. 

Structural flexibility of H69 and h24 is important during protein synthesis as both motifs are involved 

in forming intersubunit bridges [25]. H69 compresses by ~5 Å to maintain the intersubunit contact during 

the ratchet-like movement in protein synthesis, and stabilization of the compressed form by neomycin 

binding is suggested to interfere with translocation [37,52]. Similarly, bridge B2b formed between h24 

and H67/H69 likely needs to be maintained during various stages of translation. Drug binding to key 

residues involved in these intersubunit contacts could alter the conformational states of these dynamic 

motifs and inhibit protein synthesis [38]. Therefore, both sequence and pseudouridine-dependent  

drug-induced (e.g., aminoglycosides or cisplatin) structural changes in rRNA are likely to impact the 

translation process. 

The initial goal of this work was to compare two rRNA hairpins with the same nucleotide content 

(i.e., A5G5U4C5) and similar locations at the subunit interface. It should be noted, however, that prior 

work to identify platination sites by complex 1 on E. coli 16S rRNA (in the context of free RNA, 30S 

subunits, and 70S ribosomes) through primer extension analysis also suggested adduct formation at  

the G786 site within the 790 loop. In contrast, the primer extension method could not confirm the  

bis-adduct (e.g., GpG) as revealed in the current work through MALDI MS and DMS probing [14]. 

Furthermore, in the earlier work on 16S rRNA, G786 was a minor site compared to stronger reactivity 

by complex 1 at G799/G800, which reside at a helix-loop junction. The minor reactivity at G786 was 

also not observed in the context of complete 70S ribosomes. The neighboring G800 residue was not 

present in the model 790 hairpin used in this work, suggesting that cisplatin may prefer GpG sites in 

more accessible secondary structure motifs compared to the stem regions [14,53]. These comparisons 

also indicate that complex 1 interactions with rRNA are dependent on the context (e.g., individual 

subunits vs. complete ribosomes), thus supporting the hypothesis that the structure of these sites varies 

with subunit association. Similarly, platination of rRNA at functionally important sites could cause 

distortions of secondary structure motifs and/or impact RNA structural dynamics, therefore interfering 
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with subunit association, ribosome function, and drug cytotoxicity. Interestingly, recent studies by 

Hostetter and coworkers showed higher platination events on cellular RNA (also with an emphasis on 

rRNA) compared to DNA in yeast [16]. Similar investigations with mammalian cells combined with 

“click”-modified analog reactions to isolate the platinated species [54] and high-throughput sequencing 

approaches [55] will allow determination of the locations of platinum adducts on a much broader  

range of RNAs (e.g., mRNA, non-coding RNAs, etc.) as well as a better understanding of their  

biological impacts. 

3. Experimental Section 

3.1. Buffers 

Standard aqueous buffer solutions were prepared from KH2PO4 and K2HPO4 (Fisher Scientific, 

Waltham, MA, USA), NaClO4 (Sigma, Saint Louis, MO, USA), and Millipore water (ddH2O). The 

following buffers were employed: buffer A (10 mM KH2PO4/K2HPO4, pH 6.2, 20 mM NaClO4), buffer 

B (10 mM KH2PO4/K2HPO4, pH 6.2, 20 mM NaCl), 10× TBE (89 mM Tris-HCl, 89 mM boric acid,  

2.5 mM EDTA, pH 8.3), and denaturing loading buffer (0.1% bromophenol blue, 0.1% xylene cyanol,  

1× TBE, 8 M urea). 

3.2. Metal Complexes 

Cisplatin, cis-[PtCl2(NH3)2], was obtained from Alfa Aesar (Ward Hill, MA, USA). Silver nitrate was 

purchased from Fisher Scientific. Dimethylformamide (DMF) was obtained from Acros Organics.  

The activated complex cis-[PtCl(NH3)2X]+/°, in which X is DMF or NO3
−, was prepared by mixing 1:1 

equivalents of cisplatin and AgNO3 dissolved in DMF and agitating in the dark overnight at 37 °C [56]. 

The resulting AgCl precipitate was removed by repeated centrifugation. For all studies, the activated 

(monoaquated) complex 1 was freshly prepared by dilution of cis-[PtCl(NH3)2X]+/° to intermediate stock 

concentrations with water just prior to the experiments. 

3.3. Nucleic Acids 

All RNA constructs were obtained from Thermo Fisher Scientific. Concentrations of RNA solutions 

were calculated using the absorbance at 260 nm and single-stranded extinction coefficients obtained  

by the nearest-neighbor approach (H69 modified or unmodified ε260 nm = 189,400 M−1·cm−1; 790 loop  

ε260 nm = 188,800 M−1·cm−1) [24,30]. 

3.4. End Labeling of Ribonucleic Acid (RNA) Constructs 

RNA constructs were radiolabeled at the 3′ end with T4 RNA ligase (New England Biolabs, Ipswich, 

MA, USA) and [5′-32P]-pCp (Perkin-Elmer Life Sciences, Inc., Waltham, MA, USA) [57]. The labeling 

was performed in T4 RNA ligase buffer (50 mM Tris-HCl, pH 7.5, 10 mM MgCl2, 1 mM dithiothreitol) 

with 50 pmol RNA, 10 μCi of [5′-32P]-pCp, 12 units of T4 RNA ligase, and 1 mM ATP in a 30 μL 

reaction at 4 °C overnight. Labeled RNAs were ethanol precipitated and purified on 20% denaturing  

(8 M urea) polyacrylamide gels. The labeled products were visualized by autoradiography, then excised 
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and eluted by the “crush and soak” method in 350 mM NaOAc, pH 5.3, 0.1 mM EDTA buffer overnight 

at 4 °C. The extracted RNAs were desalted over C18 Sep-Pak cartridges (Waters, Milford, MA, USA). 

RNA constructs were 5′-end labeled in T4 polynucleotide kinase buffer (70 mM Tris-HCl, pH 7.6, 

10 mM MgCl2, 5 mM dithiothreitol) (New England Biolabs) with 10 μCi of [γ-32P]-ATP  

(Perkin-Elmer Life Sciences, Inc., Waltham, MA, USA) and 3 units of T4 polynucleotide kinase  

(New England Biolabs) in a total volume of 30 μL [58]. After incubation at 37 °C for 30 min, the RNAs 

were ethanol precipitated and purified as described for 3′-end labeling. 

3.5. Large-Scale Platination and RNase T1 Mapping 

The platination reactions of all RNA constructs for RNase T1 mapping studies were performed in 

buffer B. Prior to platination, the RNAs were renatured by placing the sample tubes in a boiling water 

bath for 2 min followed by placement on ice. Platination was carried out in the dark at 37 °C for 5 h with 

a 1:2 ratio of RNA:complex 1 and 3 nmol RNA (90 μM complex 1). The RNA products were separated 

on 20% denaturing polyacrylamide gels. The RNA bands were visualized by UV shadowing and excised 

from the gel. Bands with slower mobility than the unmodified RNAs were assigned as the platinated 

products. The platinated RNA products were eluted in 550 mM NH4OAc, pH 5.5, 0.1 mM EDTA buffer 

and desalted in C18 Sep-Pak cartridges. RNase T1 digestion of platinated and unplatinated RNAs was 

performed in water for 20 min at 37 °C using 1 unit of enzyme (Sigma). Digested samples were dried 

and resuspended in deionized water, mixed with saturated 3-hydroxy picolinic acid in 50% acetonitrile, 

and spotted on a MALDI plate. MALDI-MS analysis was performed on a Bruker Daltonics TOF-300 

MALDI Ultraflex instrument equipped with a nitrogen laser (λ 337 nm). The mass spectra of all RNAs 

were acquired in the positive-ion reflector mode. Peak masses were assigned using Flex Analysis version 

2.0 software (Bruker Daltonics, Billerica, MA, USA). 

For chemical probing, gel-purified, radiolabeled RNAs (8 × 105–10 × 105 cpm) and unlabeled RNAs 

(0.7 μM) were combined and renatured in buffer A. Platination reactions were initiated by adding 

complex 1 (final concentration 94 μM) to RNA in a final reaction volume of 60 μL. The reactions were 

incubated in the dark at 37 °C for 3 h. Control RNA samples did not contain platinum complex. 

Platinated RNA products and unreactive RNAs were separated on 20% polyacrylamide gels, followed 

by elution with the “crush and soak” method. 

3.6. Chemical Probing of Platinated RNAs 

Guanosine-specific reactions [45] on the platinated RNAs were performed in dimethyl sulfate  

(DMS) buffer (50 mM sodium cacodylate, pH 5, 1 mM EDTA) in the presence of 5 μg of carrier tRNA. 

The reactions were initiated by addition of 1 μL of 50% (v/v) DMS in water and incubating for 60 s  

at 90 °C, followed by immediate quenching with stop solution (1.5 mM sodium acetate, pH 7, 1 M  

β-mercaptoethanol). The RNAs were ethanol precipitated, redissolved in 10 μL of 1 M Tris-HCl,  

pH 8.2, and then treated with 10 μL of freshly prepared 0.2 M NaBH4 and incubated on ice for 30 min 

in the dark. The RNAs were ethanol precipitated again and treated with 10 μL of 1 M aniline acetate, 

pH 4.5, at 60 °C for 30 min in the dark. The samples were dried, lyophilized twice in water,  

and resuspended in denaturing loading buffer. Samples (approximately 2 × 104 cpm) were run on  
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high-resolution sequencing gels (20% denaturing polyacrylamide gels, 0.4 mm thickness, 1× TBE,  

8 M urea) and visualized by autoradiography. 

Alkaline hydrolysis of RNA constructs labeled at the 3′ or 5′ ends (1 × 104 cpm) was done by mixing 

with buffer (30 mM NaOH, 0.3 mM EDTA) and boiling for 90 s followed by quick freezing on dry ice.  

The samples were thawed and mixed with denaturing loading buffer just prior to electrophoresis. 

RNase T1 digestion was carried out on end-labeled RNA (1 × 104 cpm) by mixing with buffer  

(20 mM sodium citrate, pH 5.0, 7 mM urea, 1 mM EDTA) and 0.5 units of RNase T1 followed by 

incubation at 55 °C for 20 min. The reaction products were mixed with denaturing loading buffer and 

loaded directly onto 20% denaturing gels. 

4. Conclusions 

The rRNA motifs investigated in this study are highly conserved throughout phylogeny and important 

for proper ribosome function [25,26,33]. Therefore, similar platination events on eukaryotic ribosomes 

could play a role in drug toxicity. The loop Ψs in H69 regulate RNA structure, dynamics, and  

stability [23,30–32,49]. In this work, platination of modified H69, unmodified H69, and the 790 loop 

was probed by using RNase T1 mapping and DMS reactions. Activated cisplatin, or complex 1, reacted 

with the three 19-nucleotide rRNA motifs in a similar manner. Platination occurred at consecutive Gs, 

namely G1921-G1922 and G1906-G1907 in the stem region of H69 (unmodified and pseudouridylated), 

and at G785-G786 of the 790 loop, most likely as bis-adducts, in which the chlorido ligands are displaced 

by two G residues. Previous studies with truncated tRNA molecules showed a preference for platination 

at neighboring Gs within a G-C-rich wobble-base-pair region [13]. Therefore, consistent with prior RNA 

studies, this work shows preferential recognition of G residues in rRNA motifs by complex 1. Due to 

the relative simplicity of the reactive motif (GpG), similar platination sites may occur on other RNAs 

such as mRNA, tRNA, and non-coding RNAs in vivo. 

Chemical probing studies also revealed structural alterations in the RNA constructs following drug 

coordination, as well as the influence of nucleotide sequence on such changes. Comparisons to previous 

reports on rRNA-cisplatin interactions indicate that the GpG locations within the complete folded 

secondary structure will impact the reactivity, and not surprisingly, the presence of proteins and  

RNA-RNA contacts will also play a role. Overall, the data provided here show many similarities of 

cisplatin coordination to DNA and RNA, such as target preference (e.g., GpG) and impact on structure. 

Further studies may reveal how these adducts could further impact the biological function of rRNAs. 
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