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Abstract: AKT-interacting protein (AKTIP) interacts with serine/threonine protein kinase B 

(PKB)/AKT. AKTIP modulates AKT’s activity by enhancing the phosphorylation of the 

regulatory site and plays a crucial role in multiple biological processes. In this study, the 

full length cDNA of NlAKTIP, a novel AKTIP gene in the brown planthopper (BPH) 

Nilaparvata lugens, was cloned. The reverse transcription quantitive PCR (RT-qPCR) 

results showed that the NlAKTIP gene was strongly expressed in gravid female adults, but 

was relatively weakly expressed in nymphs and male adult BPH. In female BPH, treatment 

with dsAKTIP resulted in the efficient silencing of NlAKTIP, leading to a significant 

reduction of mRNA levels, about 50% of those of the untreated control group at day 7 of 

the study. BPH fed with dsAKTIP had reduced growth with lower body weights and 

smaller sizes, and the body weight of BPH treated with dsAKTIP at day 7 decreased to 

about 30% of that of the untreated control. Treatment of dsAKTIP significantly delayed the 

eclosion for over 7 days relative to the control group and restricted ovarian development to 

Grade I (transparent stage), whereas the controls developed to Grade IV (matured stage). 

These results indicated that NlAKTIP is crucial to the growth and development of female 
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BPH. This study provided a valuable clue of a potential target NlAKTIP for inhibiting the BPH, 

and also provided a new point of view on the interaction between BPH and resistant rice. 

Keywords: brown planthopper; AKT interacting protein; RNA interference; growth; eclosion; 

ovary development 

 

1. Introduction 

The brown planthopper (BPH) Nilaparvata lugens is a major insect pest for rice crops. In recent 

years, this pest has caused heavy losses in the rice yields in Asian countries [1–3]. The two main 

methods of controlling this pest are spraying chemical pesticides and using rice varieties that are  

BPH-resistant [4,5]. However, with the overuse of pesticides and the large cultivation areas of resistant 

rice varieties, some BPH colonies have developed strong adaptability to pesticides and/or resistant rice 

varieties [6,7]. Therefore, sustainable control of BPH is a serious problem, and to solve it requires 

exploring the interaction between BPH and resistant rice varieties, which includes revealing  

the molecular mechanism of BPH growth and development. 

The AKT gene originates from the cellular homolog of the v-akt oncogene transduced by AKT8,  

a retrovirus isolated from a spontaneous thymoma cell line derived from AKR mice [8]. AKT is  

a serine/threonine protein kinase (also known as protein kinase B, PKB), and it is a critical cell 

signaling node that regulates a range of physiological processes [9]. The AKT signaling pathway plays 

a role in the regulation of cell growth, protein synthesis, antiapoptotic and survival signals [10–12].  

In Drosophila, AKT regulates growth by promoting the insertion of glucose transporters into the cell 

membrane, inhibiting Forkhead box, Class O (FOXO), and inhibiting the Tuberous Sclerosis dimer 

TSC1/TSC2 [13–15]. In Anopheles stephensi, AKT signaling increase resulted in reduced mosquito 

lifespan [16]. Furthermore, activation of an AKT signaling cascade leads to the long-winged morph of 

BPH [17]. 

AKTIP (AKT interacting protein) is a membrane protein that can regulate the activity of AKT by 

enhancing the phosphorylation of the AKT protein, thereby acting as a regulator of the AKT signal 

pathway [18]. AKTIP is most commonly known as Ft1, and was initially identified in a mouse 

mutation called Fused toes (Ft), which involves defects in limb development [19]. Ft1 is conserved 

among mammals and a homologous gene is present in humans [20]. Depletion of the Ft gene in human 

embryonic kidney 293T cells affects the trafficking of the epidermal growth factor in early-to-late 

endosome/lysosomes [21]. Moreover, Ft1 has a strong effect on the apoptosis susceptibility of T 

lymphocytes treated with glucocorticoids [22]. Although AKTIP as well as Ft has been well studied in 

mammals, they are poorly understood in insects, and the exact function remains unknown in BPH. 

Previously, we analyzed BPH gene expression profile [23] and found that a gene encoding AKT 

interacting protein (NlAKTIP) in our Rh colony [reared on resistant Rathu Heenati (RHT, with Bph 3) 

rice stain] was downregulated 5-fold compared with that in our Tn colony (reared on susceptible 

Taichung Native 1 (TN1, with no resistance gene) rice stain). At the same time, the mRNA expression 

level of most related genes in the AKT signaling pathway changed accordingly, suggesting that 

NlAKTIP might be an important responsive gene in BPH that feed on resistant rice. We therefore 
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selected NlAKTIP for further analysis since it can affect the activity of AKT, a focal point of the AKT 

signaling pathway. We intended to explore the function of NlAKTIP in BPH and expected our study to 

provide new clues for screening important genes as targets for pest control. 

2. Results 

2.1. Cloning of NlAKTIP, Sequence Comparison and Phylogenetic Analysis 

Full-length NlAKTIP cDNA (GenBank Acc no: KP027545, not released) was cloned using the rapid 

amplification of cDNA ends (RACE) method according to our previous transcriptome sequence 

information. The cloned full-length NlAKTIP cDNA was 964 bp, with an open reading frame (ORF) of 

588 bp (Figure S1). This ORF encodes a 195-amino acid polypeptide with a calculated molecular mass 

of 22.19 kDa and a theoretical isoelectric point of 7.69. This polypeptide is similar to the ubiquitin 

ligase domain of other ubiquitin-conjugating enzymes but lacks the conserved cysteine residue, which 

is a characteristic of AKTIP. Therefore, this polypeptide may not be able to conjugate ubiquitin to  

the target protein, but it should conjugate with the AKT protein kinase and modulate its activity by 

enhancing phosphorylation [22]. 

The phylogenetic analysis showed that NlAKTIP belongs to a single branch and has a large genetic 

distance from other organisms used in the phylogenetic analysis. In the phylogenetic analysis, the most 

closely related amino acid sequence to AKTIP (54% identity) was from Zootermopsis nevadensis 

(isoptera) (Figure 1). 

 

Figure 1. Phylogenetic analysis of AKT-interacting protein (AKTIP) in insects and other 

organisms. The phylogenetic analysis was constructed using the neighbor-joining method. 

Branch lengths are proportional to the sequence divergence. The bar represents 0.1 

substitutions per site. The bootstrap values are shown in the nodes. The boxed Nilaparvata 

lugens was the insect of brown planthopper used in this study. 
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2.2. The mRNA Expression of NlAKTIP in Different Colonies and Different Developmental Stages 

The expression of NlAKTIP mRNA was investigated in the Tn colony (reared on susceptible TN1 

rice) and Rh colony (reared on resistant RHT rice) by using reverse transcription quantitive PCR  

(RT-qPCR) at different developmental stages. The results showed that the NlAKTIP transcription level 

was relatively low in all nymph stages and in the adult male stage. The transcription level in the gravid 

female was the highest in both the Tn colony and the Rh colony (Figure 2A). 

 

Figure 2. NlAKTIP mRNA expression in BPH. (A) Expression patterns of NlAKTIP 

mRNA at different developmental stages of the Tn and Rh colonies. The mRNA level of 

NlAKTIP was detected using RT-qPCR. The mRNA level was normalized relative to the  

β-actin transcription levels and the reference was the mRNA level of 1st–2nd Tn instar 

nymph. The results are expressed as the means ± S.E from three replicates. 1–2N: 1st–2nd 

instar nymph; 3–5N: 3rd–4th instar nymph; 5N: 5th instar nymph; EF: newly eclosed 

female; GF: gravid female, M: male; (B) NlAKTIP expression in the gravid adult female. 

The mRNA level of NlAKTIP was detected using RT-qPCR. The mRNA level was 

normalized relative to the β-actin transcription levels and the reference was the mRNA 

level of the Tn gravid adult female. Asterisks represent significant differences between 

reference Tn and other subjects (Student’s t-test, ** p < 0.01). The results are expressed as 

the means ± SE from three replicates. 

After the BPH was transferred from susceptible TN1 to resistant RHT, NlAKTIP mRNA expression 

levels in the gravid female tended to decrease compared with the Tn colony. As for RF strains (the Tn 

colony was exposed to resistant RHT for 1, 2, 3, 4, and 5 generations, respectively), the mRNA 

expression level of RF1 was 53.42% of that in the Tn clone, and showed a degree of difference from 

Tn (p = 0.013). In the RF2 and Rh colonies, the mRNA level of NlAKTIP significantly decreased to 

4.46% and 27.88% (Figure 2B). 

2.3. Effects of NlAKTIP Knockdown on mRNA and Protein Expression 

After RNAi was initiated by feeding the insects an artificial diet containing dsRNA, and samples were 

taken every two days when the BPH of the untreated control group began to eclose. The RT-qPCR results 

showed that the mRNA abundance of NlAKTIP increased from day 1 to day 7 in all groups (Figure 3A). 
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However, dsAKTIP RNAi inhibited the expression of NlAKTIP, resulting in lower AKTIP mRNA 

abundance in dsAKTIP treated groups. RNAi with 0.5 μg/μL dsAKTIP resulted in the efficient 

silencing of NlAKTIP, leading to a significant reduction of mRNA levels to about 50% of that of  

the untreated control group at day 7. The knockdown effect was significantly correlated with the 

concentration of dsAKTIP. For example, at day 7, the expression levels of the target gene in the groups 

treated with medium (0.1 μg/μL) and high (0.5 μg/μL) concentrations of dsAKTIP were lower than 

that of the group treated with low (0.02 μg/μL) concentrations of dsAKTIP, as well as that of the 

untreated and GFP control groups. The expression level of the target gene in the low concentration 

group was moderate, but still significantly different from the untreated and the GFP groups. There 

were no significant differences between the untreated control group and GFP control group. 

The effect of NlAKTIP knockdown was further demonstrated at protein level. Western blot analysis 

confirmed that the molecular mass of the AKTIP was approximately 22 kDa (Figure S2), which was 

consistent with the predicted molecular mass. It also showed that the protein expression of AKTIP was 

downregulated after RNAi at the highest dsRNA concentration (Figure 3B). 

 

Figure 3. Effects of NlAKTIP RNAi. CK: female fed on D-97 (untreated diet); dsGFP: 

female fed on 0.5 μg/μL dsGFP control; 0.02: female fed on 0.02 μg/μL dsAKTIP; 0.1: 

females fed on 0.1 μg/μL dsAKTIP; 0.5: female fed on 0.5 μg/μL dsAKTIP. (A) NlAKTIP 

mRNA levels after feeding D-97, dsGFP or dsAKTIP. The results are expressed as the 

means ± SD from 20 individuals with three replications. The relative gene expression level 

was compared by Tukey’s test at each sampling time, and different letters of a, b, and c on 

the bars indicated significant differences among treatments (p < 0.05); (B) Western blot 

analysis of AKTIP from the different treatments; (C) Average body weights of different 

groups at day 7. The results are expressed as the means ± SD from at least 7 individuals. 

Symbols of a, b, and c indicate significant differences between each two groups (Student’s 

t-test, p < 0.05); (D) The effect of NlAKTIP RNAi on the adult female body size. 
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2.4. Effects of NlAKTIP RNAi on Body Weight and Size 

The body weight and size of BPH were examined at day 7 after the dsAKTIP treatment was 

initiated. The results showed that BPH fed on dsAKTIP had disrupted growth, showing lower body 

weights and smaller sizes compared to the untreated and GFP controls. With increases of dsAKTIP 

concentrations, the average body weight of treated BPH decreased to 1.36 mg (0.02 μg/μL dsAKTIP), 

1.34 mg (0.1 μg/μL dsAKTIP treatment) and 0.77 mg (0.5 μg/μL dsAKTIP treatment), which were 

significantly lower than the body weights of the untreated (2.21 mg) and the GFP (1.74 mg) control 

groups (Figure 3C). There was a significant difference between the dsAKTIP treated groups and the 

untreated control, while there was no significant differences between the untreated and GFP controls. 

Moreover, with concentrations of dsAKTIP increasing, the body weight and size tended to decrease, 

indicating that the growth of BPH was seriously inhibited due to knockdown of the target  

gene (Figure 3D). 

2.5. Effects of NlAKTIP RNAi on Eclosion and Ovarian Development 

At day 1, the BPH in the untreated control, GFP control, and 0.02 μg/μL dsAKTIP low 

concentration treatment groups showed relatively high eclosion rates of 83.3%, 74.6% and 67.8%, 

respectively. All BPH individuals in these three treatments completed eclosion within 5 days. 

However, the eclosion rate in the medium (0.1 μg/μL dsAKTIP) and high (0.5 μg/μL dsAKTIP) 

concentration treatment groups was very low (not more than 20%) at day 1. This lower eclosion rate 

lasted for at least 7 days and was significantly lower than the eclosion rates of the untreated and GFP 

controls, as well as those of the low concentration treatment groups (p < 0.05). These results indicated 

that the medium concentration dsRNA treatment was enough to achieve low eclosion rate (Figure 4A). 

Ovarian anatomy was evaluated at day 7, and the results showed that the BPH ovaries in the groups 

of untreated control, GFP control and low concentration treatment were all well developed with a state 

of grade IV, and the BPH ovaries in the medium treatment group were at grade III, while the BPH 

ovaries in the high concentration treatment group were seriously inhibited at grade I (Figure 4B). 

These results showed that the inhibition of ovary development by RNAi was concentration-dependent. 
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Figure 4. The effect of NlAKTIP RNAi on BHP eclosion and ovary development. CK: 

female fed on D-97 (untreated diet); dsGFP: female fed on 0.5 μg/μL dsGFP control; 0.02: 

female fed on 0.02 μg/μL dsAKTIP; 0.1: female fed on 0.1μg/μL dsAKTIP; 0.5: female 

fed on 0.5 μg/μL dsAKTIP. (A) The eclosion rate of BPH. The results were from the same 

bugs measured over time, and expressed as the means ± SD from 20 individuals with three 

replications. The eclosion rate was compared by Tukey’s test at each sampling time. 

Different letters of a, b, c, d and e on the bars indicate significant differences among 

treatments (p < 0.05); (B) The effect of NlAKTIP RNAi on ovarian development. 
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2.6. Effects of NlAKTIP RNAi on BPH Survival Rates 

Generally, the survival rates of BPH decreased after continuous feeding with an artificial diet, but 

there is no obvious difference between BPH groups treated with dsAKTIP and CK/dsGFP, except at 

day 6 and day 7. Moreover, the survival rate of the BPH groups still remained at a high level (mostly over 

80%), indicating that the knockdown of the target gene NlAKTIP did not result in high mortality (Figure 5). 

 

Figure 5. Survival rate of the different groups fed with RNAi. CK: female fed on D-97 

(untreated diet); dsGFP: female fed on 0.5 μg/μL dsGFP control; 0.02: female fed on  

0.02 μg/μL dsAKTIP; 0.1: female fed on 0.1 μg/μL dsAKTIP; 0.5: female fed on  

0.5 μg/μL dsAKTIP. The results were from the same bugs measured over time, and 

expressed as the means ± SD from 20 individuals with three replications. The eclosion rate 

was compared by Tukey’s test at each sampling time. Different letters of a, b and c on the 

bars indicate significant differences among treatments (p < 0.05). 

3. Discussion 

In the past several decades, great efforts have been made to explore the mechanisms of BPH adaptation 

to resistant rice varieties, including ecological, physiological and molecular aspects, but it still remains 

largely unknown how the resistant rice suppresses the growth and development of BPH [2,24]. In our 

current study, we found that NlAKTIP was down-regulated when the BPH was reared on resistant rice 

variety RHT, including different colonies of RF (RF1 to RF5) and Rh colony, suggesting that NlAKTIP 

might be an important responsive gene in BPH fed on resistant rice. To reveal possible involvement of 

NlAKTIP in interactions between BPH and resistant rice, we suppressed the expression of NlAKTIP by 

RNAi and found significantly decreased growth and development of BPH. We found that the treated BPH 

showed lower body weights, delayed eclosion and slower ovarian development. Such phenotypical changes 

are similar to those found when BPH are fed on resistant rice. Peñalver Cruz et al. [25] also found that 

development of BPH from the susceptible variety TN1 showed decreased biomass and delayed growth 

during adaptation to the resistant variety RHT. It is expected that dsRNA treated smaller insects will ingest 

less phloem sap and do less harm to rice. In addition, delayed eclosion and suppressed ovary development 

will result in a smaller population of BPH. An exciting implication of our finding is the pervasive 

connection of AKTIP/AKT to BPH growth and development. Nevertheless, further research to clarify  
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the exact role of NlAKTIP in interactions between BPH and resistant rice varieties would be necessary 

before it can be used as a new target with which to develop novel strategies for controlling BPH. 

The insulin/PI3K/AKT pathway was found to have a role in controlling the size and growth of 

tissues [26]. In a previous gene expression profiling study [23], genes encoding for insulin and  

the insulin receptor were also decreased in the BPH colonies reared on RHT when compared with the 

Tn colony, indicating that the suppression of the insulin/AKT signaling pathway should relate to the 

delay of BPH growth (Figure S3). AKT has been demonstrated to play a central role in a number of 

cellular responses to growth factors and insulin [22]. AKT mediates most of the growth-promoting 

actions of the insulin/PI3K/AKT signaling pathway through the phosphorylation of several substrates 

that affect cell growth, cell cycle entry, and cell survival [14,26]. Since activated AKT induces protein 

synthesis via mTOR and downstream elements, the down regulation of NlAKTIP or inactivation of 

AKT should be able to inhibit various processes and delay the development of BPH. In our study, 

downstream molecules such as mTOR and S6K were also down-regulated during the interaction of 

BPH and the resistant varieties. At the same time, a ribosomal protein S6 in the Rh colony upregulated, 

likely to compensate for the inhibition from the upstream (Figure S3). This result suggests that the 

AKT/mTOR signaling pathway takes part in regulating the growth and development of BPH, probably 

by affecting the protein synthesis as described [27]. 

Suppression of the insulin signaling pathway appears to induce physiological responses that enhance 

resistance to diverse forms of stress [28–30]. For example, in Caenorhabditis elegans, starvation can 

induce adult reproductive diapause, which enables sexually mature adults to delay reproductive onset and 

extend total adult life span [31]. Similarly, ILP-1(ins-1) induces dauer arrest under low food levels [32]. 

When exposed to the resistant variety RHT, a BPH generally ingests a lower quantity of phloem sap, which 

means that the BPH is, in fact, experiencing starvation [25]. Therefore, the question arises of whether this 

stress (starvation or suppressing of NlAKTIP) can increase the resistance of BPH to the resistant rice. To 

test this, we conducted an experiment by knocking-down the NlAKTIP gene of susceptible Tn insects and 

then placing them on a diet of the resistant rice variety RHT, but the results showed that suppression of this 

gene did not enhance the adaptability of BPH. Therefore, it is most likely that while NlAKTIP was, in fact, 

suppressed by resistant rice, this does contribute to host adaptation. From this point of view, the NlAKTIP 

gene has some potential to be a target to consider for BPH control. It might be better to combine this 

NlAKTIP gene with some other gene which effectively suppresses the growth and survival of BPH, such as 

NlPIK3R1 cloned by our group [33], so that we can achieve a higher RNAi efficiency by suppressing both 

the growth and the survival of BPH in the field. Some practicable ways of using RNAi in the field to 

control BPH may be spraying or irrigating by dissolving dsRNA into the water. In fact, the ability to 

produce kilogram quantities of dsRNA has been developed, which has made it possible to produce enough 

dsRNA for field applications at low cost [34]. 

4. Experimental Section 

4.1. Insects 

Insects were collected from the following BPH colonies: Tn colony (continuously reared on 

susceptible rice variety TN1 for more than 50 generations), Rh colony (continuously reared on 
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resistant rice variety RHT for more than 50 generations), and five RF colonies (Tn colony exposure to 

resistant RHT for 1, 2, 3, 4, and 5 generations, respectively). The rearing conditions were 26 ± 2 °C, 

relative humidity 80% ± 5% and a 16 h light/8 h dark photoperiod. 

4.2. Cloning of Full-Length NlAKTIP cDNA 

Total RNA was extracted from the BPH samples at different stages using Trizol. RNA 

concentrations were determined using Nanodrop 2000 (Thermo, Wilmington, DE, USA). Primers  

(Table 1) for RACE were designed according to our previous cDNA sequence information from  

the BPH transcriptome. The 5′ and 3′ RACE was conducted using the BD SMART™ RACE  

cDNA Amplification Kit (Clontech, Palo Alto, CA, USA). The PCR products were examined by 

electrophoresis in a 1% agarose gel and stained with ethidium bromide. The selected PCR products 

were purified with the AxyPrep™ DNA Gel Extraction Kit (Axygen Scientific Inc., Union, CA, USA), 

cloned into the pMD18-T vector (TaKaRa, Tokyo, Japan) and sequenced by the Sunny Company 

(Shanghai, China). Sequences from 3′ and 5′ RACE as well as the core sequence were spliced together 

to obtain the full length cDNA of NlAKTIP, which was then verified by PCR with AKTIP-FL-F and 

AKTIP-FL-R primers (Table 1) designed at both ends of the spliced sequence. 

Table 1. Primers used in cDNA sequencing, RT-qPCR analysis and dsRNA synthesis of the NlAKTIP. 

Primer Name Sequence (5′→3′) 

cDNA cloning  
3′RACE outer TCAAACGGCAAGGCTCAT 
3′RACE inner CGTCCACAACAATCTTCTTCGC 
5′RACE outer AGGAGAAGAAGCGGAGGG 
5′RACE inner GGCATAACATAGAGCCCTGGAA 
AKTIP-FL-F ACATGGGAGACAATAACACATAACC 
AKTIP-FL-R CGACTTTAAAGCTTCTCTTGCTGTC 

RT-qPCR  
QAKTIP-F TGTCTGCCAAAATGATCGAAC 
QAKTIP-R CTCCATGATAGAGCCCTT 

Actin-F TGCGTGACATCAAGGAGAAGC 
Actin-R CCATACCCAAGAAGGAAGGCT 

dsRNA synthesis  
dsAKTIP-F GGATCCTAATACGACTCACTATAGGGAGAGCTCTATGTTATGCCCTCCG 
dsAKTIP-R GGATCCTAATACGACTCACTATAGGGAGAGATGCTTCTTGGTTGACTGC 

dsGFP-F GGATCCTAATACGACTCACTATAGGGATACGTGCAGGAGAGGAC 
dsGFP-R GGATCCTAATACGACTCACTATAGGGCAGATTGTGTGGACAGG 

Underlined sequences represent for protective bases, and wavelined sequences represent for T7 promoter. 

The sequences of the 17 different organisms in Figure 1 were used to construct a phylogenetic 

analysis. ClustalX was used to align the protein sequences with the homologous genes. A phylogenetic 

tree was constructed by MEGA 6.0 using the neighbor-joining analysis with 1000 bootstrap replicates. 
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4.3. Gene Expression Analysis of NlAKTIP 

Two different sets of BPH colonies were prepared for gene expression pattern analysis. The first set 

included BPH samples from the Tn and Rh colonies at various developmental stages. Based on the 

results of first set that showed that the gene was highly expressed in gravid females, the second set  

only consisted of gravid females of Tn, RF1, RF2, RF3, RF4, RF5, and Rh colonies. The expression of 

NlAKTIP mRNA was quantified using RT-qPCR. The experiment was performed on 3 independent 

occasions. Ten adults or 30 to 50 nymphs were combined for RNA extraction, and 1 μg total RNA was 

used as templates for synthesizing cDNA using the PrimeScript RT Reagent Kit with gDNA Eraser 

(Takara, Japan). Gene-specific primers for QAKTIP-F and QAKTIP-R (Table 1) were designed for 

RT-qPCR according to the complete cDNA sequence of NlAKTIP, and the β-actin gene was used as an 

internal control [35]. The reaction volume was 10 µL, and the cycling conditions were as follows:  

(i) 95 °C for 3 min; (ii) 95 °C for 45 s; (iii) 58 °C for 30 s; and (iv) repeat steps (ii) and (iii) for 40 cycles. 

Real-time data were collected using the IQ™5 Multicolor RT-qPCR detection system (Bio-Rad, 

Hercules, CA, USA). The relative expression level was calculated using 2−ΔΔCt method [36]. The Tn 

colony was used as the reference (1–2 instar nymphs for first set, and gravid female for second set). 

All the mRNA expression data were presented as the means ± SE of three technical replicates and  

a Student’s t-test was used to analyze the data. 

4.4. Synthesis of dsRNA 

The cDNA for the dsAKTIP synthesis was amplified using the primers provided in Table 1, and 

cloned into the pMD18-T vector (TaKaRa, Tokyo, Japan), transferred into JM109 and sequenced. To 

improve the efficiency of the transcription, the primers were designed according to a previous method [37] 

in which the protecting bases GGATCC and T7 promoter (TAATACGACTCACTATA) were added to 

the 5′ ends of the specific primers, respectively. The clone with the T7 promoter sequences was 

selected, propagated, and plasmids extracted. Using MEGAscript® T7 High Yield Transcription Kit 

(Ambion, Austin, TX, USA) to synthesize dsRNA according to the manufacturer’s instructions, the 

dsAKTIP was amplified between the 453 and 769 bp sites of the full-length cDNA of NlAKTIP. Using 

the same method, dsGFP located between the 281 and 630 bp sites of the GFP cDNA was prepared, 

according to the sequence of a green fluorescent protein GFP (GenBank access no: AF234298). The 

dsAKTIP and dsGFP fragments did not contain the fragments for RT-qPCR and thus would not affect 

the RNAi results. The amplification reactions consisted of 40 cycles of 95 °C for 30 s, 70 °C for 30 s, 

72 °C for 45 s, and a final extension step of 72 °C for 10 min. The PCR products were verified by 

sequencing. Only the sequences that were perfectly aligned (100%) were used as templates for dsRNA 

synthesis and the following RNA interference experiments. 

4.5. Insect Bioassays  

For RNA interference, the dsRNA was added to the artificial D-97 diet [38], which was fed to BPH 

according to a previous method [38], with some modifications. Briefly, the 20 μL artificial D-97 diet, 

either with or without dsRNA, was placed in a feeding device and enclosed between two layers of 

stretched Parafilm M that covered both ends of the glass chamber. The artificial diet was renewed 
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every day. The concentrations of dsRNA tested were 0.02 μg/μL (low concentration treatment),  

0.1 μg/μL (medium concentration treatment) and 0.5 μg/μL (high concentration treatment).  

The artificial D-97 diet only was used as the untreated control, and D-97 + 0.5 μg/μL dsGFP was used 

as the dsRNA treated control. 

About 7000 individuals of two-day-old (2nd instar) BPH nymphs on the TN1 variety were first 

moved to the D-97 artificial diet system without dsRNA for pre-feeding. To ensure the RNAi 

treatment could cover the whole stage of gravid females, during which the target gene was highly 

expressed, dsRNA was added into the D-97 artificial diet when these nymphs grew to 5th instar. Then, 

20 females were collected for RNAi treatments with three replications per treatment. When the 

untreated control began to eclose, the survival and eclosion rate were recorded daily for 7 days. During 

this period, the same insects were measured over time. On day 7, the BPH in each treatment were 

firstly weighed (Sartorius BSA224S, Hamburg, Germany) and then dissected to examine the 

development of the ovary according to the method of Dong et al. [39]. Photographs were taken under a 

stereoscope equipped with a digital image acquisition system (Nikon SMZ1500, Tokyo, Japan). 

A parallel experiment was performed to analyze the mRNA expression level. When the untreated 

control began to eclose, three female adults were selected randomly for subsequent RNA extraction at 

days 1, 3, 5 and 7 after eclosion. The RT-qPCR methods, primers and reaction conditions were as 

described above. The insects were maintained at 26 ± 2 °C, relative humidity 80% and a 16 h light/8 h 

dark photoperiod. 

4.6. Antibody 

A peptide (PFKRQGSLRKVLPPC) from the NlAKTIP protein was synthesized, and rabbits were 

immunized with this peptide to obtain the polyclonal antibody to NlAKTIP by GenScript Inc. 

(Nanjing, China). 

4.7. Western Blot Analysis 

At day 7, three female BPH were homogenized in 1× PBS followed by adding 2× SDS sample 

buffer was added. The lysates were boiled for 5 min, followed by centrifugation at 10,000× g for  

5 min. Ten microliters of each sample was loaded onto the SDS gels. After electrophoresis, the 

proteins were transferred to polyvinylidene difluoride membranes. The blots were then blocked in 

TBST (0.1% Tween 20 in TBS) and 5% nonfat powdered dry milk (w/v) for 2 h at room temperature. The 

blot was then incubated for 12 h at 4 °C in a TBST solution containing the primary antibody against 

NlAKTIP at a dilution of 1:1000 to probe NlAKTIP. The membrane was washed five times with TBST 

for 5 min each time and then incubated in a 1:1000 dilution of the horseradish peroxidase-linked 

secondary antibody (Solarbio, Beijing, China). The membrane was washed five times, the 

immunoreactivity was detected using the DAB Horseradish Peroxidase Color Development Kit 

(Sangon Biotech, Shanghai, China) and the membrane was imaged with a GS-800 Calibrated 

Densitometer (Bio-Rad, Hercules, CA, USA). 
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4.8. Data Analysis 

The data of gene expression, eclosion rate and survival rate from RNAi experiments was analyzed 

by Tukey’s test at each sampling time. However, data of gene expression from different BPH colonies 

and average body weights from RNAi experiments was analyzed by method of Student’s t-test. 

Supplementary Materials 

Supplementary materials can be found at http://www.mdpi.com/1422-0067/16/09/22888/s1. 

Acknowledgments 

This work was supported by the National Natural Science Foundation of China (grant numbers 

31171860, 30900944), the 973 Program for Key Basic Research of the Ministry of Science and 

Technology, China (grant numbers 2012CB114100, 2011CB111602), and the Research on Public 

Welfare Technology Application Projects of Zhejiang Province, China (grant number 2012C22041). 

Author Contributions 

Peiying Hao and Xiaoping Yu designed research; Chaofeng Lu, Peiying Hao, Yan Ma, Lingbo Xu, 

Jiajun Zhu and Xiaoping Yu performed experiments or data analysis; and Chaofeng Lu, Peiying Hao 

and Xiaoping Yu prepared and edited the manuscript. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Wang, Y.; Chen, J.; Zhu, Y.C.; Ma, C.; Huang, Y.; Shen, J. Susceptibility to neonicotinoids and 

risk of resistance development in the brown planthopper, Nilaparvata lugens (Stål) (Homoptera: 

Delphacidae). Pest. Manag. Sci. 2008, 64, 1278–1284. 

2. Jena, K.K.; Kim, S.M. Current status of brown planthopper (BPH) resistance and genetics. Rice. 

2010, 3, 161–171. 

3. Bottrell, D.G.; Schoenly, K.G. Resurrecting the ghost of green revolutions past: The brown 

planthopper as a recurring threat to high-yielding rice production in tropical Asia. J. Asia  

Pac. Entomol. 2012, 15, 122–140. 

4. Noda, H.; Kawai, S.; Koizumi, Y.; Matsui, K.; Zhang, Q.; Furukawa, S.; Shimomura, M.; Mita, K. 

Annotated ESTs from various tissues of the brown planthopper Nilaparvata lugens: A genomic 

resource for studying agricultural pests. BMC Genom. 2008, 9, doi:10.1186/1471-2164-9-117. 

5. Liu, S.; Liang, Q.M.; Zhou, W.W.; Jiang, Y.D.; Zhu, Q.Z.; Yu, H.; Zhang, C.X.; Gurr, G.M.;  

Zhu, Z.R. RNA interference of NADPH-cytochrome P450 reductase of the rice brown 

planthopper, Nilaparvata lugens, increases susceptibility to insecticides. Pest management science. 

Pest. Manag. Sci. 2015, 71, 32–39. 



Int. J. Mol. Sci. 2015, 16 22901 

 

 

6. Yang, Y.; Dong, B.; Xu, H.; Zheng, X.; Tian, J.; Heong, K.; Lu, Z. Decrease of insecticide 

resistance over generations without exposure to insecticides in Nilaparvata lugens (Hemipteran: 

Delphacidae). J. Econ. Entomol. 2014, 107, 1618–1625. 

7. Zhang, X.; Liu, X.; Zhu, F.; Li, J.; You, H.; Lu, P. Field evolution of insecticide resistance in the 

brown planthopper (Nilaparvata lugens Stål) in China. Crop. Prot. 2014, 58, 61–66. 

8. Staal S.P.; Hartley J.W.; Rowe W.P. Isolation of transforming murine leukemia viruses from mice 

with a high incidence of spontaneous lymphoma. Proc. Natl. Acad. Sci. USA. 1977, 74, 3065–3067. 

9. Martelli, A.M.; Faenza, I.; Billi, A.M.; Manzoli, L.; Evangelisti, C.; Falà, F.; Cocco, L. 

Intranuclear 3′-phosphoinositide metabolism and AKT signaling: New mechanisms for 

tumorigenesis and protection against apoptosis? Cell Signal. 2006, 18, 1101–1107. 

10. Verdu J.; Buratovich M.A.; Wilder E.L.; Birnbaum M.J. Cell-autonomous regulation of cell and 

organ growth in Drosophila by AKT/PKB. Nat. Cell Biol. 1999, 1, 500–506. 

11. Brazil, D.P.; Hemmings, B.A. Ten years of protein kinase B signalling: A hard AKT to follow. 

Trends Biochem. Sci. 2001, 26, 657–664. 

12. Chuang, C.L.; Lu, Y.N.; Wang, H.C.; Chang, H.Y. Genetic dissection reveals that AKT is the 

critical kinase downstream of LRRK2 to phosphorylate and inhibit FOXO1, and promotes neuron 

survival. Hum. Mol. Genet. 2014, doi:10.1093/hmg/ddu281. 

13. Clancy, D.J.; Gems, D.; Harshman, L.G.; Oldham, S.; Stocker, H.; Hafen, E.; Leevers, S.J.; 

Partridge, L. Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate 

protein. Science 2001, 292, 104–106. 

14. Taniguchi, C.M.; Emanuelli, B.; Kahn, C.R. Critical nodes in signalling pathways: Insights into 

insulin action. Nat. Rev. Mol. Cell Biol. 2006, 7, 85–96. 

15. Yamaguchi, M.; Suyari, O.; Nagai, R.; Takahashi, M. dGirdin a new player of AKT/PKB signaling 

in Drosophila melanogaster. Front. Biosci. 2010, 15, 1164–1171. 

16. Corby-Harris, V.; Drexler, A.; Watkins de Jong, L.; Antonova, Y.; Pakpour, N.; Ziegler, R.; 

Ramberg, F.; Lewis, E.E.; Brown, J.M.; Luckhart, S.; et al. Activation of Akt signaling reduces the 

prevalence and intensity of malaria parasite infection and lifespan in Anopheles stephensi 

mosquitoes. PLoS. Pathog. 2010, 6, e1001003. 

17. Xu, H.J.; Xue, J.; Lu, B.; Zhang, X.C.; Zhuo, J.C.; He, S.F.; Ma, X.F.; Jiang, Y.Q.; Fan, H.W.;  

Xu, J.Y.; et al. Two insulin receptors determine alternative wing morphs in planthoppers. Nature 

2015, 519, 464–467. 

18. Woodard, J.; Sassano, A.; Hay, N.; Platanias, L.C. Statin-dependent suppression of the 

AKT/mammalian target of rapamycin signaling cascade and programmed cell death 4  

up-regulation in renal cell carcinoma. Clin. Cancer Res. 2008, 14, 4640–4649. 

19. Lesche, R.; Peetz, A.; van der Hoeven, F.; Rüther, U. Ft1, a novel gene related to  

ubiquitin-conjugating enzymes, is deleted in the Fused toes mouse mutation. Mamm. Genome. 

1997, 8, 879–883. 

20. Muthusami, S.; Prabakaran, D.S.; Yu, J.R.; Park, W.Y. FTS is responsible for radiation-induced 

nuclear phosphorylation of EGFR and repair of DNA damage in cervical cancer cells. J. Cancer. 

Res. Clin. Oncol. 2015, 141, 203–210. 



Int. J. Mol. Sci. 2015, 16 22902 

 

 

21. Xu, L.; Sowa, M.E.; Chen, J.; Li, X.; Gygi, S.P.; Harper, J.W. An FTS/Hook/p107FHIP complex 

interacts with and promotes endosomal clustering by the homotypic vacuolar protein sorting 

complex. Mol. Biol. Cell 2008, 19, 5059–5071. 

22. Remy, I.; Michnick, S.W. Regulation of Apoptosis by the Ft1 Protein, a new modulator of protein 

Kinase B/AKT. Mol. Cell. Biol. 2004, 24, 1493–1504. 

23. Hao, P.Y, Yan, M.; Lu, C.F.; Zhu J.J., Yu, X.P. Gene expression profiles reveal the mechanism of 

brown planthopper, Nilaparvata lugens getting adapted to the resistant rice. unpublished; 

manuscript in preparation, 2015. 

24. Xue, J.; Bao, Y.Y.; Li, B.L.; Cheng, Y.B.; Peng, Z.Y.; Liu, H.; Xu, H.J.; Zhu, Z.R.; Lou, Y.G.; 

Cheng, J.A. Transcriptome analysis of the brown planthopper Nilaparvata lugens. PLoS ONE 

2010, 5, e14233. 

25. Peñalver Cruz, A.; Arida, A.; Heong, K.L.; Horgan, F.G. Aspects of brown planthopper adaptation 

to resistant rice varieties with the Bph3 gene. Entomol. Exp. Appl. 2011, 141, 245–257. 

26. Teleman, A. Molecular mechanisms of metabolic regulation by insulin in Drosophila. Biochem. J. 

2010, 425, 13–26. 

27. Kenessey, A.; Ojamaa, K. Thyroid hormone stimulates protein synthesis in the cardiomyocyte by 

activating the Akt-mTOR and p70S6K pathways. J. Biol. Chem. 2006, 281, 20666–20672. 

28. Broughton, S.J.; Piper, M.D.; Ikeya, T.; Bass, T.M.; Jacobson, J.; Driege, Y.; Martinez, P.;  

Hafen, E.; Withers, D.J.; Leevers, S.J. Longer lifespan, altered metabolism, and stress resistance 

in Drosophila from ablation of cells making insulin-like ligands. Proc. Natl. Acad. Sci. USA. 2005, 

102, 3105–3110. 

29. Felix, T.M.; Hughes, K.A.; Stone, E.A.; Drnevich, J.M.; Leips, J. Age-specific variation in 

immune response in Drosophila melanogaster has a genetic basis. Genetics 2012, 191, 989–1002. 

30. Zhang, H.; Liu, J.; Li, C.R.; Momen, B.; Kohanski, R.A.; Pick, L. Deletion of Drosophila  

insulin-like peptides causes growth defects and metabolic abnormalities. Proc. Natl. Acad. Sci. USA 

2009, 106, 19617–19622. 

31. DiAngelo, J.R.; Bland, M.L.; Bambina, S.; Cherry, S.; Birnbaum, M.J. The immune response 

attenuates growth and nutrient storage in Drosophila by reducing insulin signaling. Proc. Natl. 

Acad. Sci. USA 2009, 106, 20853–20858. 

32. Cornils, A.; Gloeck, M.; Chen, Z.; Zhang, Y.; Alcedo, J. Specific insulin-like peptides encode 

sensory information to regulate distinct developmental processes. Development 2011, 138, 1183–1193. 

33. Lu, C.F.; Hao, P.Y.; Ma, Y.; Zhu, J.J.; Feng, Y.L.; Yu, X.P. Molecular cloning and function analysis 

of phosphatidyl inositol 3 kinase p85α subunit gene NlPIK3R1 in the brown planthopper, 

Nilaparvata lugens (Hemiptera: Delphacidae). Acta. Entomol. Sin. 2015, 58, 487–495. 

34. Hunter, W.; Ellis, J.; Vanengelsdorp, D.; Hayes, J.; Westervelt, D.; Glick, E.; Paldi, N. Large-scale 

field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees 

(Apis. mellifera, Hymenoptera: Apidae). PLoS Pathog. 2010, 6, e1001160. 

35. Chen, J.; Zhang, D.; Yao, Q.; Zhang, J.; Dong, X.; Tian, H.; Zhang, W. Feeding-based RNA 

interference of a trehalose phosphate synthase gene in the brown planthopper, Nilaparvata lugens. 

Insect. Mol. Biol. 2010, 19, 777–786. 

36. Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time 

quantitative PCR and the 2−ΔΔCt method. Methods 2001, 25, 402–408. 



Int. J. Mol. Sci. 2015, 16 22903 

 

 

37. Milligan, J.F.; Groebe, D.R.; Witherell, G.W.; Uhlenbeck, O.C. Oligoribonucleotide synthesis 

using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 1987, 15, 8783–8798. 

38. Fu, Q.; Zhang, Z.; Hu, C.; Lai, F.; Sun, Z. A chemically defined diet enables continuous rearing of 

the brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae). Appl. Entomol. Zool. 

2001, 36, 111–116. 

39. Dong, S.Z.; Ma, Y; Hou, Y.; Yu, X.; Ye, G. Development of an ELISA for evaluating  

the reproductive status of female brown planthopper, Nilaparvata lugens, by measuring 

vitellogenin and vitellin levels. Entomol. Exp. Appl. 2001, 139, 103–110. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


