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Abstract: Animal mitochondrial genomes have provided large and diverse datasets for evolutionary
studies. Here, the first two representative mitochondrial genomes from the family Pompilidae
(Hymenoptera: Vespoidea) were determined using next-generation sequencing. The sequenced
region of these two mitochondrial genomes from the species Auplopus sp. and Agenioideus sp.
was 16,746 bp long with an A + T content of 83.12% and 16,596 bp long with an A + T content
of 78.64%, respectively. In both species, all of the 37 typical mitochondrial genes were determined.
The secondary structure of tRNA genes and rRNA genes were predicted and compared with those
of other insects. Atypical trnS1 using abnormal anticodons TCT and lacking D-stem pairings was
identified. There were 49 helices belonging to six domains in rrnL and 30 helices belonging to three
domains in rrns present. Compared with the ancestral organization, four and two tRNA genes were
rearranged in mitochondrial genomes of Auplopus and Agenioideus, respectively. In both species,
trnM was shuffled upstream of the trnI-trnQ-trnM cluster, and trnA was translocated from the cluster
trnA-trnR-trnN-trnS1-trnE-trnF to the region between nad1 and trnL1, which is novel to the Vespoidea.
In Auplopus, the tRNA cluster trnW-trnC-trnY was shuffled to trnW-trnY-trnC. Phylogenetic analysis
within Vespoidea revealed that Pompilidae and Mutillidae formed a sister lineage, and then sistered
Formicidae. The genomes presented in this study have enriched the knowledge base of molecular
markers, which is valuable in respect to studies about the gene rearrangement mechanism, genomic
evolutionary processes and phylogeny of Hymenoptera.
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1. Introduction

Animal mitochondrial genomes are typically compact and double-stranded circular molecules
of approximately 16 kb, encoding 37 genes and an A + T-rich region [1–3]. In addition, the mitochondrial
genomes show the predominance of maternal inheritance [4,5], rare recombination [1], extremely
high A + T content [6], conserved gene components [7] and relatively rapid rates of nucleotide
substitution [8,9]. Therefore, the mitochondrial genomes are considered as ideal molecular markers
for population genetics, species identification, as well as phylogenetic and evolutionary studies.
In Hymenoptera, sequences of mitochondrial genomes have accumulated rapidly; however,
representation is seriously deficient relative to the diversity of the groups. There is now sufficient
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data available from Hymenoptera to reliably draw conclusions about patterns and trends in the
mitochondrial genome evolution of Hymenoptera.

Gene rearrangement events provide insights into investigating the dynamics of mitochondrial
genomes and evolutionary relationships [10,11]. With the increasing availability of mitochondrial
genomes under technical feasibility and the adoption of next-generation sequencing technologies [12–16],
comparative study has become popular. Several orders of insect have been found exhibiting diagnostic
rearrangements for major taxonomic groups [17–20]. In Hymenoptera, large-scale and complicated
gene rearrangements have been found [21–25]. In the suborder “Symphyta”, gene rearrangement
was conserved, but was accelerated in the Apocrita [10]. The rearrangement of a protein-coding
gene is rare compared to the high frequency of tRNA rearrangement in Hymenoptera [22].
Most comparative studies in Hymenoptera are conducted at the superfamily level l [21,22,25,26],
or at lower levels within limited groups [23,27]. Adding more mitochondrial genomes from
representative groups by dense sampling will contribute to the understanding of genome evolution as
well as the phylogeny of Hymenoptera.

The Pompilidae is a species-rich and cosmopolitan family belonging to the superfamily Vespoidea
of Aculeata in Hymenoptera [28,29]. The pompilid species are commonly known as spider wasps
or pompilid wasps [30]. For feeding their larvae, these wasps usually hunt and kill spiders often
larger than themselves [31]. Wasps in Pompilidae are solitary and nest alone, which differ from
many other families of Hymenoptera [32]. Most spider wasps capture and paralyze prey, though
some exhibit parasitic behaviours [33]. Adult Pompilidae engage in nectar-feeding activity and
feed on a variety of plants [32]. Currently, nearly complete mitochondrial genomes from Vespidae,
Eumenidae, Formicidae and Mutillidae have been sequenced respectively within Vespoidea. In the
sequenced mitochondrial genomes of Vespoidea, tRNA gene rearrangement was reported; however,
rearrangement of protein-coding genes has not been found [22,34–36]. A locus of mitochondrial
genes comprising cox1 and adjacent tRNA genes was sequenced from representatives of the major
clades of Pompilidae and the rearrangement of the trnC and trnY genes was found in the sequenced
segments [37]. However, no complete mitochondrial genome from Pompilidae has been reported.
We presumed a moderate amount of mitochondrial gene rearrangement occurred in species of
Pompilidae according to current knowledge of its related families from Vespoidea [22,34–36],
but the contribution of the rearrangement signal to phylogenetic analysis of Hymenoptera still
needs confirmation.

In this study, we sequenced two mitochondrial genomes from different genera of Pompilidae,
Auplopus and Agenioideus, and compared them with others across the Vespoidea. This work provides a
first report of mitochondrial genomes from Pompilidae, and reveals novel gene rearrangement patterns
in Vespoidea.

2. Results and Discussion

2.1. General Features of Mitochondrial Genomes

Two nearly complete mitochondrial genomes from Auplopus sp. (GenBank accession KX584357)
and Agenioideus sp. (GenBank accession KX584356) were sequenced. Each genome contained all 37
typical animal mitochondrial genes, including 13 protein-coding genes, 22 tRNA genes and two rRNA
genes [1,2]. The average coverage of the Auplopus and Agenioideus mitochondrial genome was 479X
and 1595X, respectively, which is high compared to that of other mitochondrial genomes sequenced by
using next-generation sequencing [15,38]. The complete A + T-rich region was unable to be sequenced
in both species. The failure in sequencing of the A + T-rich region was common in mitochondrial
genome sequencing by PCR-based method [18,21,39,40], which might be caused by the presence of
the PolyA/T structure, repeat region and especially high A + T content in this region. The A + T-rich
region was also difficult to determine through next-generation sequencing [15,41], possibly due to the
failure of assembly from short reads (250 bp in pair-ends) rather than incomplete library construction.
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For the Auplopus mitochondrial genome, the sequenced region was 16,746 bp long. A total
of 20 bp of overlapping nucleotides were detected between genes with a length from 1 to 8 bp. A total
of 551 bp of intergenic nucleotides ranging from 1 to 304 bp were found in 17 locations. In addition,
there was an un-amplified portion located between nad1 and trnA. Two noncoding regions with a
length of 988 bp after nad1 and 576 bp before trnA were present. The other eleven pairs of genes were
directly adjacent, without overlapping or intergenic nucleotides.

The sequenced length of the mitochondrial genome of Agenioideus was 16,596 bp. In total, there
were 16 bp overlapping regions in five locations (trnI-trnQ, nad2-trnW, trnN-trnS1, nad4-nad4l and
cob-trn-trnS2). The shared nucleotides ranged from 2 to 6 bp, with the longest one (6 bp) located
between nad4 and nad4l. In total, there were 1850 bp intergenic spacer sequences in 20 locations
with a length from 1 to 1240 bp. The longest non-coding region was located between trnA and trnL1.
The other ten pairs of genes were directly adjacent to each other. In both species, the length of the
mitochondrial genome and overlapping regions between genes was normal, while the intergenic
spacer is considerably longer than other Vespoidea mitochondrial genomes [22,34–36].

2.2. Nucleotide Composition

Three parameters, AT-skew, GC-skew and A + T content, are frequently used to reveal
the nucleotide-compositional behavior of mitochondrial genomes [42,43]. The sequence of
whole mitochondrial genome for Auplopus and Agenioideus was biased in nucleotide composition
((A + T)% > (G + C)%) in the majority strand (J-strand), which was consistent with that of other insects.
The A + T content of whole genome was 83.12% for Auplopus (39.04% A, 44.08% T, 8.47% G and
8.41% C), and 78.64% for Agenioideus (35.65% A, 42.99% T, 12.04% G and 9.32% C) (Table 1).

The A + T content of all protein-coding genes in Vespoidea ranged from 67.41%
(Leptomyrmex pallens) to 83.38% (Polistes jokahamae) (Table 1). All of the AT-skews were negative,
while most GC-skews were negative in Vespoidea, which indicated that the protein-coding genes
contained more T and C nucleotides than A and G nucleotides, as reported for most other insects [42,43].

2.3. Protein-Coding Genes

Both in Auplopus and Agenioideus mitochondrial genomes, 9 of 13 protein-coding genes were
located on the majority strand, while the other four protein-coding genes were located on the minority
strand (N-strand). In the mitochondrial genome of Auplopus, the total length of protein-coding genes
was 10,931 bp, accounting for 65.28% of the whole genome. The total length of the protein-coding
genes of Agenioideus was 11,238 bp, accounting for 67.72% of the whole genome. The overall A + T
content of the 13 protein-coding genes was 82.33% in Auplopus mitochondrial genome, ranging
from 75.43% (cox1) to 91.82% (atp8) for an individual gene. In Agenioideus mitochondrial genome,
the total A + T content of the 13 protein-coding genes was 77.72%, ranging from 71.77% (cox1) to 85.20%
(atp8) for an individual gene (Table 2).

In both mitochondrial genomes, all of the protein-coding genes start with the conventional
initiation codons (ATN) [44,45]. In Auplopus, five genes use ATA, seven use ATT and one use ATG, while
in Agenioideus, there were three, five and five protein-coding genes starting with ATA, ATT and ATG,
respectively. In Auplopus mitochondrial genome, 10 of 13 protein-coding genes used TAA as the stop
codon, while the nad3, cob and nad5 genes used incomplete stop codon T. In Agenioideus mitochondrial
genome, 8 of 13 protein-coding genes terminated with TAA; the nad4l and cob genes stopped with
codon TA, and the atp8, nad4 and nad6 genes stopped with codon T. The usage of incomplete stop
codons of protein-coding genes is common in invertebrate mitochondrial genomes [45,46].
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Table 1. Base composition of the mitochondrial genomes in Vespoidea.

Species
Whole Genome All Protein-Coding Genes

T% C% A% G% (A + T)% AT-skew GC-skew T% C% A% G% (A + T)% AT-skew GC-skew

Agenioideua sp. 42.99 9.32 35.65 12.04 78.64 −0.0932 0.1272 44.95 10.66 32.76 11.62 77.72 −0.1569 0.0431
Auplopus sp. 44.08 8.41 39.04 8.47 83.12 −0.0607 0.0036 47.47 8.39 34.85 9.29 82.33 −0.1532 0.0507

Wallacidia oculata 33.58 14.56 43.78 8.08 77.36 0.1318 −0.2864 41.17 12.40 33.84 12.59 75.01 −0.0978 0.0075
Solenopsis geminata 37.94 16.95 38.60 6.51 76.54 0.0086 −0.4452 42.26 14.86 31.32 11.56 73.58 −0.1487 −0.1250
Solenopsis invicta 38.65 16.52 38.53 6.31 77.18 −0.0015 −0.4472 42.93 14.29 31.31 11.47 74.24 −0.1564 −0.1096
Solenopsis richteri 38.55 16.59 38.39 6.47 76.95 −0.0021 −0.4391 42.84 14.37 31.23 11.57 74.07 −0.1567 −0.1079

Myrmica scabrinodis 42.66 11.27 39.52 6.54 82.19 −0.0382 −0.2659 46.17 10.18 34.01 9.63 80.19 −0.1516 −0.0279
Pristomyrmex punctatus 40.65 14.28 38.98 6.09 79.64 −0.0210 −0.4024 43.95 11.90 33.99 10.16 77.94 −0.1278 −0.0790

Leptomyrmex pallens 32.60 22.01 36.94 8.45 69.54 0.0624 −0.4452 38.69 17.49 28.71 15.11 67.41 −0.1480 −0.0729
Atta laevigata 43.60 14.18 37.25 4.98 80.84 −0.0785 −0.4799 44.70 12.10 32.98 10.22 77.68 −0.1508 −0.0842
Formica fusca 43.07 10.96 40.35 5.63 83.42 −0.0326 −0.3215 46.77 9.95 34.37 8.91 81.14 −0.1528 −0.0551

Formica selysi vouche 42.94 11.07 40.33 5.66 83.27 −0.0313 −0.3236 46.81 10.06 34.20 8.92 81.01 −0.1556 −0.0599
Camponotus chromaiodes 38.77 14.93 39.37 6.93 78.14 0.0077 −0.3661 44.53 12.39 32.58 10.49 77.12 −0.1550 −0.0832

Camponotus atrox 39.87 14.75 38.97 6.42 78.83 −0.0114 −0.3933 44.06 12.73 32.34 10.86 76.41 −0.1534 −0.0790
Linepithema humile 41.27 6.23 39.05 13.45 80.32 −0.0277 0.3668 45.02 11.36 33.17 10.46 78.18 −0.1516 −0.0411

Polistes humilis 41.65 9.95 43.09 5.32 84.73 0.0170 −0.3031 46.61 8.51 36.77 8.11 83.38 −0.1180 −0.0244
Polistes jokahamae 41.45 10.79 41.97 5.80 83.41 0.0062 −0.3012 45.51 9.70 36.00 8.79 81.51 −0.1167 −0.0491

Vespidae sp. 39.46 11.19 43.07 6.28 82.53 0.0437 −0.2810 44.93 9.87 35.36 9.84 80.28 −0.1192 −0.0014
Vespa bicolor 40.98 12.81 40.74 5.47 81.72 −0.0030 −0.4012 44.32 11.11 35.00 9.57 79.31 −0.1175 −0.0745

Abispa ephippium 41.05 13.38 39.55 6.02 80.61 −0.0187 −0.3796 43.48 11.21 35.20 10.12 78.67 −0.1052 −0.0510
Vespa mandarinia 40.51 14.53 38.88 6.07 79.39 −0.0205 −0.4104 43.37 12.35 33.73 10.56 77.09 −0.1251 −0.0781
Vespula germanica 41.47 12.39 40.21 5.94 81.67 −0.0154 −0.3523 45.45 10.55 33.83 10.17 79.28 −0.1465 −0.0186

Table 2. Base composition of protein-coding and rRNA genes in the mitochondrial genomes of Agenioideus and Auplopus.

GeneSpecies
Agenioideus sp. Auplopus sp.

T% C% A% G% (A + T)% AT-skew GC-skew T% C% A% G% (A + T)% AT-skew GC-skew

atp6 49.57 7.98 29.20 13.25 78.77 −0.2586 0.2483 50.00 8.86 32.58 8.56 82.58 −0.2109 −0.0172
atp8 48.00 6.80 37.20 8.00 85.20 −0.1268 0.0811 47.80 5.03 44.03 3.14 91.82 −0.0411 −0.2308
cob 46.07 10.88 28.56 14.50 74.62 −0.2346 0.1429 45.08 10.89 32.57 11.46 77.65 −0.1611 0.0256

cox1 45.09 12.47 26.68 15.76 71.77 −0.2565 0.1167 43.95 10.94 31.48 13.63 75.43 −0.1654 0.1094
cox2 41.74 10.58 34.20 13.48 75.94 −0.0992 0.1205 46.09 9.42 35.22 9.28 81.30 −0.1337 −0.0078
cox3 48.23 10.10 27.40 14.27 75.63 −0.2755 0.1710 48.91 9.45 31.16 10.47 80.08 −0.2217 0.0513
nad1 43.41 12.67 34.53 9.38 77.94 −0.1140 −0.1493 48.26 7.95 33.66 10.13 81.92 −0.1782 0.1205
nad2 50.65 5.54 32.53 11.28 83.18 −0.2179 0.3413 50.70 5.62 36.55 7.13 87.25 −0.1623 0.1181
nad3 52.42 6.84 28.21 12.54 80.63 −0.3004 0.2941 56.16 4.58 30.95 8.31 87.11 −0.2895 0.2889
nad4 39.79 12.65 39.56 8.00 79.34 −0.0029 −0.2251 46.44 6.74 38.08 8.74 84.52 −0.0988 0.1287
nad4l 44.09 9.68 39.07 7.17 83.15 −0.0603 −0.1489 48.55 5.43 39.49 6.52 88.04 −0.1029 0.0909
nad5 40.97 13.24 37.67 8.12 78.64 −0.0421 −0.2394 46.07 8.83 37.48 7.62 83.56 −0.1027 −0.0735
nad6 46.96 7.03 32.89 13.12 79.85 −0.1762 0.3019 52.19 6.10 37.33 4.38 89.52 −0.1660 −0.1636
rrnL 37.29 8.60 43.88 10.23 81.16 0.0812 0.0864 38.44 5.78 47.61 8.17 86.06 0.1065 0.1713
rrnS 34.64 8.78 46.38 10.20 81.02 0.1449 0.0750 37.27 6.37 47.35 9.02 84.62 0.1191 0.1724



Int. J. Mol. Sci. 2016, 17, 1641 5 of 15

Table 3. Codon usage in the mitochondrial genomes of Agenioideus and Auplopus.

Agenioideus sp. Auplopus sp.

AA Codon No. RSCU AA Codon No. RSCU AA Codon No. RSCU AA Codon No. RSCU AA Codon No. RSCU AA Codon No. RSCU

Phe UUU 335 1.83

Ser

UCU 125 2.44 Tyr UAU 163 1.71 Phe UUU 395 1.96

Ser

UCU 107 2.32 Tyr UAU 175 1.91
UUC 31 0.17 UCC 17 0.33 UAC 28 0.29 UUC 9 0.04 UCC 3 0.07 UAC 8 0.09

Leu

UUA 408 4.6 UCA 115 2.24 Cys UGU 43 1.87

Leu

UUA 502 5.68 UCA 140 3.04
Cys

UGU 41 1.95

UUG 35 0.39 UCG 5 0.1 UGC 3 0.13 UUG 8 0.09 UCG 5 0.11 UGC 1 0.05

CUU 35 0.39

Pro

CCU 67 2.29 His CAU 52 1.68 CUU 17 0.19

Pro

CCU 66 2.38 His CAU 60 1.9

CUC 4 0.05 CCC 12 0.41 CAC 10 0.32 CUC 0 0 CCC 2 0.07 CAC 3 0.1

CUA 48 0.54 CCA 33 1.13 Gln CAA 43 1.79 CUA 3 0.03 CCA 40 1.44 Gln CAA 50 1.92

CUG 2 0.02 CCG 5 0.17 CAG 5 0.21 CUG 0 0 CCG 3 0.11 CAG 2 0.08

Ile AUU 389 1.87

Thr

ACU 76 2.01 Asn AAU 154 1.58 Ile AUU 439 1.98

Thr

ACU 82 2.58 Asn AAU 199 1.91

AUC 26 0.13 ACC 7 0.19 AAC 41 0.42 AUC 5 0.02 ACC 3 0.09 AAC 9 0.09

Met AUA 306 1.8 ACA 63 1.67 Lys AAA 113 1.71 Met AUA 315 1.9 ACA 37 1.17 Lys AAA 121 1.92

AUG 34 0.2 ACG 5 0.13 AAG 19 0.29 AUG 16 0.1 ACG 5 0.16 AAG 5 0.08

Val

GUU 99 2.04

Ala

GCU 55 2.22 Asp GAU 65 1.91

Val

GUU 79 2.36

Ala

GCU 42 2.05 Asp GAU 58 2

GUC 6 0.12 GCC 9 0.36 GAC 3 0.09 GUC 1 0.03 GCC 3 0.15 GAC 0 0

GUA 76 1.57 GCA 33 1.33 Glu GAA 55 1.45 GUA 52 1.55 GCA 37 1.8 Glu GAA 73 1.95

GUG 13 0.27 GCG 2 0.08 GAG 21 0.55 GUG 2 0.06 GCG 0 0 GAG 2 0.05

Gly

GGU 57 1.56

Arg

CGU 20 1.74

Ser

AGU 48 0.94

Gly

GGU 48 1.21

Arg

CGU 20 1.7

Ser

AGU 24 0.52

GGC 7 0.19 CGC 0 0 AGC 3 0.06 GGC 0 0 CGC 0 0 AGC 2 0.04

GGA 47 1.29 CGA 20 1.74 AGA 80 1.56 GGA 107 2.69 CGA 26 2.21 AGA 87 1.89

GGG 35 0.96 CGG 6 0.52 AGG 17 0.33 GGG 4 0.1 CGG 1 0.09 AGG 1 0.02

Trp
UGA 71 1.41 – – – – – – – – Trp UGA 83 1.91 – – – – – – – –
UGG 30 0.59 – – – – – – – UGG 4 0.09 – – – – – –

RSCU: Relative Synonymous Codon Usage; AA: Amino Acid; No.: Number.
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Relative synonymous codon usage values in the mitochondrial genomes of Auplopus and
Agenioideus reflected a significant bias towards A and T nucleotides (Table 3). In both Auplopus
and Agenioideus mitochondrial genomes, Leu, Ile, Phe and Met were the four most frequent amino
acids and TTA (Leu), ATT (Ile), TTT (Phe) and ATA (Met) were the most frequently used codons,
which was same as that in other species of Hymenoptera [6,22,27,47]. In comparison, almost all of the
frequently used codons ended with A/T, which may lead to the A and T bias in the mitochondrial
genome. In the mitochondrial genome of Auplopus, the codon Leu (CUC, CUG), Asp (GAC),
Arg (CGC) and Gly (GGC) were missing, while the Arg (CGC) was absent in the mitochondrial
genome of Agenioideus. It is obvious that the missing codons all preferred G and C in the third codon
position, as those in other hymenopterans [26].

2.4. Transfer RNA Gene

The orientation and anticodons of the predicted tRNA genes were identical in both species.
As for 22 tRNA genes detected in each mitochondrial genome, 14 genes were coded on the J-strand
while eight were coded on the N-strand. In the mitochondrial genome of Auplopus, the tRNA genes
ranged in size from 57 bp (trnS1) to 72 bp (trnK), while that in Agenioideus ranged from 57 bp (trnS1)
to 69 bp (trnK, trnG). The length of tRNA usually affected the size of variable loop and D-loop regions.
In the Auplopus and Agenioideus, tRNA genes had variable loops ranging from 2 to 4 bp.

All tRNA genes of the two species folded into a canonical clover-leaf structure with the
dihydrouridine arm formed a simple loop, except that trnS1 lost D-stem pairings in the DHU arm
(Figures S1 and S2). The feature was the same as observed in many other insect mitochondrial genomes
such as mosquito, beetle and honeybee [20,38,44,45,48–51]. There were nine wobble G–U pairs in the
stem structures of Auplopus. There were 18 mismatches, including 15 G–U pairs, two U–U pairs and
one A–A pair present in 22 tRNA genes of Agenioideus. Compared with other insects, the mismatches
were normal in the tRNA secondary structures. The anticodons of most tRNA genes were identical to
their counterparts among most other published insect mitochondrial genomes. However, the trnS1
gene used abnormal anticodon TCT, which have been found to be correlated with frequent gene
rearrangement events [38].

2.5. Ribosomal RNA Genes

In the mitochondrial genome of Auplopus and Agenioideus, the arrangement of both rrnL and rrnS
was conserved. The position of rRNA genes was identical in both species with rrnL located between
trnL1 and trnV, and rrnS located downstream of trnV. In Auplopus, the rrnL was 1298 bp long with
an A + T content of 86.06%, while the rrnS was 754 bp long with an A + T content of 84.62%.
In Agenioideus, the rrnL had a length of 1290 bp with an A + T content of 81.16%, whereas the
rrnS had a length of 843 bp with an A + T content of 81.02%. The length of the rrnL as well as rrnS
genes was normal, and their A + T content was similar to their homolog genes in other hymenopteran
insects [27,51].

The Auplopus and Agenioideus shared similar features of rrnL and rrnS. There were 49 helices
present in the rrnL of both species, belonging to six domains (Figures S3 and S4), just as those in
Diadegma semiclausum [6] and Apis mellifera [52]. The predicted structures of helix 837 usually form a
long stem structure with a small loop in the terminal [20,52], but it formed a shorter stem and a larger
loop in the two newly sequenced species which conformed to that in Evania appendigaster [38] and
D. melanogaster. H991 displayed helical length and loop size variability between Auplopus and
Agenioideus. H2520 was variable in length and shape in Auplopus and Agenioideus as in other
insects [53,54].

There were 30 helices found in rrnS of Auplopus and Agenioideus belonging to three domains as
reported in braconid species [22] and E. appendigaster [38]. H39 was not predicted in Auplopus and
Agenioideus, instead of a circle formed by H27, H47, H367 and H500, and the sequences in between [38]
(Figures S5 and S6). Loop number and size variability of helix 47 were commonly observed features
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in rrnS of Hymenoptera. In Auplopus and Agenioideus, H47 formed two loops that were similar to
E. appendigaster [38] and D. virilis [55], but different from that in D. semiclausum [6] and A. mellifera [52]
where a larger loop was present, and that in the Cephus species with four loops in the same position [56].
Contrastingly, H673 was conserved in Auplopus and Agenioideus, which wassimilar to D. virilis [55] and
D. Semiclausum [6].

2.6. Gene Rearrangement

In the mitochondrial genome of Auplopus and Agenioideus, protein-coding and rRNA genes
displayed the same order and orientation as those present in the putative ancestral mitochondrial
genome of insect [57–59] (Figure 1). However, four and two tRNA genes were rearranged in Auplopus
and Agenioideus, respectively.Int. J. Mol. Sci. 2016, 17, 1641 9 of 17 
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tRNALeu(CUN), tRNALeu(UUR), tRNASer(AGN), and tRNASer(UCN). 

Gene rearrangement events have been classified into transposition (translocation), local 
inversions (inverted in the local position), gene shuffling (local translocation) and remote inversions 
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Figure 1. Map and rearrangement of the mitochondrial genomes in Agenioideus and Auplopus. Genes
with underscores are encoded on the minority strand. Dashed lines indicate the unsequenced region of
the genome. cox1, cox2, and cox3: cytochrome oxidase subunits; cob: cytochrome b; nad1-nad6: NADH
dehydrogenase components; rrnL and rrnS: ribosomal RNAs. One-letter symbol refers to the transfer
RNA gene according to the IPUC-IUB single-letter amino acid codes. L1, L2, S1 and S2: tRNALeu(CUN),
tRNALeu(UUR), tRNASer(AGN), and tRNASer(UCN).

Gene rearrangement events have been classified into transposition (translocation), local inversions
(inverted in the local position), gene shuffling (local translocation) and remote inversions (translocated
and inverted) [60]. The trnM gene was shuffled upstream of the trnI-trnQ-trnM cluster applying to
Auplopus and Agenioideus, which might be explained by the TDRL model (tandem duplication followed
by random loss) with the evidence that in Auplopus, a 6 bp, and in Agenioideus, a 156 bp intergenic
region was found between trnQ and nad2 as described in E. appendigaster [38]. Evidence for the TDRL
mechanism is indicated by the pattern of gene order, the presence of pseudogenes or duplicated genes,
and the position of intergenic spacers [22]. The intergenic spacer between trnQ and nad2 may be a
remnant region after deletion of the secondary copy of trnM. In both species, trnA was translocated
from the trnA-trnR-trnN-trnS1-trnE-trnF cluster to the location between nad1 and trnL1, which is
a novel arrangement pattern within the Vespoidea. The duplication/random loss model, and the
intramitochondrial genome recombination [61–63] and duplication/nonrandom loss [64] model are
possible mechanisms to explain translocation [22]. The shuffling of trnY and trnC genes among the
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cluster trnW-trnC-trnY occurred in Auplopus but not Agenioideus; the rearrangement event could also
be found in Psorthaspis legata, Ageniella agenioides and Calopompilus maculipennis of Pompilidae [37].

In the Aculeata, protein-coding gene rearrangement has been found in the Cephalonomia
mitochondrial genome [22]. However, there was no protein-coding gene rearrangement detected
in Vespoidea, which also applied to the Pompilidae according to the mitochondrial genomes
first reported here. Rearrangement of the tRNA gene is a typical feature of the mitochondrial
architecture in Hymenoptera [17,21,40]. In Vespoidea, various extents of tRNA gene rearrangement
has been found. Comparisons of the mitochondrial genomes within Vespoidea revealed similar
patterns of gene arrangements in some tRNA genes. Most species formed the identical arrangement
pattern of trnM-trnI-trnQ, but Wallacidia oculata (Mutillidae), Camponotus atrox (Formicidae) [65],
Vespa bicolor (Vespidae) [66], and Vespa mandarinia (Vespidae) [35] followed an arrangement pattern of
trnI–trnM-trnQ. However, the remote transposition pattern in the Pompilidae presented in this study
has not been reported in Vespoidea. Rearrangements in the trnA-trnR-trnN-trnS1-trnE-trnF cluster
rarely occurred in the Vespoidea mitochondrial genomes previously reported. The trnN translocation to
the downstream of rrnS in Solenopsis geminata (Formicidae) and Solenopsis invicta [67] and translocation
to the upstream of trnM-trnI-trnQ in Linepithema humile (Formicidae) [68] was reported. Our analyses
indicate that gene rearrangements in Vespoidea are randomly distributed but may be conserved within
genus, such as the Solenopsis [67].

2.7. Phylogenetic Relationships

Phylogenetic relationships within the superfamily Vespoidea were reconstructed (Figure 2).
The result supported the monophyly of Vespidae, as revealed by previous studies [33–35]. Among
the currently used species of Vespoidea, the Pompilidae and Mutillidae formed a sister lineage,
congruent with a previous study [69]. This is the first time that the mitochondrial genomes of
Pompilidae were used to investigate the phylogenetic relationships within Vespoidea [21,22,25].
Extensive sequencing of the mitochondrial genomes from other relative species is needed to reveal the
phylogenetic relationships within Vespoidea.
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3. Materials and Methods

3.1. Sample Collection and DNA Extraction

The specimen of Auplopus sp. was collected from Tianmu Mountain of Zhejiang Province, China,
July 2015, and identified by Akira Shimizu. While the specimen of Agenioideus sp. was collected from
the Haidian district of Beijing, China, June 2015, and identified by Hua-Yan Chen. Both specimens were
stored at −80 ◦C in 100% ethanol prior to DNA extraction. Total genomic DNA was extracted separately
from legs and thorax of each individual specimen with the DNeasy tissue kit (Qiagen, Hilden, Germany)
following the manufacturer’s protocol. Voucher DNA was deposited in the entomological collections
of Beijing Academy of Agriculture and Forestry Sciences.

3.2. Mitochondrial Genome Sequencing and Assembly

The mitochondrial genome sequences were gained by next-generation sequencing. Prior to library
construction, the DNA was quantified by Qubit 3.0 (Invitrogen, Life technologies, Carlsbad, CA, USA).
The library with two indexes was constructed using the Illumina TruSeq@ DNA PCR-Free HT Kit and
sequenced by BerryGenomics Company (Beijing, China) using Illumina Miseq 2500 with the strategy
of 250 paired-ends.

The mitochondrial data constitutes a small fraction of huge primary data generated by genomic
sequencing (approximately 0.5%) [11,47]. To simplify the de novo assembly of mitochondrial genome
from short reads produced, the mitochondrial targets were filtered at the stage of raw reads by
similarity searches against a database of hymenoptera mitochondrial genomes, using BLASTn version
2.2.27+ with the E value of 1 × 10−5 and maximum target sequences of 1. Putative mitochondrial
reads allowing for blast hits were extracted with a Perl script (FastqExtract.pl) [41]. All putative
mitochondrial reads from the library were assembled into contigs with Celera Assembler version
8.3rc2 and IDBA version 1.1.1 as described in [15]. The de novo assembly of the mitochondrial contigs
generated in previous methods were conducted by Geneious version 9.1.4 [70].

3.3. Mitochondrial Genome Annotation

The initial identification and annotation of the genome was conducted by Mitos WebServer [71]
with the genetic code of Invertebrate Mitochondria. The boundaries of protein-coding genes were
examined again by alignment against their homologs in the Vespoidea. Putative tRNA genes were
identified using the tRNAscan-SE search server with a Cove cutoff score of 5. When expected tRNA
genes could not be found, alignment of candidate regions was conducted with the homologous genes
in relative species. The gene boundaries of rRNA genes and control region were assigned based on
alignment with their homologs and the ends of neighboring tRNAs.

3.4. Comparative Analysis of the Mitochondrial Genomes

A total of 22 species from Vespoidea were involved in analysis, including 12 species of
Formicidae, seven species of Vespidae, two species of Pompilidae and one species of Mutillidae,
whose mitochondrial genomes were sequenced (Table 4). We analyzed the features of mitochondrial
genomes including nucleotide composition, codon usage, nucleotide diversity and gene arrangement.
The nucleotide composition was calculated by MEGA5 [72]. The AT and GC asymmetries, called
AT-skews and GC-skews, were calculated based on formula AT-skew = (A% − T%)/(A% + T%) and
GC-skew = (G% − C%)/(G% + C%) [73]. The Relative Synonymous Codon Usage (RSCU) of all
protein-coding genes was analyzed in codonW (written by John Peden, University of Nottingham,
Nottingham, UK).

The secondary structures of both rrnL and rrnS were predicted by comparative sequence method
using XRNA version (developed by B. Weiser and available online: http://rna.ucsc.edu/rnacenter/
xrna/xrna.html) [74]. Secondary structures of the tRNA genes were predicted using the tRNAscan-SE
search server [75] and re-drawn by using XRNA.

http://rna.ucsc.edu/rnacenter/xrna/xrna.html
http://rna.ucsc.edu/rnacenter/xrna/xrna.html
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Gene order of the two newly sequenced mitochondrial genomes were compared with the
putative ancestral arrangement of insect mitochondrial genome [9] as well as all currently sequenced
mitochondrial genomes in Vespoidea.

3.5. Phylognetic Analysis

To investigate the phylogenetic relationships within the Vespoidea, 22 species from the Vespoidea
(Table 4) were included. The phylogenetic tree was reconstructed with the Bayesian inference method
(BI) using the MrBayes version 3.2.5 [76] based on the nucleotide sequences of the 13 protein-coding
genes. The sequences were aligned using the MAFFT version 7.205 [77]. The best schemes of
partition and substitution models (Table 5) were determined by the PartitionFinder version 1.1.1 [78].
Four independent Markov chains were run for 10 million metropolis-coupled generations, with tree
sampling occurring every 1000 generations and a burn-in of 25% trees. The Colletes gigas from the
superfamily Apoidea was used as outgroup [79].

Table 4. The mitochondrial genomes currently sequenced in the different species of Vespoidea.

Species Superfamily Family Accession Number References

Agenioideua sp. Vespoidea Pompilidae KX584356 This study
Auplopus sp. Vespoidea Pompilidae KX584357 This study

Wallacidia oculata Vespoidea Mutillidae FJ611801 [22]
Solenopsis geminata Vespoidea Formicidae HQ215537 [67]
Solenopsis invicta Vespoidea Formicidae HQ215538 [67]
Solenopsis richteri Vespoidea Formicidae HQ215539 [67]

Myrmica scabrinodis Vespoidea Formicidae LN607806 [80]
Pristomyrmex punctatus Vespoidea Formicidae AB556946 [81]

Leptomyrmex pallens Vespoidea Formicidae KC160533 [82]
Atta laevigata Vespoidea Formicidae KC346251 [83]
Formica fusca Vespoidea Formicidae LN607805 [80]
Formica selysi Vespoidea Formicidae KP670862 [84]

Camponotus chromaiodes Vespoidea Formicidae JX966368 [85]
Camponotus atrox Vespoidea Formicidae KT159775 [65]

Linepithema humile Vespoidea Formicidae KT428891 [68]
Polistes humilis Vespoidea Vespidae EU024653 [40]

Polistes jokahamae Vespoidea Vespidae KR052468 [35]
Vespidae sp. Vespoidea Vespidae KM244667 [86]
Vespa bicolor Vespoidea Vespidae KJ735511 [66]

Abispa ephippium Vespoidea Vespidae NC011520 [40]
Vespa mandarinia Vespoidea Vespidae KR059904 [36]
Vespula germanica Vespoidea Vespidae KR703587 [34]

Table 5. The best schemes of partition and substitution models of 13 protein-coding genes in 22 species
of Vespoidea.

Optimal Partition Model Initial Partition

Partition 1 GTR + I + G a6p1, c2p1, c3p1, cbp1, n3p1
Partition 2 HKY + I + G a8p1, n2p1, n6p1
Partition 3 GTR + I + G a6p2, c2p2, c3p2, cbp2, n3p2
Partition 4 GTR + I + G n1p2, n4lp2, n4p2, n5p2
Partition 5 GTR + G c1p2
Partition 6 GTR + G a8p2, n2p2, n6p2
Partition 7 HKY + G a8p3, n2p3, n6p3
Partition 8 GTR + I + G n1p1, n4lp1, n4p1, n5p1
Partition 9 HKY + G n1p3, n4lp3, n4p3, n5p3

Partition 10 GTR + G a6p3, c1p3, c2p3, c3p3, cbp3, n3p3
Partition 11 GTR + I + G c1p1

The initial partitions were defined by gene and codon position. Each partition was named using the first and
last letter of the gene name followed by codon position. p1, p2 and p3 in column “Initial Partition” indicates the
first, second and third codon position.



Int. J. Mol. Sci. 2016, 17, 1641 11 of 15

4. Conclusions

We sequenced and characterized the mitochondrial genomes of Auplopus sp. and Agenioideus
sp., the first two representatives from the Pompilidae, using next-generation sequencing.
The mitochondrial genome organization and gene rearrangements of the two species were
comparatively analyzed. A novel pattern of gene rearrangement to Vespoidea was revealed in this
study. Our work provides fundamental datasets for studies of gene rearrangement mechanisms and
evolutionary processes and inferring of phylogenetic relationships in the Hymenoptera.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/17/10/1641/s1.
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