Next Issue
Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Int. J. Mol. Sci., Volume 17, Issue 12 (December 2016)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story Cuticular Lipids as Cross-Talk between Insects and Plants Beyond their function of preventing water [...] Read more.
View options order results:
result details:
Displaying articles 1-195
Export citation of selected articles as:

Editorial

Jump to: Research, Review, Other

Open AccessEditorial Data Analysis in Chemistry and Bio-Medical Sciences
Int. J. Mol. Sci. 2016, 17(12), 2105; doi:10.3390/ijms17122105
Received: 10 October 2016 / Revised: 5 December 2016 / Accepted: 7 December 2016 / Published: 14 December 2016
Cited by 1 | PDF Full-text (172 KB) | HTML Full-text | XML Full-text

Research

Jump to: Editorial, Review, Other

Open AccessArticle Metformin Inhibits TGF-β1-Induced Epithelial-to-Mesenchymal Transition via PKM2 Relative-mTOR/p70s6k Signaling Pathway in Cervical Carcinoma Cells
Int. J. Mol. Sci. 2016, 17(12), 2000; doi:10.3390/ijms17122000
Received: 10 September 2016 / Revised: 19 November 2016 / Accepted: 22 November 2016 / Published: 30 November 2016
Cited by 1 | PDF Full-text (11366 KB) | HTML Full-text | XML Full-text
Abstract
Background: Epithelial-to-mesenchymal transition (EMT) plays a prominent role in tumorigenesis. Metformin exerts antitumorigenic effects in various cancers. This study investigated the mechanisms of metformin in TGF-β1-induced Epithelial-to-mesenchymal transition (EMT) in cervical carcinoma cells. Methods: cells were cultured with 10 ng/mL TGF-β1 to induce
[...] Read more.
Background: Epithelial-to-mesenchymal transition (EMT) plays a prominent role in tumorigenesis. Metformin exerts antitumorigenic effects in various cancers. This study investigated the mechanisms of metformin in TGF-β1-induced Epithelial-to-mesenchymal transition (EMT) in cervical carcinoma cells. Methods: cells were cultured with 10 ng/mL TGF-β1 to induce EMT and treated with or without metformin. Cell viability was evaluated by CCK-8 (Cell Counting Kit 8, CCK-8) assay; apoptosis were analyzed by flow cytometry; cell migration was evaluated by wound-healing assay. Western blotting was performed to detect E-cadherin, vimentin, signal transducer and activator of transcription 3 (STAT3), snail family transcriptional repressor 2 (SNAIL2), phosphorylation of p70s6k (p-p70s6k) and -Pyruvate kinase M2 (PKM2) Results: TGF-β1 promoted proliferation and migration, and it attenuated apoptosis compared with cells treated with metformin with or without TGF-β1 in cervical carcinoma cells. Moreover, metformin partially abolished TGF-β1-induced EMT cell proliferation and reversed TGF-β1-induced EMT. In addition, the anti-EMT effects of metformin could be partially in accord with rapamycin, a specific mTOR inhibitor. Metformin decreased the p-p70s6k expression and the blockade of mTOR/p70s6k signaling decreased PKM2 expression. Conclusion: Metformin abolishes TGF-β1-induced EMT in cervical carcinoma cells by inhibiting mTOR/p70s6k signaling to down-regulate PKM2 expression. Our study provides a novel mechanistic insight into the anti-tumor effects of metformin. Full article
(This article belongs to the Special Issue Chemical and Molecular Approach to Tumor Metastases)
Figures

Open AccessArticle Autoimmune Regulator Expression in DC2.4 Cells Regulates the NF-κB Signaling and Cytokine Expression of the Toll-Like Receptor 3 Pathway
Int. J. Mol. Sci. 2016, 17(12), 2002; doi:10.3390/ijms17122002
Received: 22 July 2016 / Revised: 18 November 2016 / Accepted: 24 November 2016 / Published: 1 December 2016
PDF Full-text (1951 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Autoimmune regulator (Aire) mutations result in autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), which manifests as multi-organ autoimmunity and chronic mucocutaneous candidiasis (CMC). Indendritic cells (DCs), pattern recognition receptors (PRR), such as Toll-like receptors (TLRs), are closely involved in the recognition of various pathogens,
[...] Read more.
Autoimmune regulator (Aire) mutations result in autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), which manifests as multi-organ autoimmunity and chronic mucocutaneous candidiasis (CMC). Indendritic cells (DCs), pattern recognition receptors (PRR), such as Toll-like receptors (TLRs), are closely involved in the recognition of various pathogens, activating the intercellular signaling pathway, followed by the activation of transcription factors and the expression of downstream genes, which take part in mediating the immune response and maintaining immune tolerance. In this study, we found that Aire up-regulated TLR3 expression and modulated the downstream cytokine expression and nuclear factor-κB (NF-κB) of the TLR3 signaling pathway. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Figures

Open AccessArticle Aortic Root Dilatation in Mucopolysaccharidosis I–VII
Int. J. Mol. Sci. 2016, 17(12), 2004; doi:10.3390/ijms17122004
Received: 21 October 2016 / Revised: 22 November 2016 / Accepted: 22 November 2016 / Published: 29 November 2016
PDF Full-text (732 KB) | HTML Full-text | XML Full-text
Abstract
The prevalence of aortic root dilatation (ARD) in mucopolysaccharidosis (MPS) is not well documented. We investigated aortic root measurements in 34 MPS patients at the Children’s Hospital of Orange County (CHOC). The diagnosis, treatment status, age, gender, height, weight and aortic root parameters
[...] Read more.
The prevalence of aortic root dilatation (ARD) in mucopolysaccharidosis (MPS) is not well documented. We investigated aortic root measurements in 34 MPS patients at the Children’s Hospital of Orange County (CHOC). The diagnosis, treatment status, age, gender, height, weight and aortic root parameters (aortic valve annulus (AVA), sinuses of Valsalva (SoV), and sinotubular junction (STJ)) were extracted by retrospective chart review and echocardiographic measurements. Descriptive statistics, ANOVA, and paired post-hoc t-tests were used to summarize the aortic dimensions. Exact binomial 95% confidence intervals (CIs) were constructed for ARD, defined as a z-score greater than 2 at the SoV. The patient age ranged from 3.4–25.9 years (mean 13.3 ± 6.1), the height from 0.87–1.62 meters (mean 1.24 ± 0.21), and the weight from 14.1–84.5 kg (mean 34.4 ± 18.0). The prevalence of dilation at the AVA was 41% (14/34; 95% CI: 25%–59%); at the SoV was 35% (12/34; 95% CI: 20%–54%); and at the STJ was 30% (9/30; 95% CI: 15%–49%). The highest prevalence of ARD was in MPS IVa (87.5%). There was no significant difference between mean z-scores of MPS patients who received treatment with hematopoietic stem cell transplantation (HSCT) or enzyme replacement therapy (ERT) vs. untreated MPS patients at the AVA (z = 1.9 ± 2.5 vs. z = 1.5 ± 2.4; p = 0.62), SoV (z = 1.2 ± 1.6 vs. z = 1.3 ± 2.2; p = 0.79), or STJ (z = 1.0 ± 1.8 vs. z = 1.2 ± 1.6; p = 0.83). The prevalence of ARD was 35% in our cohort of MPS I–VII patients. Thus, we recommend screening for ARD on a routine basis in this patient population. Full article
Figures

Open AccessArticle The Impact of CXCR4 Blockade on the Survival of Rat Brain Cortical Neurons
Int. J. Mol. Sci. 2016, 17(12), 2005; doi:10.3390/ijms17122005
Received: 2 September 2016 / Revised: 16 November 2016 / Accepted: 17 November 2016 / Published: 30 November 2016
PDF Full-text (1673 KB) | HTML Full-text | XML Full-text
Abstract
Background: Chemokine receptor type 4 (CXCR4) plays a role in neuronal survival/cell repair and also contributes to the progression of cancer and neurodegenerative diseases. Chemokine ligand 12 (CXCL12) binds to CXCR4. In this study, we have investigated whether CXCR4 blockade by AMD3100 (a
[...] Read more.
Background: Chemokine receptor type 4 (CXCR4) plays a role in neuronal survival/cell repair and also contributes to the progression of cancer and neurodegenerative diseases. Chemokine ligand 12 (CXCL12) binds to CXCR4. In this study, we have investigated whether CXCR4 blockade by AMD3100 (a CXCR4 antagonist, member of bicyclam family) may affect neuronal survival in the absence of insult. Thus, we have measured the mitochondrial membrane potential (MMP), Bax and Bcl-2 protein translocation, and cytochrome c release in AMD3100-treated brain cortical neurons at 7 DIV (days in vitro). Methods: For this aim, AMD3100 (200 nM) was added to cortical neurons for 24 h, and several biomarkers like cell viability, reactive oxygen species (ROS) generation, lactate dehydrogenase (LDH) release, caspase-3/9 activity, proteins Bax and Bcl-2 translocation, and cytochrome c release were analyzed by immunoblot. Results: CXCR4 blockade by AMD3100 (200 nM, 24 h) induces mitochondrial hyperpolarization and increases caspase-3/9 hyperpolarization without affecting LDH release as compared to untreated controls. AMD3100 also increases cytochrome c release and promotes Bax translocation to the mitochondria, whereas it raises cytosolic Bcl-2 levels in brain cortical neurons. Conclusion: CXCR4 blockade induces cellular death via intrinsic apoptosis in rat brain cortical neurons in absence of insult. Full article
(This article belongs to the Special Issue Neuroprotective Strategies 2016)
Figures

Open AccessArticle Green Synthesis of Silver Nanoparticles Stabilized with Mussel-Inspired Protein and Colorimetric Sensing of Lead(II) and Copper(II) Ions
Int. J. Mol. Sci. 2016, 17(12), 2006; doi:10.3390/ijms17122006
Received: 13 October 2016 / Revised: 23 November 2016 / Accepted: 25 November 2016 / Published: 30 November 2016
PDF Full-text (3343 KB) | HTML Full-text | XML Full-text
Abstract
This articles reports a simple and green method for preparing uniform silver nanoparticles (AgNPs), for which self-polymerized 3,4-dihydroxy-l-phenylalanine (polyDOPA) is used as the reducing and stabilizing agent in aqueous media. The AgNPs functionalized by polyDOPA were analyzed by UV–Vis spectroscopy, high-resolution
[...] Read more.
This articles reports a simple and green method for preparing uniform silver nanoparticles (AgNPs), for which self-polymerized 3,4-dihydroxy-l-phenylalanine (polyDOPA) is used as the reducing and stabilizing agent in aqueous media. The AgNPs functionalized by polyDOPA were analyzed by UV–Vis spectroscopy, high-resolution transmission electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), Raman spectrophotometry, and X-ray diffraction (XRD) techniques. The results revealed that the polyDOPA-AgNPs with diameters of 25 nm were well dispersed due to the polyDOPA. It was noted that the polyDOPA-AgNPs showed selectivity for Pb2+ and Cu2+ detection with the detection limits for the two ions as low as 9.4 × 10−5 and 8.1 × 10−5 μM, respectively. Therefore, the polyDOPA-AgNPs can be applied to both Pb2+ and Cu2+ detection in real water samples. The proposed method will be useful for colorimetric detection of heavy metal ions in aqueous media. Full article
(This article belongs to the Special Issue Melanin Based Functional Materials)
Figures

Open AccessArticle Epidermal Growth Factor Receptor Status in Circulating Tumor Cells as a Predictive Biomarker of Sensitivity in Castration-Resistant Prostate Cancer Patients Treated with Docetaxel Chemotherapy
Int. J. Mol. Sci. 2016, 17(12), 2008; doi:10.3390/ijms17122008
Received: 24 August 2016 / Revised: 20 November 2016 / Accepted: 23 November 2016 / Published: 30 November 2016
Cited by 1 | PDF Full-text (880 KB) | HTML Full-text | XML Full-text
Abstract
Objective: We examined whether epidermal growth factor receptor (EGFR) expression in circulating tumor cells (CTCs) can be used to predict survival in a population of bone-metastatic castration-resistant prostate cancer (mCRPC) patients treated with docetaxel chemotherapy. Methods: All patients with mCRPC who had experienced
[...] Read more.
Objective: We examined whether epidermal growth factor receptor (EGFR) expression in circulating tumor cells (CTCs) can be used to predict survival in a population of bone-metastatic castration-resistant prostate cancer (mCRPC) patients treated with docetaxel chemotherapy. Methods: All patients with mCRPC who had experienced treatment failure with androgen-deprivation therapy and had received docetaxel chemotherapy were eligible. CTCs and EGFR expression in CTCs were enumerated with the CellSearch System in whole blood. This system is a semi-automated system that detects and enriches epithelial cells from whole blood using an EpCAM antibody-based immunomagnetic capture. In addition, the EGFR-positive CTCs were assessed using CellSearch® Tumor Phenotyping Reagent EGFR. Results: The median CTC count at baseline before starting trial treatment was eight CTCs per 7.5 mL of blood (range 0–184). There were 37 patients (61.7%) who had ≥5 CTCs, with median overall survival of 11.5 months compared with 20.0 months for 23 patients (38.3%) with <5 CTCs (p < 0.001). A total of 15 patients (40.5%, 15/37) with five or more CTCs were subjected to automated immunofluorescence staining and cell sorting for EGFR protein. Patients with EGFR-positive CTCs had a shorter overall survival (OS) (5.5 months) than patients with EGFR-negative CTCs (20.0 months). CTCs, EGFR-positive CTCs, and alkaline phosphatase (ALP) were independent predictors of overall survival time (p = 0.002, p < 0.001, and p = 0.017, respectively). Conclusion: CTCs may be an independent predictor of OS in CRPC treated with docetaxel chemotherapy. The EGFR expression detected in CTCs was important for assessing the response to chemotherapy and predicting disease outcome. Full article
(This article belongs to the Special Issue Circulating Tumor Cells)
Figures

Figure 1

Open AccessArticle Dysregulated Homeostasis of Acetylcholine Levels in Immune Cells of RR-Multiple Sclerosis Patients
Int. J. Mol. Sci. 2016, 17(12), 2009; doi:10.3390/ijms17122009
Received: 24 September 2016 / Revised: 10 November 2016 / Accepted: 22 November 2016 / Published: 30 November 2016
PDF Full-text (1349 KB) | HTML Full-text | XML Full-text
Abstract
Multiple sclerosis (MS) is characterized by pro-inflammatory cytokine production. Acetylcholine (ACh) contributes to the modulation of central and peripheral inflammation. We studied the homeostasis of the cholinergic system in relation to cytokine levels in immune cells and sera of relapsing remitting-MS (RR-MS) patients.
[...] Read more.
Multiple sclerosis (MS) is characterized by pro-inflammatory cytokine production. Acetylcholine (ACh) contributes to the modulation of central and peripheral inflammation. We studied the homeostasis of the cholinergic system in relation to cytokine levels in immune cells and sera of relapsing remitting-MS (RR-MS) patients. We demonstrated that lower ACh levels in serum of RR-MS patients were inversely correlated with the increased activity of the hydrolyzing enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Interestingly, the expression of the ACh biosynthetic enzyme and the protein carriers involved in non-vesicular ACh release were found overexpressed in peripheral blood mononuclear cells of MS patients. The inflammatory state of the MS patients was confirmed by increased levels of TNFα, IL-12/IL-23p40, IL-18. The lower circulating ACh levels in sera of MS patients are dependent on the higher activity of cholinergic hydrolyzing enzymes. The smaller ratio of ACh to TNFα, IL-12/IL-23p40 and IL-18 in MS patients, with respect to healthy donors (HD), is indicative of an inflammatory environment probably related to the alteration of cholinergic system homeostasis. Full article
(This article belongs to the Special Issue Advances in Multiple Sclerosis 2016)
Figures

Figure 1

Open AccessArticle The Large Phenotypic Spectrum of Fabry Disease Requires Graduated Diagnosis and Personalized Therapy: A Meta-Analysis Can Help to Differentiate Missense Mutations
Int. J. Mol. Sci. 2016, 17(12), 2010; doi:10.3390/ijms17122010
Received: 9 October 2016 / Revised: 23 November 2016 / Accepted: 24 November 2016 / Published: 1 December 2016
PDF Full-text (933 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Fabry disease is caused by mutations in the GLA gene and is characterized by a large genotypic and phenotypic spectrum. Missense mutations pose a special problem for graduating diagnosis and choosing a cost-effective therapy. Some mutants retain enzymatic activity, but are less stable
[...] Read more.
Fabry disease is caused by mutations in the GLA gene and is characterized by a large genotypic and phenotypic spectrum. Missense mutations pose a special problem for graduating diagnosis and choosing a cost-effective therapy. Some mutants retain enzymatic activity, but are less stable than the wild type protein. These mutants can be stabilized by small molecules which are defined as pharmacological chaperones. The first chaperone to reach clinical trial is 1-deoxygalactonojirimycin, but others have been tested in vitro. Residual activity of GLA mutants has been measured in the presence or absence of pharmacological chaperones by several authors. Data obtained from transfected cells correlate with those obtained in cells derived from patients, regardless of whether 1-deoxygalactonojirimycin was present or not. The extent to which missense mutations respond to 1-deoxygalactonojirimycin is variable and a reference table of the results obtained by independent groups that is provided with this paper can facilitate the choice of eligible patients. A review of other pharmacological chaperones is provided as well. Frequent mutations can have residual activity as low as one-fourth of normal enzyme in vitro. The reference table with residual activity of the mutants facilitates the identification of non-pathological variants. Full article
Figures

Open AccessArticle Comprehensive Analysis of miRNome Alterations in Response to Sorafenib Treatment in Colorectal Cancer Cells
Int. J. Mol. Sci. 2016, 17(12), 2011; doi:10.3390/ijms17122011
Received: 25 August 2016 / Revised: 18 November 2016 / Accepted: 24 November 2016 / Published: 1 December 2016
PDF Full-text (4359 KB) | HTML Full-text | XML Full-text
Abstract
MicroRNAs (miRNAs) are master regulators of drug resistance and have been previously proposed as potential biomarkers for the prediction of therapeutic response in colorectal cancer (CRC). Sorafenib, a multi-kinase inhibitor which has been approved for the treatment of liver, renal and thyroid cancer,
[...] Read more.
MicroRNAs (miRNAs) are master regulators of drug resistance and have been previously proposed as potential biomarkers for the prediction of therapeutic response in colorectal cancer (CRC). Sorafenib, a multi-kinase inhibitor which has been approved for the treatment of liver, renal and thyroid cancer, is currently being studied as a monotherapy in selected molecular subtypes or in combination with other drugs in metastatic CRC. In this study, we explored sorafenib-induced cellular effects in Kirsten rat sarcoma viral oncogene homolog olog (KRAS) wild-type and KRAS-mutated CRC cell lines (Caco-2 and HRT-18), and finally profiled expression changes of specific miRNAs within the miRNome (>1000 human miRNAs) after exposure to sorafenib. Overall, sorafenib induced a time- and dose-dependent growth-inhibitory effect through S-phase cell cycle arrest in KRAS wild-type and KRAS-mutated CRC cells. In HRT-18 cells, two human miRNAs (hsa-miR-597 and hsa-miR-720) and two small RNAs (SNORD 13 and hsa-miR-3182) were identified as specifically sorafenib-induced. In Caco-2 cells, nine human miRNAs (hsa-miR-3142, hsa-miR-20a, hsa-miR-4301, hsa-miR-1290, hsa-miR-4286, hsa-miR-3182, hsa-miR-3142, hsa-miR-1246 and hsa-miR-720) were identified to be differentially regulated post sorafenib treatment. In conclusion, we confirmed sorafenib as a potential anti-neoplastic treatment strategy for CRC cells by demonstrating a growth-inhibitory and cell cycle–arresting effect of this drug. Changes in the miRNome indicate that some specific miRNAs might be relevant as indicators for sorafenib response, drug resistance and potential targets for combinatorial miRNA-based drug strategies. Full article
(This article belongs to the collection Regulation by Non-Coding RNAs)
Figures

Open AccessArticle Natural Non-Mulberry Silk Nanoparticles for Potential-Controlled Drug Release
Int. J. Mol. Sci. 2016, 17(12), 2012; doi:10.3390/ijms17122012
Received: 12 October 2016 / Revised: 25 November 2016 / Accepted: 26 November 2016 / Published: 1 December 2016
PDF Full-text (3415 KB) | HTML Full-text | XML Full-text
Abstract
Natural silk protein nanoparticles are a promising biomaterial for drug delivery due to their pleiotropic properties, including biocompatibility, high bioavailability, and biodegradability. Chinese oak tasar Antheraea pernyi silk fibroin (ApF) nanoparticles are easily obtained using cations as reagents under mild conditions.
[...] Read more.
Natural silk protein nanoparticles are a promising biomaterial for drug delivery due to their pleiotropic properties, including biocompatibility, high bioavailability, and biodegradability. Chinese oak tasar Antheraea pernyi silk fibroin (ApF) nanoparticles are easily obtained using cations as reagents under mild conditions. The mild conditions are potentially advantageous for the encapsulation of sensitive drugs and therapeutic molecules. In the present study, silk fibroin protein nanoparticles are loaded with differently-charged small-molecule drugs, such as doxorubicin hydrochloride, ibuprofen, and ibuprofen-Na, by simple absorption based on electrostatic interactions. The structure, morphology and biocompatibility of the silk nanoparticles in vitro are investigated. In vitro release of the drugs from the nanoparticles depends on charge-charge interactions between the drugs and the nanoparticles. The release behavior of the compounds from the nanoparticles demonstrates that positively-charged molecules are released in a more prolonged or sustained manner. Cell viability studies with L929 demonstrated that the ApF nanoparticles significantly promoted cell growth. The results suggest that Chinese oak tasar Antheraea pernyi silk fibroin nanoparticles can be used as an alternative matrix for drug carrying and controlled release in diverse biomedical applications. Full article
(This article belongs to the Special Issue Silk-Based Materials: From Production to Characterization)
Figures

Open AccessArticle Cytokinins and Expression of SWEET, SUT, CWINV and AAP Genes Increase as Pea Seeds Germinate
Int. J. Mol. Sci. 2016, 17(12), 2013; doi:10.3390/ijms17122013
Received: 26 October 2016 / Revised: 24 November 2016 / Accepted: 25 November 2016 / Published: 1 December 2016
Cited by 2 | PDF Full-text (749 KB) | HTML Full-text | XML Full-text
Abstract
Transporter genes and cytokinins are key targets for crop improvement. These genes are active during the development of the seed and its establishment as a strong sink. However, during germination, the seed transitions to being a source for the developing root and shoot.
[...] Read more.
Transporter genes and cytokinins are key targets for crop improvement. These genes are active during the development of the seed and its establishment as a strong sink. However, during germination, the seed transitions to being a source for the developing root and shoot. To determine if the sucrose transporter (SUT), amino acid permease (AAP), Sugar Will Eventually be Exported Transporter (SWEET), cell wall invertase (CWINV), cytokinin biosynthesis (IPT), activation (LOG) and degradation (CKX) gene family members are involved in both the sink and source activities of seeds, we used RT-qPCR to determine the expression of multiple gene family members, and LC-MS/MS to ascertain endogenous cytokinin levels in germinating Pisum sativum L. We show that genes that are actively expressed when the seed is a strong sink during its development, are also expressed when the seed is in the reverse role of being an active source during germination and early seedling growth. Cytokinins were detected in the imbibing seeds and were actively biosynthesised during germination. We conclude that, when the above gene family members are targeted for seed yield improvement, a downstream effect on subsequent seed germination or seedling vigour must be taken into consideration. Full article
(This article belongs to the Special Issue Pulses)
Figures

Figure 1

Open AccessArticle Preparation of a Bis-GMA-Free Dental Resin System with Synthesized Fluorinated Dimethacrylate Monomers
Int. J. Mol. Sci. 2016, 17(12), 2014; doi:10.3390/ijms17122014
Received: 16 September 2016 / Revised: 21 November 2016 / Accepted: 22 November 2016 / Published: 1 December 2016
PDF Full-text (2564 KB) | HTML Full-text | XML Full-text
Abstract
With the aim of reducing human exposure to Bisphenol A (BPA) derivatives in dentistry, a fluorinated dimethacrylate monomer was synthesized to replace 2,2-bis[4-(2-hydroxy-3-methacryloy-loxypropyl)-phenyl]propane (Bis-GMA) as the base monomer of dental resin. After mixing with reactive diluent triethyleneglycol dimethacrylate (TEGDMA), fluorinated dimethacrylate (FDMA)/TEGDMA was
[...] Read more.
With the aim of reducing human exposure to Bisphenol A (BPA) derivatives in dentistry, a fluorinated dimethacrylate monomer was synthesized to replace 2,2-bis[4-(2-hydroxy-3-methacryloy-loxypropyl)-phenyl]propane (Bis-GMA) as the base monomer of dental resin. After mixing with reactive diluent triethyleneglycol dimethacrylate (TEGDMA), fluorinated dimethacrylate (FDMA)/TEGDMA was prepared and compared with Bis-GMA/TEGDMA in physicochemical properties, such as double bond conversion (DC), volumetric shrinkage (VS), water sorption (WS) and solubility (WSL), flexural strength (FS) and modulus (FM). The results showed that, when compared with Bis-GMA based resin, FDMA-based resin had several advantages, such as higher DC, lower VS, lower WS, and higher FS after water immersion. All of these revealed that FDMA had potential to be used as a substitute for Bis-GMA. Of course, many more studies, such as biocompatibility testing, should be undertaken to prove whether FDMA could be applied in clinic. Full article
(This article belongs to the Section Biomaterial Sciences)
Figures

Figure 1

Open AccessArticle High Intra- and Inter-Tumoral Heterogeneity of RAS Mutations in Colorectal Cancer
Int. J. Mol. Sci. 2016, 17(12), 2015; doi:10.3390/ijms17122015
Received: 5 September 2016 / Revised: 24 November 2016 / Accepted: 25 November 2016 / Published: 1 December 2016
PDF Full-text (1669 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Approximately 30% of patients with wild type RAS metastatic colorectal cancer are non-responders to anti-epidermal growth factor receptor monoclonal antibodies (anti-EGFR mAbs), possibly due to undetected tumoral subclones harboring RAS mutations. The aim of this study was to analyze the distribution of RAS
[...] Read more.
Approximately 30% of patients with wild type RAS metastatic colorectal cancer are non-responders to anti-epidermal growth factor receptor monoclonal antibodies (anti-EGFR mAbs), possibly due to undetected tumoral subclones harboring RAS mutations. The aim of this study was to analyze the distribution of RAS mutations in different areas of the primary tumor, metastatic lymph nodes and distant metastasis. A retrospective cohort of 18 patients with a colorectal cancer (CRC) was included in the study. Multiregion analysis was performed in 60 spatially separated tumor areas according to the pathological tumor node metastasis (pTNM) staging and KRAS, NRAS and BRAF mutations were tested using pyrosequencing. In primary tumors, intra-tumoral heterogeneity for RAS mutation was found in 33% of cases. Inter-tumoral heterogeneity for RAS mutation between primary tumors and metastatic lymph nodes or distant metastasis was found in 36% of cases. Moreover, 28% of tumors had multiple RAS mutated subclones in the same tumor. A high proportion of CRCs presented intra- and/or inter-tumoral heterogeneity, which has relevant clinical implications for anti-EGFR mAbs prescription. These results suggest the need for multiple RAS testing in different parts of the same tumor and/or more sensitive techniques. Full article
(This article belongs to the collection Advances in Molecular Oncology)
Figures

Open AccessCommunication Light/Dark Shifting Promotes Alcohol-Induced Colon Carcinogenesis: Possible Role of Intestinal Inflammatory Milieu and Microbiota
Int. J. Mol. Sci. 2016, 17(12), 2017; doi:10.3390/ijms17122017
Received: 27 October 2016 / Revised: 23 November 2016 / Accepted: 28 November 2016 / Published: 2 December 2016
PDF Full-text (1474 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Background: Colorectal cancer (CRC) is associated with the modern lifestyle. Chronic alcohol consumption—a frequent habit of majority of modern societies—increases the risk of CRC. Our group showed that chronic alcohol consumption increases polyposis in a mouse mode of CRC. Here we assess the
[...] Read more.
Background: Colorectal cancer (CRC) is associated with the modern lifestyle. Chronic alcohol consumption—a frequent habit of majority of modern societies—increases the risk of CRC. Our group showed that chronic alcohol consumption increases polyposis in a mouse mode of CRC. Here we assess the effect of circadian disruption—another modern life style habit—in promoting alcohol-associated CRC. Method: TS4Cre × adenomatous polyposis coli (APC)lox468 mice underwent (a) an alcohol-containing diet while maintained on a normal 12 h light:12 h dark cycle; or (b) an alcohol-containing diet in conjunction with circadian disruption by once-weekly 12 h phase reversals of the light:dark (LD) cycle. Mice were sacrificed after eight weeks of full alcohol and/or LD shift to collect intestine samples. Tumor number, size, and histologic grades were compared between animal groups. Mast cell protease 2 (MCP2) and 6 (MCP6) histology score were analyzed and compared. Stool collected at baseline and after four weeks of experimental manipulations was used for microbiota analysis. Results: The combination of alcohol and LD shifting accelerated intestinal polyposis, with a significant increase in polyp size, and caused advanced neoplasia. Consistent with a pathogenic role of stromal tryptase-positive mast cells in colon carcinogenesis, the ratio of mMCP6 (stromal)/mMCP2 (intraepithelial) mast cells increased upon LD shifting. Baseline microbiota was similar between groups, and experimental manipulations resulted in a significant difference in the microbiota composition between groups. Conclusions: Circadian disruption by Light:dark shifting exacerbates alcohol-induced polyposis and CRC. Effect of circadian disruption could, at least partly, be mediated by promoting a pro-tumorigenic inflammatory milieu via changes in microbiota. Full article
(This article belongs to the Special Issue Inflammation and Cancer)
Figures

Figure 1

Open AccessArticle Human Intervention Study to Assess the Effects of Supplementation with Olive Leaf Extract on Peripheral Blood Mononuclear Cell Gene Expression
Int. J. Mol. Sci. 2016, 17(12), 2019; doi:10.3390/ijms17122019
Received: 12 October 2016 / Revised: 21 November 2016 / Accepted: 23 November 2016 / Published: 2 December 2016
Cited by 1 | PDF Full-text (2424 KB) | HTML Full-text | XML Full-text
Abstract
Olive leaf extract (OLE) has been used for many years for its putative health benefits, but, to date, scientific evidence for the basis of these effects has been weak. Although recent literature has described a link between ailments such as cardiovascular disease, diabetes
[...] Read more.
Olive leaf extract (OLE) has been used for many years for its putative health benefits, but, to date, scientific evidence for the basis of these effects has been weak. Although recent literature has described a link between ailments such as cardiovascular disease, diabetes and cancer and a protective effect of polyphenols in the OLE, the mode of action is still unclear. Here, we describe a double-blinded placebo (PBO)-controlled trial, in which gene expression profiles of peripheral blood mononuclear cells from healthy male volunteers (n = 29) were analysed to identify genes that responded to OLE, following an eight-week intervention with 20 mL daily consumption of either OLE or PBO. Differences between groups were determined using an adjusted linear model. Subsequent analyses indicated downregulation of genes important in inflammatory pathways, lipid metabolism and cancer as a result of OLE consumption. Gene expression was verified by real-time PCR for three genes (EGR1, COX-2 and ID3). The results presented here suggest that OLE consumption may result in health benefits through influencing the expression of genes in inflammatory and metabolic pathways. Future studies with a larger study group, including male and female participants, looking into direct effects of OLE on lipid metabolism and inflammation are warranted. Full article
(This article belongs to the Special Issue The Mechanism of Action of Food Components in Disease Prevention)
Figures

Open AccessArticle Secondary Structure Adopted by the Gly-Gly-X Repetitive Regions of Dragline Spider Silk
Int. J. Mol. Sci. 2016, 17(12), 2023; doi:10.3390/ijms17122023
Received: 14 September 2016 / Revised: 5 November 2016 / Accepted: 18 November 2016 / Published: 2 December 2016
PDF Full-text (2649 KB) | HTML Full-text | XML Full-text
Abstract
Solid-state NMR and molecular dynamics (MD) simulations are presented to help elucidate the molecular secondary structure of poly(Gly-Gly-X), which is one of the most common structural repetitive motifs found in orb-weaving dragline spider silk proteins. The combination of NMR and computational experiments provides
[...] Read more.
Solid-state NMR and molecular dynamics (MD) simulations are presented to help elucidate the molecular secondary structure of poly(Gly-Gly-X), which is one of the most common structural repetitive motifs found in orb-weaving dragline spider silk proteins. The combination of NMR and computational experiments provides insight into the molecular secondary structure of poly(Gly-Gly-X) segments and provides further support that these regions are disordered and primarily non-β-sheet. Furthermore, the combination of NMR and MD simulations illustrate the possibility for several secondary structural elements in the poly(Gly-Gly-X) regions of dragline silks, including β-turns, 310-helicies, and coil structures with a negligible population of α-helix observed. Full article
(This article belongs to the Special Issue Silk-Based Materials: From Production to Characterization)
Figures

Open AccessArticle Screening the Expression Changes in MicroRNAs and Their Target Genes in Mature Cementoblasts Stimulated with Cyclic Tensile Stress
Int. J. Mol. Sci. 2016, 17(12), 2024; doi:10.3390/ijms17122024
Received: 11 October 2016 / Revised: 22 November 2016 / Accepted: 24 November 2016 / Published: 7 December 2016
PDF Full-text (2970 KB) | HTML Full-text | XML Full-text
Abstract
Cementum is a thin layer of cementoblast-produced mineralized tissue covering the root surfaces of teeth. Mechanical forces, which are produced during masticatory activity, play a paramount role in stimulating cementoblastogenesis, which thereby facilitates the maintenance, remodeling and integrity of cementum. However, hitherto, the
[...] Read more.
Cementum is a thin layer of cementoblast-produced mineralized tissue covering the root surfaces of teeth. Mechanical forces, which are produced during masticatory activity, play a paramount role in stimulating cementoblastogenesis, which thereby facilitates the maintenance, remodeling and integrity of cementum. However, hitherto, the extent to which a post-transcriptional modulation mechanism is involved in this process has rarely been reported. In this study, a mature murine cementoblast cell line OCCM-30 cells (immortalized osteocalcin positive cementoblasts) was cultured and subjected to cyclic tensile stress (0.5 Hz, 2000 µstrain). We showed that the cyclic tensile stress could not only rearrange the cell alignment, but also influence the proliferation in an S-shaped manner. Furthermore, cyclic tensile stress could significantly promote cementoblastogenesis-related genes, proteins and mineralized nodules. From the miRNA array analyses, we found that 60 and 103 miRNAs were significantly altered 6 and 18 h after the stimulation using cyclic tensile stress, respectively. Based on a literature review and bioinformatics analyses, we found that miR-146b-5p and its target gene Smad4 play an important role in this procedure. The upregulation of miR-146b-5p and downregulation of Smad4 induced by the tensile stress were further confirmed by qRT-PCR. The direct binding of miR-146b-5p to the three prime untranslated region (3′ UTR) of Smad4 was established using a dual-luciferase reporter assay. Taken together, these results suggest an important involvement of miR-146b-5p and its target gene Smad4 in the cementoblastogenesis of mature cementoblasts. Full article
(This article belongs to the collection Regulation by Non-Coding RNAs)
Figures

Open AccessArticle Comparative Evaluation of TRAIL, FGF-2 and VEGF-A-Induced Angiogenesis In Vitro and In Vivo
Int. J. Mol. Sci. 2016, 17(12), 2025; doi:10.3390/ijms17122025
Received: 20 September 2016 / Revised: 24 November 2016 / Accepted: 25 November 2016 / Published: 2 December 2016
PDF Full-text (1748 KB) | HTML Full-text | XML Full-text
Abstract
Tumor necrosis-factor-related apoptosis-inducing ligand (TRAIL) has been implicated in angiogenesis; the growth of new blood vessels from an existing vessel bed. Our aim was to compare pro-angiogenic responses of TRAIL, vascular endothelial growth-factor-A (VEGF-A) and fibroblast growth-factor-2 (FGF-2) either separately (10 ng/mL) or
[...] Read more.
Tumor necrosis-factor-related apoptosis-inducing ligand (TRAIL) has been implicated in angiogenesis; the growth of new blood vessels from an existing vessel bed. Our aim was to compare pro-angiogenic responses of TRAIL, vascular endothelial growth-factor-A (VEGF-A) and fibroblast growth-factor-2 (FGF-2) either separately (10 ng/mL) or in combination, followed by the assessment of proliferation, migration and tubule formation using human microvascular endothelial-1 (HMEC-1) cells in vitro. Angiogenesis was also measured in vivo using the Matrigel plug assay. TRAIL and FGF-2 significantly augmented HMEC-1 cell proliferation and migration, with combination treatment having an enhanced effect on cell migration only. In contrast, VEGF-A did not stimulate HMEC-1 migration at 10 ng/mL. Tubule formation was induced by all three factors, with TRAIL more effective compared to VEGF-A, but not FGF-2. TRAIL at 400 ng/mL, but not VEGF-A, promoted CD31-positive staining into the Matrigel plug. However, FGF-2 was superior, stimulating cell infiltration and angiogenesis better than TRAIL and VEGF-A in vivo. These findings demonstrate that each growth factor is more effective at different processes of angiogenesis in vitro and in vivo. Understanding how these molecules stimulate different processes relating to angiogenesis may help identify new strategies and treatments aimed at inhibiting or promoting dysregulated angiogenesis in people. Full article
(This article belongs to the Special Issue Vascular Biology and Therapeutics)
Figures

Open AccessArticle New Electrochemically-Modified Carbon Paste Inclusion β-Cyclodextrin and Carbon Nanotubes Sensors for Quantification of Dorzolamide Hydrochloride
Int. J. Mol. Sci. 2016, 17(12), 2027; doi:10.3390/ijms17122027
Received: 28 September 2016 / Revised: 29 November 2016 / Accepted: 29 November 2016 / Published: 2 December 2016
PDF Full-text (2066 KB) | HTML Full-text | XML Full-text
Abstract
The present article introduces a new approach to fabricate carbon paste sensors, including carbon paste, modified carbon paste inclusion β-cyclodextrin, and carbon nanotubes for the quantification of dorzolamide hydrochloride (DRZ). This study is mainly based on the construction of three different carbon paste
[...] Read more.
The present article introduces a new approach to fabricate carbon paste sensors, including carbon paste, modified carbon paste inclusion β-cyclodextrin, and carbon nanotubes for the quantification of dorzolamide hydrochloride (DRZ). This study is mainly based on the construction of three different carbon paste sensors by the incorporation of DRZ with phosphotungstic acid (PTA) to form dorzolamide-phosphotungstate (DRZ-PT) as an electroactive material in the presence of the solvent mediator ortho-nitrophenyloctyl ether (o-NPOE). The fabricated conventional carbon paste sensor (sensor I), as well as the other modified carbon paste sensors using β-cyclodextrin (sensor II) and carbon nanotubes (sensor III), have been investigated. The sensors displayed Nernstian responses of 55.4 ± 0.6, 56.4 ± 0.4 and 58.1 ± 0.2 mV·decade−1 over concentration ranges of 1.0 × 10−5–1.0 × 10−2, 1.0 × 10−6–1.0 × 10−2, and 5.0 × 10−8–1.0 × 10−2 mol·L−1 with lower detection limits of 5.0 × 10−6, 5.0 × 10−7, and 2.5 × 10−9 mol·L−1 for sensors I, II, and III, respectively. The critical performance of the developed sensors was checked with respect to the effect of various parameters, including pH, selectivity, response time, linear concentration relationship, lifespan, etc. Method validation was applied according to the international conference on harmonisation of technical requirements for registration of pharmaceuticals for human use ICH guidelines. The developed sensors were employed for the determination of DRZ in its bulk and dosage forms, as well as bio-samples. The observed data were statistically analyzed and compared with those obtained from other published methods. Full article
(This article belongs to the Special Issue Bioelectrochemical Systems)
Figures

Open AccessCommunication Somatic Cell Nuclear Transfer Followed by CRIPSR/Cas9 Microinjection Results in Highly Efficient Genome Editing in Cloned Pigs
Int. J. Mol. Sci. 2016, 17(12), 2031; doi:10.3390/ijms17122031
Received: 6 October 2016 / Revised: 16 November 2016 / Accepted: 23 November 2016 / Published: 3 December 2016
PDF Full-text (841 KB) | HTML Full-text | XML Full-text
Abstract
The domestic pig is an ideal “dual purpose” animal model for agricultural and biomedical research. With the availability of genome editing tools such as clustered regularly interspaced short palindromic repeat (CRISPR) and associated nuclease Cas9 (CRISPR/Cas9), it is now possible to perform site-specific
[...] Read more.
The domestic pig is an ideal “dual purpose” animal model for agricultural and biomedical research. With the availability of genome editing tools such as clustered regularly interspaced short palindromic repeat (CRISPR) and associated nuclease Cas9 (CRISPR/Cas9), it is now possible to perform site-specific alterations with relative ease, and will likely help realize the potential of this valuable model. In this article, we investigated for the first time a combination of somatic cell nuclear transfer (SCNT) and direct injection of CRISPR/Cas ribonucleoprotein complex targeting GRB10 into the reconstituted oocytes to generate GRB10 ablated Ossabaw fetuses. This strategy resulted in highly efficient (100%) generation of biallelic modifications in cloned fetuses. By combining SCNT with CRISPR/Cas9 microinjection, genome edited animals can now be produced without the need to manage a founder herd, while simultaneously eliminating the need for laborious in vitro culture and screening. Our approach utilizes standard cloning techniques while simultaneously performing genome editing in the cloned zygotes of a large animal model for agriculture and biomedical applications. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Figures

Figure 1

Open AccessArticle Ghrelin Attenuates Intestinal Barrier Dysfunction Following Intracerebral Hemorrhage in Mice
Int. J. Mol. Sci. 2016, 17(12), 2032; doi:10.3390/ijms17122032
Received: 21 September 2016 / Revised: 10 November 2016 / Accepted: 28 November 2016 / Published: 6 December 2016
Cited by 1 | PDF Full-text (5609 KB) | HTML Full-text | XML Full-text
Abstract
Intestinal barrier dysfunction remains a critical problem in patients with intracerebral hemorrhage (ICH) and is associated with poor prognosis. Ghrelin, a brain-gut peptide, has been shown to exert protection in animal models of gastrointestinal injury. However, the effect of ghrelin on intestinal barrier
[...] Read more.
Intestinal barrier dysfunction remains a critical problem in patients with intracerebral hemorrhage (ICH) and is associated with poor prognosis. Ghrelin, a brain-gut peptide, has been shown to exert protection in animal models of gastrointestinal injury. However, the effect of ghrelin on intestinal barrier dysfunction post-ICH and its possible underlying mechanisms are still unknown. This study was designed to investigate whether ghrelin administration attenuates intestinal barrier dysfunction in experimental ICH using an intrastriatal autologous blood infusion mouse model. Our data showed that treatment with ghrelin markedly attenuated intestinal mucosal injury at both histomorphometric and ultrastructural levels post-ICH. Ghrelin reduced ICH-induced intestinal permeability according to fluorescein isothiocyanate conjugated-dextran (FITC-D) and Evans blue extravasation assays. Concomitantly, the intestinal tight junction-related protein markers, Zonula occludens-1 (ZO-1) and claudin-5 were upregulated by ghrelin post-ICH. Additionally, ghrelin reduced intestinal intercellular adhesion molecule-1 (ICAM-1) expression at the mRNA and protein levels following ICH. Furthermore, ghrelin suppressed the translocation of intestinal endotoxin post-ICH. These changes were accompanied by improved survival rates and an attenuation of body weight loss post-ICH. In conclusion, our results suggest that ghrelin reduced intestinal barrier dysfunction, thereby reducing mortality and weight loss, indicating that ghrelin is a potential therapeutic agent in ICH-induced intestinal barrier dysfunction therapy. Full article
(This article belongs to the Special Issue Neurobiological Perspectives on Ghrelin)
Figures

Open AccessArticle Transcriptome Profiling Analysis of Wolf Spider Pardosa pseudoannulata (Araneae: Lycosidae) after Cadmium Exposure
Int. J. Mol. Sci. 2016, 17(12), 2033; doi:10.3390/ijms17122033
Received: 8 October 2016 / Revised: 23 November 2016 / Accepted: 29 November 2016 / Published: 3 December 2016
PDF Full-text (1404 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Pardosa pseudoannulata is one of the most common wandering spiders in agricultural fields and a potentially good bioindicator for heavy metal contamination. However, little is known about the mechanisms by which spiders respond to heavy metals at the molecular level. In the present
[...] Read more.
Pardosa pseudoannulata is one of the most common wandering spiders in agricultural fields and a potentially good bioindicator for heavy metal contamination. However, little is known about the mechanisms by which spiders respond to heavy metals at the molecular level. In the present study, high-throughput transcriptome sequencing was employed to characterize the de novo transcriptome of the spiders and to identify differentially expressed genes (DEGs) after cadmium exposure. We obtained 60,489 assembled unigenes, 18,773 of which were annotated in the public databases. A total of 2939 and 2491 DEGs were detected between the libraries of two Cd-treated groups and the control. Functional enrichment analysis revealed that metabolism processes and digestive system function were predominately enriched in response to Cd stress. At the cellular and molecular levels, significantly enriched pathways in lysosomes and phagosomes as well as replication, recombination and repair demonstrated that oxidative damage resulted from Cd exposure. Based on the selected DEGs, certain critical genes involved in defence and detoxification were analysed. These results may elucidate the molecular mechanisms underlying spiders’ responses to heavy metal stress. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Figures

Open AccessArticle A Systematic Evaluation of Blood Serum and Plasma Pre-Analytics for Metabolomics Cohort Studies
Int. J. Mol. Sci. 2016, 17(12), 2035; doi:10.3390/ijms17122035
Received: 30 September 2016 / Revised: 14 November 2016 / Accepted: 29 November 2016 / Published: 5 December 2016
Cited by 1 | PDF Full-text (935 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The recent thriving development of biobanks and associated high-throughput phenotyping studies requires the elaboration of large-scale approaches for monitoring biological sample quality and compliance with standard protocols. We present a metabolomic investigation of human blood samples that delineates pitfalls and guidelines for the
[...] Read more.
The recent thriving development of biobanks and associated high-throughput phenotyping studies requires the elaboration of large-scale approaches for monitoring biological sample quality and compliance with standard protocols. We present a metabolomic investigation of human blood samples that delineates pitfalls and guidelines for the collection, storage and handling procedures for serum and plasma. A series of eight pre-processing technical parameters is systematically investigated along variable ranges commonly encountered across clinical studies. While metabolic fingerprints, as assessed by nuclear magnetic resonance, are not significantly affected by altered centrifugation parameters or delays between sample pre-processing (blood centrifugation) and storage, our metabolomic investigation highlights that both the delay and storage temperature between blood draw and centrifugation are the primary parameters impacting serum and plasma metabolic profiles. Storing the blood drawn at 4 °C is shown to be a reliable routine to confine variability associated with idle time prior to sample pre-processing. Based on their fine sensitivity to pre-analytical parameters and protocol variations, metabolic fingerprints could be exploited as valuable ways to determine compliance with standard procedures and quality assessment of blood samples within large multi-omic clinical and translational cohort studies. Full article
(This article belongs to the Special Issue Metabolomic Technologies in Medicine)
Figures

Figure 1

Open AccessArticle The Coexistence of Hypertension and Ovariectomy Additively Increases Cardiac Apoptosis
Int. J. Mol. Sci. 2016, 17(12), 2036; doi:10.3390/ijms17122036
Received: 26 October 2016 / Revised: 23 November 2016 / Accepted: 30 November 2016 / Published: 6 December 2016
Cited by 1 | PDF Full-text (5667 KB) | HTML Full-text | XML Full-text
Abstract
To investigate whether the coexistence of hypertension and ovariectomy will increase cardiac Fas receptor and mitochondrial-dependent apoptotic pathways, histopathological analysis, the TUNEL assay and Western blotting were performed on the excised hearts from three groups of female spontaneously hypertensive rats (SHR), which were
[...] Read more.
To investigate whether the coexistence of hypertension and ovariectomy will increase cardiac Fas receptor and mitochondrial-dependent apoptotic pathways, histopathological analysis, the TUNEL assay and Western blotting were performed on the excised hearts from three groups of female spontaneously hypertensive rats (SHR), which were divided into a sham-operated group (SHR-Sham), bilaterally ovariectomized group (SHR-OVX) and normotensive Wistar Kyoto rats (WKY). Compared with the WKY group, the SHR-Sham group exhibited decreased protein levels of ERα, ERβ, p-Akt/Akt, Bcl-2, Bcl-xL and p-Bad and decreased further in the SHR-OVX group, as well as protein levels of t-Bid, Bak, Bad, Bax, cytochrome c, activated caspase-9 and activated caspase-3 (mitochondria-dependent apoptosis) increased in the SHR-Sham group and increased further in the SHR-OVX group. Compared with the WKY group, protein levels of Fas ligand, TNF-α, Fas death receptors, TNFR1, FADD and activated caspase-8 (Fas receptor-dependent apoptosis) increased in the SHR-Sham group, but did not increase in the SHR-OVX group, except Fas ligand and TNF-α. The coexistence of hypertension and ovariectomy attenuated the estrogen receptor survival pathway and appeared to additively increase the cardiac mitochondria-dependent, but not the Fas receptor-dependent apoptosis pathway, which might provide one possible mechanism for the development of cardiac abnormalities in hypertensive postmenopausal women. Full article
(This article belongs to the collection Programmed Cell Death and Apoptosis)
Figures

Open AccessArticle Serum Soluble Fms-Like Tyrosine Kinase 1 (sFlt-1) Predicts the Severity of Acute Pancreatitis
Int. J. Mol. Sci. 2016, 17(12), 2038; doi:10.3390/ijms17122038
Received: 1 October 2016 / Revised: 23 November 2016 / Accepted: 30 November 2016 / Published: 6 December 2016
Cited by 3 | PDF Full-text (1149 KB) | HTML Full-text | XML Full-text
Abstract
Organ failure is the most important determinant of the severity of acute pancreatitis (AP). Soluble fms-like tyrosine kinase 1 (sFlt-1) is positively associated with organ failure in sepsis. Our aim was to evaluate the diagnostic utility of automated sFlt-1 measurements for early prediction
[...] Read more.
Organ failure is the most important determinant of the severity of acute pancreatitis (AP). Soluble fms-like tyrosine kinase 1 (sFlt-1) is positively associated with organ failure in sepsis. Our aim was to evaluate the diagnostic utility of automated sFlt-1 measurements for early prediction of AP severity. Adult patients (66) with AP were recruited, including 46 with mild (MAP), 15 with moderately-severe (MSAP) and 5 with severe AP (SAP). Serum and urine samples were collected twice. Serum sFlt-1 was measured with automated electrochemiluminescence immunoassay. Serum concentrations of sFlt-1 were significantly higher in patients with MSAP and SAP as compared to MAP. SAP patients had the highest concentrations. At 24 and 48 h, sFlt-1 positively correlated with inflammatory markers (leukocyte count, C-reactive protein), kidney function (creatinine, urea, cystatin C, serum and urine neutrophil gelatinase-associated lipocalin, urine albumin/creatinine ratio), D-dimer and angiopoietin-2. sFlt-1 positively correlated with the bedside index of severity in AP (BISAP) score and the duration of hospital stay. Serum sFlt-1 above 139 pg/mL predicted more severe AP (MSAP + SAP). In the early phase of AP, sFlt-1 is positively associated with the severity of AP and predicts organ failure, in particular kidney failure. Serum sFlt-1 may be a practical way to improve early assessment of AP severity. Full article
(This article belongs to the Special Issue Pancreatic Disorders)
Figures

Figure 1

Open AccessArticle HER2 Analysis in Sporadic Thyroid Cancer of Follicular Cell Origin
Int. J. Mol. Sci. 2016, 17(12), 2040; doi:10.3390/ijms17122040
Received: 7 November 2016 / Revised: 28 November 2016 / Accepted: 30 November 2016 / Published: 6 December 2016
PDF Full-text (7177 KB) | HTML Full-text | XML Full-text
Abstract
The Epidermal Growth Factor Receoptor (EGFR) family member human epidermal growth factor receptor 2 (HER2) is overexpressed in many human epithelial malignancies, representing a molecular target for specific anti-neoplastic drugs. Few data are available on HER2 status in differentiated thyroid cancer (DTC). The
[...] Read more.
The Epidermal Growth Factor Receoptor (EGFR) family member human epidermal growth factor receptor 2 (HER2) is overexpressed in many human epithelial malignancies, representing a molecular target for specific anti-neoplastic drugs. Few data are available on HER2 status in differentiated thyroid cancer (DTC). The present study was aimed to investigate HER2 status in sporadic cancers of follicular cell origin to better clarify the role of this receptor in the stratification of thyroid cancer. By immunohistochemistry and fluorescence in-situ hybridization, HER2 expression was investigated in formalin-fixed paraffin-embedded surgical specimens from 90 DTC patients, 45 follicular (FTC) and 45 papillary (PTC) histotypes. No HER2 immunostaining was recorded in background thyroid tissue. By contrast, overall HER2 overexpression was found in 20/45 (44%) FTC and 8/45 (18%) PTC, with a significant difference between the two histotypes (p = 0.046). Five of the six patients who developed metastatic disease during a median nine-year follow-up had a HER2-positive tumor. Therefore, we suggest that HER2 expression may represent an additional aid to identify a subset of patients who are characterized by a worse prognosis and are potentially eligible for targeted therapy. Full article
(This article belongs to the Special Issue Current Knowledge in Thyroid Cancer—From Bench to Bedside)
Figures

Open AccessArticle Comparison of Small RNA Profiles of Glycine max and Glycine soja at Early Developmental Stages
Int. J. Mol. Sci. 2016, 17(12), 2043; doi:10.3390/ijms17122043
Received: 28 October 2016 / Revised: 24 November 2016 / Accepted: 29 November 2016 / Published: 6 December 2016
PDF Full-text (2049 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Small RNAs, including microRNAs (miRNAs) and phased small interfering RNAs (phasiRNAs; from PHAS loci), play key roles in plant development. Cultivated soybean, Glycine max, contributes a great deal to food production, but, compared to its wild kin, Glycine soja, it may
[...] Read more.
Small RNAs, including microRNAs (miRNAs) and phased small interfering RNAs (phasiRNAs; from PHAS loci), play key roles in plant development. Cultivated soybean, Glycine max, contributes a great deal to food production, but, compared to its wild kin, Glycine soja, it may lose some genetic information during domestication. In this work, we analyzed the sRNA profiles of different tissues in both cultivated (C08) and wild soybeans (W05) at three stages of development. A total of 443 known miRNAs and 15 novel miRNAs showed varying abundances between different samples, but the miRNA profiles were generally similar in both accessions. Based on a sliding window analysis workflow that we developed, 50 PHAS loci generating 55 21-nucleotide phasiRNAs were identified in C08, and 46 phasiRNAs from 41 PHAS loci were identified in W05. In germinated seedlings, phasiRNAs were more abundant in C08 than in W05. Disease resistant TIR-NB-LRR genes constitute a very large family of PHAS loci. PhasiRNAs were also generated from several loci that encode for NAC transcription factors, Dicer-like 2 (DCL2), Pentatricopeptide Repeat (PPR), and Auxin Signaling F-box 3 (AFB3) proteins. To investigate the possible involvement of miRNAs in initiating the PHAS-phasiRNA pathway, miRNA target predictions were performed and 17 C08 miRNAs and 15 W05 miRNAs were predicted to trigger phasiRNAs biogenesis. In summary, we provide a comprehensive description of the sRNA profiles of wild versus cultivated soybeans, and discuss the possible roles of sRNAs during soybean germination. Full article
(This article belongs to the Special Issue Pulses)
Figures

Figure 1a

Open AccessArticle Comparative Study of Green Sub- and Supercritical Processes to Obtain Carnosic Acid and Carnosol-Enriched Rosemary Extracts with in Vitro Anti-Proliferative Activity on Colon Cancer Cells
Int. J. Mol. Sci. 2016, 17(12), 2046; doi:10.3390/ijms17122046
Received: 13 October 2016 / Revised: 18 November 2016 / Accepted: 29 November 2016 / Published: 7 December 2016
Cited by 2 | PDF Full-text (979 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In the present work, four green processes have been compared to evaluate their potential to obtain rosemary extracts with in vitro anti-proliferative activity against two colon cancer cell lines (HT-29 and HCT116). The processes, carried out under optimal conditions, were: (1) pressurized liquid
[...] Read more.
In the present work, four green processes have been compared to evaluate their potential to obtain rosemary extracts with in vitro anti-proliferative activity against two colon cancer cell lines (HT-29 and HCT116). The processes, carried out under optimal conditions, were: (1) pressurized liquid extraction (PLE, using an hydroalcoholic mixture as solvent) at lab-scale; (2) Single-step supercritical fluid extraction (SFE) at pilot scale; (3) Intensified two-step sequential SFE at pilot scale; (4) Integrated PLE plus supercritical antisolvent fractionation (SAF) at pilot scale. Although higher extraction yields were achieved by using PLE (38.46% dry weight), this extract provided the lowest anti-proliferative activity with no observed cytotoxic effects at the assayed concentrations. On the other hand, extracts obtained using the PLE + SAF process provided the most active rosemary extracts against both colon cancer cell lines, with LC50 ranging from 11.2 to 12.4 µg/mL and from 21.8 to 31.9 µg/mL for HCT116 and HT-29, respectively. In general, active rosemary extracts were characterized by containing carnosic acid (CA) and carnosol (CS) at concentrations above 263.7 and 33.9 mg/g extract, respectively. Some distinct compounds have been identified in the SAF extracts (rosmaridiphenol and safficinolide), suggesting their possible role as additional contributors to the observed strong anti-proliferative activity of CA and CS in SAF extracts. Full article
(This article belongs to the Special Issue New Foodomics Approaches in Food Science)
Figures

Open AccessArticle miR-429 Inhibits Differentiation and Promotes Proliferation in Porcine Preadipocytes
Int. J. Mol. Sci. 2016, 17(12), 2047; doi:10.3390/ijms17122047
Received: 29 October 2016 / Revised: 24 November 2016 / Accepted: 29 November 2016 / Published: 7 December 2016
PDF Full-text (12301 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
MicroRNAs (miRNAs) are crucial regulatory molecules for adipogenesis. They contribute to the controlling of proliferation and differentiation of preadipocytes. Previous studies revealed an important role of miR-429 in cell invasion, migration, and apoptosis. Our previous work has shown that the expression of miR-429
[...] Read more.
MicroRNAs (miRNAs) are crucial regulatory molecules for adipogenesis. They contribute to the controlling of proliferation and differentiation of preadipocytes. Previous studies revealed an important role of miR-429 in cell invasion, migration, and apoptosis. Our previous work has shown that the expression of miR-429 in subcutaneous fat can be observed in newly born (3-day-old) Rongchang piglets rather than their adult counterparts (180-day-old). This expression pattern suggests that miR-429 might be functionally related to postnatal adipogenesis. However, we currently lack a mechanistic understanding of miR-429 within the context of preadipocyte differentiation. In this study, we investigated the function of miR-429 in porcine subcutaneous and intramuscular preadipocyte proliferation and differentiation. In our porcine preadipocyte differentiation model, miR-429 expression decreased remarkably upon adipogenic induction. Overexpression of miR-429 notably down-regulated the expression of adipogenic marker genes: PPARγ, aP2, FAS and impaired the triglyceride accumulation, while the expression of lipolytic gene ATGL was not affected. In addition, we observed that miR-429 significantly promoted the proliferation of porcine preadipocytes. We also found that miR-429 could directly bind to the 3′-UTRs of KLF9 and p27, which have been well documented to promote preadipocyte differentiation and repress cell cycle progression. Taken together, our data support a novel role of miR-429 in regulating porcine preadipocyte differentiation and proliferation, and KLF9 and p27 are potent targets of miR-429 during these processes. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Figures

Open AccessArticle Cellular Localization and Regulation of Expression of the PLET1 Gene in Porcine Placenta
Int. J. Mol. Sci. 2016, 17(12), 2048; doi:10.3390/ijms17122048
Received: 18 July 2016 / Revised: 30 November 2016 / Accepted: 1 December 2016 / Published: 7 December 2016
PDF Full-text (8449 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The placenta expressed transcript 1 (PLET1) gene, which is expressed in placentas of pigs and mice, has been found to have a potential role in trophoblast cell fate decision in mice. Results of this study showed that the porcine PLET1 mRNA
[...] Read more.
The placenta expressed transcript 1 (PLET1) gene, which is expressed in placentas of pigs and mice, has been found to have a potential role in trophoblast cell fate decision in mice. Results of this study showed that the porcine PLET1 mRNA and protein were expressed exclusively in trophoblast cells on Days 15, 26, 50, and 95 of gestation (gestation length in the pig is 114 days), indicating that the PLET1 could be a useful marker for porcine trophoblast cells. Additionally, PLET1 protein was found to be redistributed from cytoplasm to the apical side of trophoblast cells as gestation progresses, which suggests a role of PLET1 in the establishment of a stable trophoblast and endometrial epithelial layers. In addition, two transcripts that differ in the 3′ UTR length but encode identical protein were identified to be generated by the alternative cleavage and polyadenylation (APA), and the expression of PLET1-L transcript was significantly upregulated in porcine placentas as gestation progresses. Furthermore, we demonstrated the interaction between the miR-365-3p and PLET1 gene using luciferase assay system. Our findings imply an important role of PLET1 in the placental development in pigs. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Figures

Open AccessArticle Mutations in the Mitochondrial ND1 Gene Are Associated with Postoperative Prognosis of Localized Renal Cell Carcinoma
Int. J. Mol. Sci. 2016, 17(12), 2049; doi:10.3390/ijms17122049
Received: 26 October 2016 / Revised: 28 November 2016 / Accepted: 29 November 2016 / Published: 7 December 2016
Cited by 1 | PDF Full-text (1147 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
We analyzed mutations in the mitochondrial ND1 gene to determine their association with clinicopathological parameters and postoperative recurrence of renal cell carcinoma (RCC) in Japanese patients. Among 62 RCC cases for which tumor pathology was confirmed by histopathology, ND1 sequencing revealed the presence
[...] Read more.
We analyzed mutations in the mitochondrial ND1 gene to determine their association with clinicopathological parameters and postoperative recurrence of renal cell carcinoma (RCC) in Japanese patients. Among 62 RCC cases for which tumor pathology was confirmed by histopathology, ND1 sequencing revealed the presence of 30 mutation sites in 19 cases. Most mutations were heteroplasmic, with 16 of 19 cases harboring one or more heteroplasmic sites. Additionally, 12 sites had amino acid mutations, which were frequent in 10 of the cases. The 5-year recurrence-free survival (RFS) rate was significantly worse in patients with tumors >40 mm in diameter (p = 0.0091), pathological T (pT) stage ≥3 (p = 0.0122), Fuhrman nuclear atypia grade ≥III (p = 0.0070), and ND1 mutations (p = 0.0006). Multivariate analysis using these factors revealed that mutations in ND1 were significantly associated with the 5-year RFS rate (p = 0.0044). These results suggest a strong correlation between the presence of ND1 mutations in cancer tissue and postoperative recurrence of localized RCC in Japanese patients. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Figures

Figure 1

Open AccessArticle Low Concentration of Exogenous Carbon Monoxide Modulates Radiation-Induced Bystander Effect in Mammalian Cell Cluster Model
Int. J. Mol. Sci. 2016, 17(12), 2051; doi:10.3390/ijms17122051
Received: 4 July 2016 / Revised: 24 November 2016 / Accepted: 1 December 2016 / Published: 8 December 2016
PDF Full-text (1684 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
During radiotherapy procedures, radiation-induced bystander effect (RIBE) can potentially lead to genetic hazards to normal tissues surrounding the targeted regions. Previous studies showed that RIBE intensities in cell cluster models were much higher than those in monolayer cultured cell models. On the other
[...] Read more.
During radiotherapy procedures, radiation-induced bystander effect (RIBE) can potentially lead to genetic hazards to normal tissues surrounding the targeted regions. Previous studies showed that RIBE intensities in cell cluster models were much higher than those in monolayer cultured cell models. On the other hand, low-concentration carbon monoxide (CO) was previously shown to exert biological functions via binding to the heme domain of proteins and then modulating various signaling pathways. In relation, our previous studies showed that exogenous CO generated by the CO releasing molecule, tricarbonyldichlororuthenium (CORM-2), at a relatively low concentration (20 µM), effectively attenuated the formation of RIBE-induced DNA double-strand breaks (DSB) and micronucleus (MN). In the present work, we further investigated the capability of a low concentration of exogenous CO (CORM-2) of attenuating or inhibiting RIBE in a mixed-cell cluster model. Our results showed that CO (CORM-2) with a low concentration of 30 µM could effectively suppress RIBE-induced DSB (p53 binding protein 1, p53BP1), MN formation and cell proliferation in bystander cells but not irradiated cells via modulating the inducible nitric oxide synthase (iNOS) andcyclooxygenase-2 (COX-2). The results can help mitigate RIBE-induced hazards during radiotherapy procedures. Full article
(This article belongs to the collection Radiation Toxicity in Cells)
Figures

Figure 1

Open AccessArticle Identification of Potential Biomarkers for Rhegmatogenous Retinal Detachment Associated with Choroidal Detachment by Vitreous iTRAQ-Based Proteomic Profiling
Int. J. Mol. Sci. 2016, 17(12), 2052; doi:10.3390/ijms17122052
Received: 19 September 2016 / Revised: 24 November 2016 / Accepted: 30 November 2016 / Published: 7 December 2016
PDF Full-text (4429 KB) | HTML Full-text | XML Full-text
Abstract
Rhegmatogenous retinal detachment associated with choroidal detachment (RRDCD) is a complicated and serious type of rhegmatogenous retinal detachment (RRD). In this study, we identified differentially expressed proteins in the vitreous humors of RRDCD and RRD using isobaric tags for relative and absolute quantitation
[...] Read more.
Rhegmatogenous retinal detachment associated with choroidal detachment (RRDCD) is a complicated and serious type of rhegmatogenous retinal detachment (RRD). In this study, we identified differentially expressed proteins in the vitreous humors of RRDCD and RRD using isobaric tags for relative and absolute quantitation (iTRAQ) combined with nano-liquid chromatography-electrospray ion trap-mass spectrometry-mass spectrometry (nano-LC-ESI-MS/MS) and bioinformatic analysis. Our result shows that 103 differentially expressed proteins, including 54 up-regulated and 49 down-regulated proteins were identified in RRDCD. Gene ontology (GO) analysis suggested that most of the differentially expressed proteins were extracellular.The Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis suggested that proteins related to complement and coagulation cascades were significantly enriched. iTRAQ-based proteomic profiling reveals that complement and coagulation cascades and inflammation may play important roles in the pathogenesis of RRDCD. This study may provide novel insights into the pathogenesis of RRDCD and offer potential opportunities for the diagnosis and treatment of RRDCD. Full article
(This article belongs to the Special Issue Retinal Diseases: Bridging Basic and Clinical Research)
Figures

Open AccessArticle Relevance of MicroRNA200 Family and MicroRNA205 for Epithelial to Mesenchymal Transition and Clinical Outcome in Biliary Tract Cancer Patients
Int. J. Mol. Sci. 2016, 17(12), 2053; doi:10.3390/ijms17122053
Received: 3 November 2016 / Revised: 30 November 2016 / Accepted: 1 December 2016 / Published: 7 December 2016
Cited by 2 | PDF Full-text (7866 KB) | HTML Full-text | XML Full-text
Abstract
Extensive stromal interaction is one reason for the dismal outcome of biliary tract cancer (BTC) patients. Epithelial to mesenchymal transition (EMT) is involved in tumor invasion and metastasis and is partly regulated by microRNAs (miRs). This study explores the expression of anti-EMT miR200
[...] Read more.
Extensive stromal interaction is one reason for the dismal outcome of biliary tract cancer (BTC) patients. Epithelial to mesenchymal transition (EMT) is involved in tumor invasion and metastasis and is partly regulated by microRNAs (miRs). This study explores the expression of anti-EMT miR200 family (miR141, −200a/b/c, −429) and miR205 as well as the EMT-related proteins E-cadherin and vimentin in a panel of BTC cell lines and clinical specimens by quantitative real-time polymerase chain reaction, Western blot and immunohistochemistry, respectively. MicroRNA expression was correlated to (i) the expression patterns of E-cadherin and vimentin; (ii) clinicopathological characteristics; and (iii) survival data. MicroRNA-200 family and miR205 were expressed in all BTC cells and clinical specimens. E-cadherin and vimentin showed a mutually exclusive expression pattern in both, in vitro and in vivo. Expression of miR200 family members positively correlated with E-cadherin and negatively with vimentin expression in BTC cells and specimens. High expression of miR200 family members (but not miR205) and E-cadherin was associated with longer survival, while low miR200 family and high vimentin expression was a predictor of unfavorable survival. Overall, the current study demonstrates the relevance of the miR200 family in EMT of BTC tumors and suggests these miRs as predictors for positive outcome. Full article
(This article belongs to the collection Regulation by Non-Coding RNAs)
Figures

Open AccessArticle Hepatoprotective Effect of Cuscuta campestris Yunck. Whole Plant on Carbon Tetrachloride Induced Chronic Liver Injury in Mice
Int. J. Mol. Sci. 2016, 17(12), 2056; doi:10.3390/ijms17122056
Received: 11 October 2016 / Revised: 24 November 2016 / Accepted: 1 December 2016 / Published: 7 December 2016
PDF Full-text (3791 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Cuscuta seeds and whole plant have been used to nourish the liver and kidney. This study was aimed to investigate the hepatoprotective activity of the ethanol extract of Cuscuta campestris Yunck. whole plant (CCEtOH). The hepatoprotective effect of CCEtOH (20,
[...] Read more.
Cuscuta seeds and whole plant have been used to nourish the liver and kidney. This study was aimed to investigate the hepatoprotective activity of the ethanol extract of Cuscuta campestris Yunck. whole plant (CCEtOH). The hepatoprotective effect of CCEtOH (20, 100 and 500 mg/kg) was evaluated on carbon tetrachloride (CCl4)-induced chronic liver injury. Serum alanine aminotransferase, aspartate aminotransferase, triglyceride and cholesterol were measured and the fibrosis was histologically examined. CCEtOH exhibited a significant inhibition of the increase of serum alanine aminotransferase, aspartate aminotransferase, triglyceride and cholesterol. Histological analyses showed that fibrosis of liver induced by CCl4 were significantly reduced by CCEtOH. In addition, 20, 100 and 500 mg/kg of the extract decreased the level of malondialdehyde (MDA) and enhanced the activities of anti-oxidative enzymes including superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GRd) in the liver. We demonstrate that the hepatoprotective mechanisms of CCEtOH were likely to be associated to the decrease in MDA level by increasing the activities of antioxidant enzymes such as SOD, GPx and GRd. In addition, our findings provide evidence that C. campestris Yunck. whole plant possesses a hepatoprotective activity to ameliorate chronic liver injury. Full article
(This article belongs to the Special Issue Biological Activity of Natural Secondary Metabolite Products)
Figures

Open AccessArticle The Relationship between Serum Bilirubin and Elevated Fibrotic Indices among HBV Carriers: A Cross-Sectional Study of a Chinese Population
Int. J. Mol. Sci. 2016, 17(12), 2057; doi:10.3390/ijms17122057
Received: 26 October 2016 / Revised: 28 November 2016 / Accepted: 29 November 2016 / Published: 9 December 2016
PDF Full-text (1027 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The study probed the association between bilirubin and hepatitis B virus (HBV) infection and progression. A cross-sectional analysis of 28,500 middle aged and elderly Chinese participants was performed to analyze the differences of bilirubin in terms of hepatitis B surface antigen (HBsAg) positive
[...] Read more.
The study probed the association between bilirubin and hepatitis B virus (HBV) infection and progression. A cross-sectional analysis of 28,500 middle aged and elderly Chinese participants was performed to analyze the differences of bilirubin in terms of hepatitis B surface antigen (HBsAg) positive or negative and the correlation between bilirubin and severity of hepatic fibrosis estimated by non-invasive indices. Bilirubin was significantly higher in the HBsAg (+) group than the HBsAg (−) group. Higher bilirubin levels were consistently associated with elevated liver fibrosis indices among HBsAg carriers. Compared with quartile 1 of total bilirubin (TBil), the multivariable-adjusted ORs (95% CIs) for elevated fibrosis indices of quartile 4 were 2.24 (95% CIs, 1.57–3.21) estimated by fibrosis 4 score (FIB-4) and 2.22 (95% CIs, 1.60–3.08) estimated by aspartate transaminase to platelet ratio index (APRI). In addition, direct bilirubin (DBil) had a stronger association with elevated liver fibrosis indices than did indirect bilirubin (IBil). Furthermore, the relationship between DBil and elevated fibrosis indices was more robust among participants who were female, overweight or had central fat distribution. These findings suggested that bilirubin levels, especially DBil, were independently associated with an increased risk of increased fibrosis indices. Full article
(This article belongs to the Special Issue Hepatitis Virus Infection and Research)
Figures

Open AccessArticle Low-Dose Methylmercury-Induced Genes Regulate Mitochondrial Biogenesis via miR-25 in Immortalized Human Embryonic Neural Progenitor Cells
Int. J. Mol. Sci. 2016, 17(12), 2058; doi:10.3390/ijms17122058
Received: 23 September 2016 / Revised: 22 November 2016 / Accepted: 30 November 2016 / Published: 9 December 2016
PDF Full-text (1858 KB) | HTML Full-text | XML Full-text
Abstract
Mitochondria are essential organelles and important targets for environmental pollutants. The detection of mitochondrial biogenesis and generation of reactive oxygen species (ROS) and p53 levels following low-dose methylmercury (MeHg) exposure could expand our understanding of underlying mechanisms. Here, the sensitivity of immortalized human
[...] Read more.
Mitochondria are essential organelles and important targets for environmental pollutants. The detection of mitochondrial biogenesis and generation of reactive oxygen species (ROS) and p53 levels following low-dose methylmercury (MeHg) exposure could expand our understanding of underlying mechanisms. Here, the sensitivity of immortalized human neural progenitor cells (ihNPCs) upon exposure to MeHg was investigated. We found that MeHg altered cell viability and the number of 5-ethynyl-2′-deoxyuridine (EdU)-positive cells. We also observed that low-dose MeHg exposure increased the mRNA expression of cell cycle regulators. We observed that MeHg induced ROS production in a dose-dependent manner. In addition, mRNA levels of peroxisome-proliferator-activated receptor gammacoactivator-1α (PGC-1α), mitochondrial transcription factor A (TFAM) and p53-controlled ribonucleotide reductase (p53R2) were significantly elevated, which were correlated with the increase of mitochondrial DNA (mtDNA) copy number at a concentration as low as 10 nM. Moreover, we examined the expression of microRNAs (miRNAs) known as regulatory miRNAs of p53 (i.e., miR-30d, miR-1285, miR-25). We found that the expression of these miRNAs was significantly downregulated upon MeHg treatment. Furthermore, the overexpression of miR-25 resulted in significantly reducted p53 protein levels and decreased mRNA expression of genes involved in mitochondrial biogenesis regulation. Taken together, these results demonstrated that MeHg could induce developmental neurotoxicity in ihNPCs through altering mitochondrial functions and the expression of miRNA. Full article
(This article belongs to the Section Molecular Toxicology)
Figures

Figure 1

Open AccessArticle Toll Like Receptor 2, 4, and 9 Signaling Promotes Autoregulative Tumor Cell Growth and VEGF/PDGF Expression in Human Pancreatic Cancer
Int. J. Mol. Sci. 2016, 17(12), 2060; doi:10.3390/ijms17122060
Received: 10 October 2016 / Revised: 23 November 2016 / Accepted: 2 December 2016 / Published: 8 December 2016
Cited by 1 | PDF Full-text (4384 KB) | HTML Full-text | XML Full-text
Abstract
Toll like receptor (TLR) signaling has been suggested to play an important role in the inflammatory microenvironment of solid tumors and through this inflammation-mediated tumor growth. Here, we studied the role of tumor cells in their process of self-maintaining TLR expression independent of
[...] Read more.
Toll like receptor (TLR) signaling has been suggested to play an important role in the inflammatory microenvironment of solid tumors and through this inflammation-mediated tumor growth. Here, we studied the role of tumor cells in their process of self-maintaining TLR expression independent of inflammatory cells and cytokine milieu for autoregulative tumor growth signaling in pancreatic cancer. We analyzed the expression of TLR2, -4, and -9 in primary human cancers and their impact on tumor growth via induced activation in several established pancreatic cancers. TLR-stimulated pancreatic cancer cells were specifically investigated for activated signaling pathways of VEGF/PDGF and anti-apoptotic Bcl-xL expression as well as tumor cell growth. The primary pancreatic cancers and cell lines expressed TLR2, -4, and -9. TLR-specific stimulation resulted in activated MAP-kinase signaling, most likely via autoregulative stimulation of demonstrated TLR-induced VEGF and PDGF expression. Moreover, TLR activation prompted the expression of Bcl-xL and has been demonstrated for the first time to induce tumor cell proliferation in pancreatic cancer. These findings strongly suggest that pancreatic cancer cells use specific Toll like receptor signaling to promote tumor cell proliferation and emphasize the particular role of TLR2, -4, and -9 in this autoregulative process of tumor cell activation and proliferation in pancreatic cancer. Full article
(This article belongs to the Special Issue Pancreatic Disorders)
Figures

Open AccessArticle Functional Divergence of Poplar Histidine-Aspartate Kinase HK1 Paralogs in Response to Osmotic Stress
Int. J. Mol. Sci. 2016, 17(12), 2061; doi:10.3390/ijms17122061
Received: 7 October 2016 / Revised: 1 December 2016 / Accepted: 3 December 2016 / Published: 8 December 2016
PDF Full-text (3481 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Previous works have shown the existence of protein partnerships belonging to a MultiStep Phosphorelay (MSP) in Populus putatively involved in osmosensing. This study is focused on the identification of a histidine-aspartate kinase, HK1b, paralog of HK1a. The characterization of HK1b showed its ability
[...] Read more.
Previous works have shown the existence of protein partnerships belonging to a MultiStep Phosphorelay (MSP) in Populus putatively involved in osmosensing. This study is focused on the identification of a histidine-aspartate kinase, HK1b, paralog of HK1a. The characterization of HK1b showed its ability to homo- and hetero-dimerize and to interact with a few Histidine-containing Phosphotransfer (HPt) proteins, suggesting a preferential partnership in poplar MSP linked to drought perception. Furthermore, determinants for interaction specificity between HK1a/1b and HPts were studied by mutagenesis analysis, identifying amino acids involved in this specificity. The HK1b expression analysis in different poplar organs revealed its co-expression with three HPts, reinforcing the hypothesis of partnership participation in the MSP in planta. Moreover, HK1b was shown to act as an osmosensor with kinase activity in a functional complementation assay of an osmosensor deficient yeast strain. These results revealed that HK1b showed a different behaviour for canonical phosphorylation of histidine and aspartate residues. These phosphorylation modularities of canonical amino acids could explain the improved osmosensor performances observed in yeast. As conserved duplicates reflect the selective pressures imposed by the environmental requirements on the species, our results emphasize the importance of HK1 gene duplication in poplar adaptation to drought stress. Full article
(This article belongs to the Section Molecular Botany)
Figures

Open AccessArticle Association of Plasminogen Activator Inhibitor-1 (PAI-1) Gene Polymorphisms with Osteoporotic Vertebral Compression Fractures (OVCFs) in Postmenopausal Women
Int. J. Mol. Sci. 2016, 17(12), 2062; doi:10.3390/ijms17122062
Received: 15 October 2016 / Revised: 2 December 2016 / Accepted: 4 December 2016 / Published: 9 December 2016
PDF Full-text (454 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Osteoporosis and osteoporotic fractures are strongly associated with mortality and morbidity, both in developing and developed countries. Menopause accelerates bone loss due to estrogen deficiency and age-related linear bone loss. We investigated plasminogen activator inhibitor-1 (PAI-1) gene polymorphisms in postmenopausal women
[...] Read more.
Osteoporosis and osteoporotic fractures are strongly associated with mortality and morbidity, both in developing and developed countries. Menopause accelerates bone loss due to estrogen deficiency and age-related linear bone loss. We investigated plasminogen activator inhibitor-1 (PAI-1) gene polymorphisms in postmenopausal women with osteoporotic vertebral compression fractures (OVCFs). In this case-control study, 355 postmenopausal women were genotyped for the presence of PAI-1 gene polymorphisms −844A > G, −675 4G > 5G, 43G > A, 9785A > G, and 11053T > G. Genetic polymorphisms of PAI-1 were analyzed by the polymerization chain reaction restriction fragment length polymorphism assay, and their association with disease status and folate and homocysteine levels was determined in 158 OVCF patients and 197 control subjects. The PAI-1 −675 5G5G (adjusted odds ratio (AOR), 3.302; p = 0.017) and 43GA + AA (AOR, 2.087; p = 0.042) genotype frequencies showed significant association with the increased prevalence of OVCFs in postmenopausal women. In addition, we performed gene–environment interaction studies and demonstrated an association between PAI-1 gene polymorphisms and OVCF prevalence. Our novel finding is the identification of several PAI-1 genetic variants that increase susceptibility to OVCF. Our findings suggest that polymorphisms in PAI-1 may contribute to OVCF, and that they can be developed as biomarkers for evaluating OVCF risk. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Figures

Figure 1

Open AccessArticle PEDF Inhibits the Activation of NLRP3 Inflammasome in Hypoxia Cardiomyocytes through PEDF Receptor/Phospholipase A2
Int. J. Mol. Sci. 2016, 17(12), 2064; doi:10.3390/ijms17122064
Received: 21 September 2016 / Revised: 26 November 2016 / Accepted: 2 December 2016 / Published: 12 December 2016
PDF Full-text (2131 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome has been linked to sterile inflammation, which is involved in ischemic injury in myocardial cells. Pigment epithelium-derived factor (PEDF) is a multifunctional secreted glycoprotein with many biological activities, such as anti-inflammatory, antioxidant and anti-angiogenic
[...] Read more.
The nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome has been linked to sterile inflammation, which is involved in ischemic injury in myocardial cells. Pigment epithelium-derived factor (PEDF) is a multifunctional secreted glycoprotein with many biological activities, such as anti-inflammatory, antioxidant and anti-angiogenic properties. However, it is not known whether and how PEDF acts to regulate the activation of the NLRP3 inflammasome in cardiomyocytes. In the present study, we used the neonatal cardiomyocytes models of ischemia-like conditions to evaluate the mitochondrial fission and the activation of the NLRP3 inflammasome. We also determined the mechanism by which PEDF inhibits hypoxia-induced activation of the NLRP3 inflammasome. We found that PEDF decreased the activation of the NLRP3 inflammasome in neonatal cardiomyocytes through pigment epithelial-derived factor receptor/calcium-independent phospholipase A2 (PEDFR/iPLA2). Meanwhile, PEDF reduced Drp1-induced mitochondrial fission and mitochondrial fission-induced mitochondrial DNA (mtDNA), as well as mitochondrial reactive oxygen species (mtROS) release into cytosol through PEDFR/iPLA2. We also found that PEDF inhibited mitochondrial fission-induced NLRP3 inflammasome activation. Furthermore, previous research has found that endogenous cytosolic mtDNA and mtROS can serve as activators of NLRP3 inflammasome activity. Therefore, we hypothesized that PEDF can protect against hypoxia-induced activation of the NLRP3 inflammasome by inhibiting mitochondrial fission though PEDFR/iPLA2. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Figures

Open AccessArticle Procyanidins Mitigate Osteoarthritis Pathogenesis by, at Least in Part, Suppressing Vascular Endothelial Growth Factor Signaling
Int. J. Mol. Sci. 2016, 17(12), 2065; doi:10.3390/ijms17122065
Received: 2 August 2016 / Revised: 29 November 2016 / Accepted: 1 December 2016 / Published: 9 December 2016
PDF Full-text (3459 KB) | HTML Full-text | XML Full-text
Abstract
Procyanidins are a family of plant metabolites that have been suggested to mitigate osteoarthritis pathogenesis in mice. However, the underlying mechanism is largely unknown. This study aimed to determine whether procyanidins mitigate traumatic injury-induced osteoarthritis (OA) disease progression, and whether procyanidins exert a
[...] Read more.
Procyanidins are a family of plant metabolites that have been suggested to mitigate osteoarthritis pathogenesis in mice. However, the underlying mechanism is largely unknown. This study aimed to determine whether procyanidins mitigate traumatic injury-induced osteoarthritis (OA) disease progression, and whether procyanidins exert a chondroprotective effect by, at least in part, suppressing vascular endothelial growth factor signaling. Procyanidins (extracts from pine bark), orally administered to mice subjected to surgery for destabilization of the medial meniscus, significantly slowed OA disease progression. Real-time polymerase chain reaction revealed that procyanidin treatment reduced expression of vascular endothelial growth factor and effectors in OA pathogenesis that are regulated by vascular endothelial growth factor. Procyanidin-suppressed vascular endothelial growth factor expression was correlated with reduced phosphorylation of vascular endothelial growth factor receptor 2 in human OA primary chondrocytes. Moreover, components of procyanidins, procyanidin B2 and procyanidin B3 exerted effects similar to those of total procyanidins in mitigating the OA-related gene expression profile in the primary culture of human OA chondrocytes in the presence of vascular endothelial growth factor. Together, these findings suggest procyanidins mitigate OA pathogenesis, which is mediated, at least in part, by suppressing vascular endothelial growth factor signaling. Full article
(This article belongs to the Special Issue The Mechanism of Action of Food Components in Disease Prevention)
Figures

Open AccessArticle Liver Growth Factor (LGF) Upregulates Frataxin Protein Expression and Reduces Oxidative Stress in Friedreich’s Ataxia Transgenic Mice
Int. J. Mol. Sci. 2016, 17(12), 2066; doi:10.3390/ijms17122066
Received: 31 August 2016 / Revised: 28 November 2016 / Accepted: 6 December 2016 / Published: 9 December 2016
PDF Full-text (4932 KB) | HTML Full-text | XML Full-text
Abstract
Friedreich’s ataxia (FA) is a severe disorder with autosomal recessive inheritance that is caused by the abnormal expansion of GAA repeat in intron 1 of FRDA gen. This alteration leads to a partial silencing of frataxin transcription, causing a multisystem disorder disease that
[...] Read more.
Friedreich’s ataxia (FA) is a severe disorder with autosomal recessive inheritance that is caused by the abnormal expansion of GAA repeat in intron 1 of FRDA gen. This alteration leads to a partial silencing of frataxin transcription, causing a multisystem disorder disease that includes neurological and non-neurological damage. Recent studies have proven the effectiveness of neurotrophic factors in a number of neurodegenerative diseases. Therefore, we intend to determine if liver growth factor (LGF), which has a demonstrated antioxidant and neuroprotective capability, could be a useful therapy for FA. To investigate the potential therapeutic activity of LGF we used transgenic mice of the FXNtm1MknTg (FXN)YG8Pook strain. In these mice, intraperitoneal administration of LGF (1.6 μg/mouse) exerted a neuroprotective effect on neurons of the lumbar spinal cord and improved cardiac hypertrophy. Both events could be the consequence of the increment in frataxin expression induced by LGF in spinal cord (1.34-fold) and heart (1.2-fold). LGF also upregulated by 2.6-fold mitochondrial chain complex IV expression in spinal cord, while in skeletal muscle it reduced the relation oxidized glutathione/reduced glutathione. Since LGF partially restores motor coordination, we propose LGF as a novel factor that may be useful in the treatment of FA. Full article
(This article belongs to the Special Issue Neuroprotective Strategies 2016)
Figures

Figure 1

Open AccessArticle Crystal Structure of a Putative Cytochrome P450 Alkane Hydroxylase (CYP153D17) from Sphingomonas sp. PAMC 26605 and Its Conformational Substrate Binding
Int. J. Mol. Sci. 2016, 17(12), 2067; doi:10.3390/ijms17122067
Received: 17 October 2016 / Revised: 29 November 2016 / Accepted: 6 December 2016 / Published: 9 December 2016
PDF Full-text (3417 KB) | HTML Full-text | XML Full-text
Abstract
Enzymatic alkane hydroxylation reactions are useful for producing pharmaceutical and agricultural chemical intermediates from hydrocarbons. Several cytochrome P450 enzymes catalyze the regio- and stereo-specific hydroxylation of alkanes. We evaluated the substrate binding of a putative CYP alkane hydroxylase (CYP153D17) from the bacterium Sphingomonas
[...] Read more.
Enzymatic alkane hydroxylation reactions are useful for producing pharmaceutical and agricultural chemical intermediates from hydrocarbons. Several cytochrome P450 enzymes catalyze the regio- and stereo-specific hydroxylation of alkanes. We evaluated the substrate binding of a putative CYP alkane hydroxylase (CYP153D17) from the bacterium Sphingomonas sp. PAMC 26605. Substrate affinities to C10–C12 n-alkanes and C10–C14 fatty acids with Kd values varied from 0.42 to 0.59 μM. A longer alkane (C12) bound more strongly than a shorter alkane (C10), while shorter fatty acids (C10, capric acid; C12, lauric acid) bound more strongly than a longer fatty acid (C14, myristic acid). These data displayed a broad substrate specificity of CYP153D17, hence it was named as a putative CYP alkane hydroxylase. Moreover, the crystal structure of CYP153D17 was determined at 3.1 Å resolution. This is the first study to provide structural information for the CYP153D family. Structural analysis showed that a co-purified alkane-like compound bound near the active-site heme group. The alkane-like substrate is in the hydrophobic pocket containing Thr74, Met90, Ala175, Ile240, Leu241, Val244, Leu292, Met295, and Phe393. Comparison with other CYP structures suggested that conformational changes in the β1–β2, α3–α4, and α6–α7 connecting loop are important for incorporating the long hydrophobic alkane-like substrate. These results improve the understanding of the catalytic mechanism of CYP153D17 and provide valuable information for future protein engineering studies. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Figures

Figure 1

Open AccessArticle Chromosomal Microarray Analysis of Consecutive Individuals with Autism Spectrum Disorders Using an Ultra-High Resolution Chromosomal Microarray Optimized for Neurodevelopmental Disorders
Int. J. Mol. Sci. 2016, 17(12), 2070; doi:10.3390/ijms17122070
Received: 15 October 2016 / Revised: 29 November 2016 / Accepted: 4 December 2016 / Published: 9 December 2016
Cited by 3 | PDF Full-text (1373 KB) | HTML Full-text | XML Full-text
Abstract
Copy number variants (CNVs) detected by chromosomal microarray analysis (CMA) significantly contribute to understanding the etiology of autism spectrum disorder (ASD) and other related conditions. In recognition of the value of CMA testing and its impact on medical management, CMA is in medical
[...] Read more.
Copy number variants (CNVs) detected by chromosomal microarray analysis (CMA) significantly contribute to understanding the etiology of autism spectrum disorder (ASD) and other related conditions. In recognition of the value of CMA testing and its impact on medical management, CMA is in medical guidelines as a first-tier test in the evaluation of children with these disorders. As CMA becomes adopted into routine care for these patients, it becomes increasingly important to report these clinical findings. This study summarizes the results of over 4 years of CMA testing by a CLIA-certified clinical testing laboratory. Using a 2.8 million probe microarray optimized for the detection of CNVs associated with neurodevelopmental disorders, we report an overall CNV detection rate of 28.1% in 10,351 consecutive patients, which rises to nearly 33% in cases without ASD, with only developmental delay/intellectual disability (DD/ID) and/or multiple congenital anomalies (MCA). The overall detection rate for individuals with ASD is also significant at 24.4%. The detection rate and pathogenic yield of CMA vary significantly with the indications for testing, age, and gender, as well as the specialty of the ordering doctor. We note discrete differences in the most common recurrent CNVs found in individuals with or without a diagnosis of ASD. Full article
Figures

Open AccessArticle Pioglitazone, a Peroxisome Proliferator-Activated Receptor γ Agonist, Suppresses Rat Prostate Carcinogenesis
Int. J. Mol. Sci. 2016, 17(12), 2071; doi:10.3390/ijms17122071
Received: 29 September 2016 / Revised: 24 November 2016 / Accepted: 2 December 2016 / Published: 10 December 2016
PDF Full-text (4351 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Pioglitazone (PGZ), a peroxisome proliferator-activated receptor γ agonist, which is known as a type 2 diabetes drug, inhibits cell proliferation in various cancer cell lines, including prostate carcinomas. This study focused on the effect of PGZ on prostate carcinogenesis using a transgenic rat
[...] Read more.
Pioglitazone (PGZ), a peroxisome proliferator-activated receptor γ agonist, which is known as a type 2 diabetes drug, inhibits cell proliferation in various cancer cell lines, including prostate carcinomas. This study focused on the effect of PGZ on prostate carcinogenesis using a transgenic rat for an adenocarcinoma of prostate (TRAP) model. Adenocarcinoma lesions as a percentage of overall lesions in the ventral prostate were significantly reduced by PGZ treatment in a dose-dependent manner. The number of adenocarcinomas per given area in the ventral prostate was also significantly reduced by PGZ treatment. The Ki67 labeling index in the ventral prostate was also significantly reduced by PGZ. Decreased cyclin D1 expression in addition to the inactivation of both p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)κB were detected in PGZ-treated TRAP rat groups. In LNCaP, a human androgen-dependent prostate cancer cell line, PGZ also inhibited cyclin D1 expression and the activation of both p38 MAPK and NFκB. The suppression of cultured cell growth was mainly regulated by the NFκB pathway as detected using specific inhibitors in both LNCaP and PC3, a human androgen-independent prostate cancer cell line. These data suggest that PGZ possesses a chemopreventive potential for prostate cancer. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Figures

Figure 1

Open AccessArticle Abnormal Mitochondrial cAMP/PKA Signaling Is Involved in Sepsis-Induced Mitochondrial and Myocardial Dysfunction
Int. J. Mol. Sci. 2016, 17(12), 2075; doi:10.3390/ijms17122075
Received: 14 September 2016 / Revised: 18 November 2016 / Accepted: 6 December 2016 / Published: 10 December 2016
Cited by 1 | PDF Full-text (3383 KB) | HTML Full-text | XML Full-text
Abstract
Adrenergic receptors couple to Gs-proteins leading to transmembrane adenylyl cyclase activation and cytosolic cyclic adenosine monophosphate (cAMP) production. Cyclic AMP is also produced in the mitochondrial matrix, where it regulates respiration through protein kinase A (PKA)-dependent phosphorylation of respiratory chain complexes. We hypothesized
[...] Read more.
Adrenergic receptors couple to Gs-proteins leading to transmembrane adenylyl cyclase activation and cytosolic cyclic adenosine monophosphate (cAMP) production. Cyclic AMP is also produced in the mitochondrial matrix, where it regulates respiration through protein kinase A (PKA)-dependent phosphorylation of respiratory chain complexes. We hypothesized that a blunted mitochondrial cAMP-PKA pathway would participate in sepsis-induced heart dysfunction. Adult male mice were subjected to intra-abdominal sepsis. Mitochondrial respiration of cardiac fibers and myocardial contractile performance were evaluated in response to 8Br-cAMP, PKA inhibition (H89), soluble adenylyl cyclase inhibition (KH7), and phosphodiesterase inhibition (IBMX; BAY60-7550). Adenosine diphosphate (ADP)-stimulated respiratory rates of cardiac fibers were reduced in septic mice. Compared with controls, stimulatory effects of 8Br-cAMP on respiration rates were enhanced in septic fibers, whereas inhibitory effects of H89 were reduced. Ser-58 phosphorylation of cytochrome c oxidase subunit IV-1 was reduced in septic hearts. In vitro, incubation of septic cardiac fibers with BAY60-7550 increased respiratory control ratio and improved cardiac MVO2 efficiency in isolated septic heart. In vivo, BAY60-7550 pre-treatment of septic mice have limited impact on myocardial function. Mitochondrial cAMP-PKA signaling is impaired in the septic myocardium. PDE2 phosphodiesterase inhibition by BAY60-7550 improves mitochondrial respiration and cardiac MVO2 efficiency in septic mice. Full article
(This article belongs to the Special Issue Mitochondria Crosstalks with other Organelles in Pathophysiology)
Figures

Figure 1

Open AccessArticle Structural Characterization of Oligochitosan Elicitor from Fusarium sambucinum and Its Elicitation of Defensive Responses in Zanthoxylum bungeanum
Int. J. Mol. Sci. 2016, 17(12), 2076; doi:10.3390/ijms17122076
Received: 17 October 2016 / Revised: 30 November 2016 / Accepted: 6 December 2016 / Published: 10 December 2016
PDF Full-text (8994 KB) | HTML Full-text | XML Full-text
Abstract
Oligosaccharide elicitors from pathogens have been shown to play major roles in host plant defense responses involving plant–pathogen chemoperception and interaction. In the present study, chitosan and oligochitosan were prepared from pathogen Fusarium sambucinum, and their effects on infection of Zanthoxylum bungeanum
[...] Read more.
Oligosaccharide elicitors from pathogens have been shown to play major roles in host plant defense responses involving plant–pathogen chemoperception and interaction. In the present study, chitosan and oligochitosan were prepared from pathogen Fusarium sambucinum, and their effects on infection of Zanthoxylum bungeanum stems were investigated. Results showed that oligochitosan inhibited the infection of the pathogen, and that the oligochitosan fraction with a degree of polymerization (DP) between 5 and 6 showed the optimal effect. Oligochitosan DP5 was purified from fraction DP5-6 and was structurally characterized using electrospray ionization mass spectrometry, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy. Oligochitosan DP5 showed significant inhibition against the infection of the pathogenic fungi on host plant stems. An investigation of the mechanism underlying this effect showed that oligochitosan DP5 increased the activities of defensive enzymes and accumulation of phenolics in host Z. bungeanum. These results suggest that oligochitosan from pathogenic fungi can mediate the infection of host plants with a pathogen by acting as an elicitor that triggers the defense system of a plant. This information will be valuable for further exploration of the interactions between the pathogen F. sambucinum and host plant Z. bungeanum. Full article
(This article belongs to the Section Molecular Botany)
Figures

Open AccessArticle Differential Cytotoxic Potential of Silver Nanoparticles in Human Ovarian Cancer Cells and Ovarian Cancer Stem Cells
Int. J. Mol. Sci. 2016, 17(12), 2077; doi:10.3390/ijms17122077
Received: 9 September 2016 / Revised: 17 November 2016 / Accepted: 30 November 2016 / Published: 12 December 2016
PDF Full-text (2622 KB) | HTML Full-text | XML Full-text
Abstract
The cancer stem cell (CSC) hypothesis postulates that cancer cells are composed of hierarchically-organized subpopulations of cells with distinct phenotypes and tumorigenic capacities. As a result, CSCs have been suggested as a source of disease recurrence. Recently, silver nanoparticles (AgNPs) have been used
[...] Read more.
The cancer stem cell (CSC) hypothesis postulates that cancer cells are composed of hierarchically-organized subpopulations of cells with distinct phenotypes and tumorigenic capacities. As a result, CSCs have been suggested as a source of disease recurrence. Recently, silver nanoparticles (AgNPs) have been used as antimicrobial, disinfectant, and antitumor agents. However, there is no study reporting the effects of AgNPs on ovarian cancer stem cells (OvCSCs). In this study, we investigated the cytotoxic effects of AgNPs and their mechanism of causing cell death in A2780 (human ovarian cancer cells) and OvCSCs derived from A2780. In order to examine these effects, OvCSCs were isolated and characterized using positive CSC markers including aldehyde dehydrogenase (ALDH) and CD133 by fluorescence-activated cell sorting (FACS). The anticancer properties of the AgNPs were evaluated by assessing cell viability, leakage of lactate dehydrogenase (LDH), reactive oxygen species (ROS), and mitochondrial membrane potential (mt-MP). The inhibitory effect of AgNPs on the growth of ovarian cancer cells and OvCSCs was evaluated using a clonogenic assay. Following 1–2 weeks of incubation with the AgNPs, the numbers of A2780 (bulk cells) and ALDH+/CD133+ colonies were significantly reduced. The expression of apoptotic and anti-apoptotic genes was measured by real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Our observations showed that treatment with AgNPs resulted in severe cytotoxicity in both ovarian cancer cells and OvCSCs. In particular, AgNPs showed significant cytotoxic potential in ALDH+/CD133+ subpopulations of cells compared with other subpopulation of cells and also human ovarian cancer cells (bulk cells). These findings suggest that AgNPs can be utilized in the development of novel nanotherapeutic molecules for the treatment of ovarian cancers by specific targeting of the ALDH+/CD133+ subpopulation of cells. Full article
(This article belongs to the collection Bioactive Nanoparticles)
Figures

Figure 1

Open AccessArticle Antithymocyte Globulin Induces a Tolerogenic Phenotype in Human Dendritic Cells
Int. J. Mol. Sci. 2016, 17(12), 2081; doi:10.3390/ijms17122081
Received: 18 August 2016 / Revised: 23 November 2016 / Accepted: 5 December 2016 / Published: 11 December 2016
Cited by 1 | PDF Full-text (1740 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Antithymocyte globulin (ATG) is used in the prevention of graft-versus-host disease during allogeneic hematopoietic stem cell transplantation. It is generally accepted that ATG mediates its immunosuppressive effect primarily via depletion of T cells. Here, we analyzed the impact of ATG-Fresenius (now Grafalon®
[...] Read more.
Antithymocyte globulin (ATG) is used in the prevention of graft-versus-host disease during allogeneic hematopoietic stem cell transplantation. It is generally accepted that ATG mediates its immunosuppressive effect primarily via depletion of T cells. Here, we analyzed the impact of ATG-Fresenius (now Grafalon®) on human monocyte-derived dendritic cells (DC). ATG induced a semi-mature phenotype in DC with significantly reduced expression of CD14, increased expression of HLA-DR, and intermediate expression of CD54, CD80, CD83, and CD86. ATG-DC showed an increase in IL-10 secretion but no IL-12 production. In line with this tolerogenic phenotype, ATG caused a significant induction of indoleamine 2,3-dioxygenase expression and a concomitant increase in levels of tryptophan metabolites in the supernatants of DC. Further, ATG-DC did not induce the proliferation of allogeneic T cells in a mixed lymphocyte reaction but actively suppressed the T cell proliferation induced by mature DC. These data suggest that besides its well-known effect on T cells, ATG modulates the phenotype of DC in a tolerogenic way, which might constitute an essential part of its immunosuppressive action in vivo. Full article
(This article belongs to the Special Issue Advances in Cell Transplantation)
Figures

Figure 1a

Open AccessArticle Down-Regulation of Ca2+-Activated K+ Channel KCa1.1 in Human Breast Cancer MDA-MB-453 Cells Treated with Vitamin D Receptor Agonists
Int. J. Mol. Sci. 2016, 17(12), 2083; doi:10.3390/ijms17122083
Received: 27 September 2016 / Revised: 1 December 2016 / Accepted: 8 December 2016 / Published: 11 December 2016
Cited by 1 | PDF Full-text (3108 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Vitamin D (VD) reduces the risk of breast cancer and improves disease prognoses. Potential VD analogs are being developed as therapeutic agents for breast cancer treatments. The large-conductance Ca2+-activated K+ channel KCa1.1 regulates intracellular Ca2+ signaling pathways
[...] Read more.
Vitamin D (VD) reduces the risk of breast cancer and improves disease prognoses. Potential VD analogs are being developed as therapeutic agents for breast cancer treatments. The large-conductance Ca2+-activated K+ channel KCa1.1 regulates intracellular Ca2+ signaling pathways and is associated with high grade tumors and poor prognoses. In the present study, we examined the effects of treatments with VD receptor (VDR) agonists on the expression and activity of KCa1.1 in human breast cancer MDA-MB-453 cells using real-time PCR, Western blotting, flow cytometry, and voltage-sensitive dye imaging. Treatments with VDR agonists for 72 h markedly decreased the expression levels of KCa1.1 transcripts and proteins in MDA-MB-453 cells, resulting in the significant inhibition of depolarization responses induced by paxilline, a specific KCa1.1 blocker. The specific proteasome inhibitor MG132 suppressed VDR agonist-induced decreases in KCa1.1 protein expression. These results suggest that KCa1.1 is a new downstream target of VDR signaling and the down-regulation of KCa1.1 through the transcriptional repression of KCa1.1 and enhancement of KCa1.1 protein degradation contribute, at least partly, to the antiproliferative effects of VDR agonists in breast cancer cells. Full article
(This article belongs to the Special Issue Calcium Regulation and Sensing)
Figures

Open AccessArticle In Vitro Antitumor Active Gold(I) Triphenylphosphane Complexes Containing 7-Azaindoles
Int. J. Mol. Sci. 2016, 17(12), 2084; doi:10.3390/ijms17122084
Received: 3 October 2016 / Revised: 28 November 2016 / Accepted: 30 November 2016 / Published: 11 December 2016
PDF Full-text (1494 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A series of gold(I) complexes of the general composition [Au(naza)(PPh3)] (18) was prepared and thoroughly characterized (e.g., electrospray ionization (ESI) mass spectrometry and multinuclear nuclear magnetic resonance (NMR) spectroscopy). The N1-deprotonated anions of 7-azaindole
[...] Read more.
A series of gold(I) complexes of the general composition [Au(naza)(PPh3)] (18) was prepared and thoroughly characterized (e.g., electrospray ionization (ESI) mass spectrometry and multinuclear nuclear magnetic resonance (NMR) spectroscopy). The N1-deprotonated anions of 7-azaindole or its derivatives (naza) are coordinated to the metal centre through the N1 atom of their pyrrole ring, as proved by a single crystal X-ray analysis of the complexes [Au(3I5Braza)(PPh3)] (7) and [Au(2Me4Claza)(PPh3)]·½H2O (8′). The in vitrocytotoxicity of the complexes 18 was studied against both the cisplatin-sensitive and -resistant variants of the A2780 human ovarian carcinoma cell line, as well as against the MRC-5 human normal fibroblast cell line. The complexes 4, 5, and 8, containing deprotonated 3-iodo-7-azaindole, 5-bromo-7-azaindole, and 2-methyl-4-chloro-7-azaindole (2Me4Claza), respectively, showed significantly higher potency (IC50 = 2.8–3.5 µM) than cisplatin (IC50 = 20.3 µM) against the A2780 cells and markedly lower effect towards the MRC-5 non-cancerous cells (IC50 = 26.0–29.2 µM), as compared with the mentioned A2780 cancer cells. The results of the flow cytometric studies of the A2780 cell cycle perturbations revealed a G2-cell cycle phase arrest of the cells treated by the representative complexes 1 and 5, which is indicative of a different mechanism of action from cisplatin (induced S-cell cycle phase arrest). The stability of the representative complex 8 in the water-containing solution as well as its ability to interact with the reduced glutathione, cysteine and bovine serum albumin was also studied using 1H and 31P-NMR spectroscopy (studied in the 50% DMF-d7/50% D2O mixture) and ESI+ mass spectrometry (studied in the 50% DMF/50% H2O mixture); DMF = dimethylformamide. The obtained results are indicative for the release of the N-donor azaindole-based ligand in the presence of the used biomolecules. Full article
(This article belongs to the Section Bioinorganic Chemistry)
Figures

Open AccessArticle Crystallization of Galectin-8 Linker Reveals Intricate Relationship between the N-terminal Tail and the Linker
Int. J. Mol. Sci. 2016, 17(12), 2088; doi:10.3390/ijms17122088
Received: 30 September 2016 / Revised: 28 November 2016 / Accepted: 7 December 2016 / Published: 12 December 2016
PDF Full-text (7256 KB) | HTML Full-text | XML Full-text
Abstract
Galectin-8 (Gal-8) plays a significant role in normal immunological function as well as in cancer. This lectin contains two carbohydrate recognition domains (CRD) connected by a peptide linker. The N-terminal CRD determines ligand binding specificity, whereas the linker has been proposed to regulate
[...] Read more.
Galectin-8 (Gal-8) plays a significant role in normal immunological function as well as in cancer. This lectin contains two carbohydrate recognition domains (CRD) connected by a peptide linker. The N-terminal CRD determines ligand binding specificity, whereas the linker has been proposed to regulate overall Gal-8 function, including multimerization and biological activity. Here, we crystallized the Gal-8 N-terminal CRD with the peptide linker using a crystallization condition that contains Ni2+. The Ni2+ ion was found to be complexed between two CRDs via crystal packing contacts. The coordination between Ni2+ and Asp25 plays an indirect role in determining the structure of β-strand F0 and in influencing the linker conformation which could not be defined due to its dynamic nature. The linker was also shortened in situ and crystallized under a different condition, leading to a higher resolution structure refined to 1.08 Å. This crystal structure allowed definition of a short portion of the linker interacting with the Gal-8 N-terminal tail via ionic interactions and hydrogen bonds. Observation of two Gal-8 N-terminal CRD structures implies that the N-terminal tail and the linker may influence each other’s conformation. In addition, under specific crystallization conditions, glycerol could replace lactose and was observed at the carbohydrate binding site. However, glycerol did not show inhibition activity in hemagglutination assay. Full article
(This article belongs to the Special Issue Molecular Recognition of Carbohydrates)
Figures

Figure 1

Open AccessArticle Using CRISPR/Cas9-Mediated GLA Gene Knockout as an In Vitro Drug Screening Model for Fabry Disease
Int. J. Mol. Sci. 2016, 17(12), 2089; doi:10.3390/ijms17122089
Received: 20 September 2016 / Revised: 30 November 2016 / Accepted: 5 December 2016 / Published: 13 December 2016
PDF Full-text (2356 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The CRISPR/Cas9 Genome-editing system has revealed promising potential for generating gene mutation, deletion, and correction in human cells. Application of this powerful tool in Fabry disease (FD), however, still needs to be explored. Enzyme replacement therapy (ERT), a regular administration of recombinant human
[...] Read more.
The CRISPR/Cas9 Genome-editing system has revealed promising potential for generating gene mutation, deletion, and correction in human cells. Application of this powerful tool in Fabry disease (FD), however, still needs to be explored. Enzyme replacement therapy (ERT), a regular administration of recombinant human α Gal A (rhα-GLA), is a currently available and effective treatment to clear the accumulated Gb3 in FD patients. However, the short half-life of rhα-GLA in human body limits its application. Moreover, lack of an appropriate in vitro disease model restricted the high-throughput screening of drugs for improving ERT efficacy. Therefore, it is worth establishing a large-expanded in vitro FD model for screening potential candidates, which can enhance and prolong ERT potency. Using CRISPR/Cas9-mediated gene knockout of GLA in HEK-293T cells, we generated GLA-null cells to investigate rhα-GLA cellular pharmacokinetics. The half-life of administrated rhα-GLA was around 24 h in GLA-null cells; co-administration of proteasome inhibitor MG132 and rhα-GLA significantly restored the GLA enzyme activity by two-fold compared with rhα-GLA alone. Furthermore, co-treatment of rhα-GLA/MG132 in patient-derived fibroblasts increased Gb3 clearance by 30%, compared with rhα-GLA treatment alone. Collectively, the CRISPR/Cas9-mediated GLA-knockout HEK-293T cells provide an in vitro FD model for evaluating the intracellular pharmacokinetics of the rhα-GLA as well as for screening candidates to prolong rhα-GLA potency. Using this model, we demonstrated that MG132 prolongs rhα-GLA half-life and enhanced Gb3 clearance, shedding light on the direction of enhancing ERT efficacy in FD treatment. Full article
Figures

Open AccessArticle Rat Aquaporin-5 Is pH-Gated Induced by Phosphorylation and Is Implicated in Oxidative Stress
Int. J. Mol. Sci. 2016, 17(12), 2090; doi:10.3390/ijms17122090
Received: 28 September 2016 / Revised: 25 November 2016 / Accepted: 6 December 2016 / Published: 13 December 2016
Cited by 2 | PDF Full-text (2237 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Aquaporin-5 (AQP5) is a membrane water channel widely distributed in human tissues that was found up-regulated in different tumors and considered implicated in carcinogenesis in different organs and systems. Despite its wide distribution pattern and physiological importance, AQP5 short-term regulation was not reported
[...] Read more.
Aquaporin-5 (AQP5) is a membrane water channel widely distributed in human tissues that was found up-regulated in different tumors and considered implicated in carcinogenesis in different organs and systems. Despite its wide distribution pattern and physiological importance, AQP5 short-term regulation was not reported and mechanisms underlying its involvement in cancer are not well defined. In this work, we expressed rat AQP5 in yeast and investigated mechanisms of gating, as well as AQP5’s ability to facilitate H2O2 plasma membrane diffusion. We found that AQP5 can be gated by extracellular pH in a phosphorylation-dependent manner, with higher activity at physiological pH 7.4. Moreover, similar to other mammalian AQPs, AQP5 is able to increase extracellular H2O2 influx and to affect oxidative cell response with dual effects: whereas in acute oxidative stress conditions AQP5 induces an initial higher sensitivity, in chronic stress AQP5 expressing cells show improved cell survival and resistance. Our findings support the involvement of AQP5 in oxidative stress and suggest AQP5 modulation by phosphorylation as a novel tool for therapeutics. Full article
(This article belongs to the Special Issue Aquaporin)
Figures

Open AccessArticle Transcriptome of Cultured Lung Fibroblasts in Idiopathic Pulmonary Fibrosis: Meta-Analysis of Publically Available Microarray Datasets Reveals Repression of Inflammation and Immunity Pathways
Int. J. Mol. Sci. 2016, 17(12), 2091; doi:10.3390/ijms17122091
Received: 25 September 2016 / Revised: 2 December 2016 / Accepted: 5 December 2016 / Published: 13 December 2016
PDF Full-text (791 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Heritable profibrotic differentiation of lung fibroblasts is a key mechanism of idiopathic pulmonary fibrosis (IPF). Its mechanisms are yet to be fully understood. In this study, individual data from four independent microarray studies comparing the transcriptome of fibroblasts cultured in vitro from normal
[...] Read more.
Heritable profibrotic differentiation of lung fibroblasts is a key mechanism of idiopathic pulmonary fibrosis (IPF). Its mechanisms are yet to be fully understood. In this study, individual data from four independent microarray studies comparing the transcriptome of fibroblasts cultured in vitro from normal (total n = 20) and IPF (total n = 20) human lung were compiled for meta-analysis following normalization to z-scores. One hundred and thirteen transcripts were upregulated and 115 were downregulated in IPF fibroblasts using the Significance Analysis of Microrrays algorithm with a false discovery rate of 5%. Downregulated genes were highly enriched for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional classes related to inflammation and immunity such as Defense response to virus, Influenza A, tumor necrosis factor (TNF) mediated signaling pathway, interferon-inducible absent in melanoma2 (AIM2) inflammasome as well as Apoptosis. Although upregulated genes were not enriched for any functional class, select factors known to play key roles in lung fibrogenesis were overexpressed in IPF fibroblasts, most notably connective tissue growth factor (CTGF) and serum response factor (SRF), supporting their role as drivers of IPF. The full data table is available as a supplement. Full article
(This article belongs to the Special Issue Transcriptome Profiling in Human Diseases)
Figures

Figure 1

Open AccessArticle Zinc Up-Regulates Insulin Secretion from β Cell-Like Cells Derived from Stem Cells from Human Exfoliated Deciduous Tooth (SHED)
Int. J. Mol. Sci. 2016, 17(12), 2092; doi:10.3390/ijms17122092
Received: 29 September 2016 / Revised: 1 December 2016 / Accepted: 6 December 2016 / Published: 13 December 2016
PDF Full-text (2365 KB) | HTML Full-text | XML Full-text
Abstract
Stem cells from human exfoliated deciduous tooth (SHED) offer several advantages over other stem cell sources. Using SHED, we examined the roles of zinc and the zinc uptake transporter ZIP8 (Zrt- and irt-like protein 8) while inducing SHED into insulin secreting β cell-like
[...] Read more.
Stem cells from human exfoliated deciduous tooth (SHED) offer several advantages over other stem cell sources. Using SHED, we examined the roles of zinc and the zinc uptake transporter ZIP8 (Zrt- and irt-like protein 8) while inducing SHED into insulin secreting β cell-like stem cells (i.e., SHED-β cells). We observed that ZIP8 expression increased as SHED differentiated into SHED-β cells, and that zinc supplementation at day 10 increased the levels of most pancreatic β cell markers—particularly Insulin and glucose transporter 2 (GLUT2). We confirmed that SHED-β cells produce insulin successfully. In addition, we note that zinc supplementation significantly increases insulin secretion with a significant elevation of ZIP8 transporters in SHED-β cells. We conclude that SHED can be converted into insulin-secreting β cell-like cells as zinc concentration in the cytosol is elevated. Insulin production by SHED-β cells can be regulated via modulation of zinc concentration in the media as ZIP8 expression in the SHED-β cells increases. Full article
(This article belongs to the Special Issue Zinc Signaling in Physiology and Pathogenesis)
Figures

Open AccessArticle Effect of the CRAC Peptide, VLNYYVW, on mPTP Opening in Rat Brain and Liver Mitochondria
Int. J. Mol. Sci. 2016, 17(12), 2096; doi:10.3390/ijms17122096
Received: 25 September 2016 / Revised: 1 December 2016 / Accepted: 7 December 2016 / Published: 13 December 2016
PDF Full-text (2194 KB) | HTML Full-text | XML Full-text
Abstract
The translocator protein (TSPO; 18 kDa) is a high-affinity cholesterol-binding protein located in the outer membrane of mitochondria. A domain in the C-terminus of TSPO was characterized as the cholesterol recognition/interaction amino acid consensus (CRAC). The ability of the CRAC domain to bind
[...] Read more.
The translocator protein (TSPO; 18 kDa) is a high-affinity cholesterol-binding protein located in the outer membrane of mitochondria. A domain in the C-terminus of TSPO was characterized as the cholesterol recognition/interaction amino acid consensus (CRAC). The ability of the CRAC domain to bind to cholesterol led us to hypothesize that this peptide may participate in the regulation of mitochondrial membrane permeability. Herein, we report the effect of the synthetic CRAC peptide, VLNYYVW, on mitochondrial permeability transition pore (mPTP) opening. It was found that the CRAC peptide alone prevents the mPTP from opening, as well as the release of apoptotic factors (cytochrome c, AIF, and EndoG) in rat brain mitochondria (RBM). Co-incubation of CRAC, together with the TSPO drug ligand, PK 11195, resulted in the acceleration of mPTP opening and in the increase of apoptotic factor release. VLNYYVW did not induce swelling in rat liver mitochondria (RLM). 3,17,19-androsten-5-triol (19-Atriol; an inhibitor of the cholesterol-binding activity of the CRAC peptide) alone and in combination with the peptide was able to stimulate RLM swelling, which was Ca2+- and CsA-sensitive. Additionally, a combination of 19-Atriol with 100 nM PK 11195 or with 100 µM PK 11195 displayed the opposite effect: namely, the addition of 19-Atriol with 100 µM PK 11195 in a suspension of RLM suppressed the Ca2+-induced swelling of RLM by 40%, while the presence of 100 nM PK 11195 with 19-Atriol enhanced the swelling of RLM by 60%. Taken together, these data suggest the participation of the TSPO’s CRAC domain in the regulation of permeability transition. Full article
(This article belongs to the Special Issue Translocator Protein (TSPO))
Figures

Open AccessArticle RNA Interference of the Ecdysone Receptor Genes EcR and USP in Grain Aphid (Sitobion avenae F.) Affects Its Survival and Fecundity upon Feeding on Wheat Plants
Int. J. Mol. Sci. 2016, 17(12), 2098; doi:10.3390/ijms17122098
Received: 4 September 2016 / Revised: 5 December 2016 / Accepted: 8 December 2016 / Published: 14 December 2016
PDF Full-text (2703 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
RNA interference (RNAi) has been widely used in functional genomics of insects and received intensive attention in the development of RNAi-based plants for insect control. Ecdysone receptor (EcR) and ultraspiracle protein (USP) play important roles in molting, metamorphosis, and reproduction of insects. EcR
[...] Read more.
RNA interference (RNAi) has been widely used in functional genomics of insects and received intensive attention in the development of RNAi-based plants for insect control. Ecdysone receptor (EcR) and ultraspiracle protein (USP) play important roles in molting, metamorphosis, and reproduction of insects. EcR and USP orthologs and their function in grain aphid (Sitobion avenae F.) have not been documented yet. Here, RT-PCR, qRT-PCR, dsRNA feeding assay and aphid bioassay were employed to isolate EcR and USP orthologs in grain aphid, investigate their expression patterns, and evaluate the effect of RNAi on aphid survival and fecundity, and its persistence. The results indicated that SaEcR and SaUSP exhibited similar expression profiles at different developmental stages. Oral administration of dsRNAs of SaEcR and dsSaUSP significantly decreased the survival of aphids due to the down-regulation of these two genes, respectively. The silencing effect was persistent and transgenerational, as demonstrated by the reduced survival and fecundity due to knock-down of SaEcR and SaUSP in both the surviving aphids and their offspring, even after switching to aphid-susceptible wheat plants. Taken together, our results demonstrate that SaEcR and SaUSP are essential genes in aphid growth and development, and could be used as RNAi targets for wheat aphid control. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Figures

Open AccessArticle Discovery of Anti-Hypertensive Oligopeptides from Adlay Based on In Silico Proteolysis and Virtual Screening
Int. J. Mol. Sci. 2016, 17(12), 2099; doi:10.3390/ijms17122099
Received: 25 September 2016 / Revised: 4 December 2016 / Accepted: 7 December 2016 / Published: 14 December 2016
PDF Full-text (6149 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Adlay (Coix larchryma-jobi L.) was the commonly used Traditional Chinese Medicine (TCM) with high content of seed storage protein. The hydrolyzed bioactive oligopeptides of adlay have been proven to be anti-hypertensive effective components. However, the structures and anti-hypertensive mechanism of bioactive oligopeptides
[...] Read more.
Adlay (Coix larchryma-jobi L.) was the commonly used Traditional Chinese Medicine (TCM) with high content of seed storage protein. The hydrolyzed bioactive oligopeptides of adlay have been proven to be anti-hypertensive effective components. However, the structures and anti-hypertensive mechanism of bioactive oligopeptides from adlay were not clear. To discover the definite anti-hypertensive oligopeptides from adlay, in silico proteolysis and virtual screening were implemented to obtain potential oligopeptides, which were further identified by biochemistry assay and molecular dynamics simulation. In this paper, ten sequences of adlay prolamins were collected and in silico hydrolyzed to construct the oligopeptide library with 134 oligopeptides. This library was reverse screened by anti-hypertensive pharmacophore database, which was constructed by our research team and contained ten anti-hypertensive targets. Angiotensin-I converting enzyme (ACE) was identified as the main potential target for the anti-hypertensive activity of adlay oligopeptides. Three crystal structures of ACE were utilized for docking studies and 19 oligopeptides were finally identified with potential ACE inhibitory activity. According to mapping features and evaluation indexes of pharmacophore and docking, three oligopeptides were selected for biochemistry assay. An oligopeptide sequence, NPATY (IC50 = 61.88 ± 2.77 µM), was identified as the ACE inhibitor by reverse-phase high performance liquid chromatography (RP-HPLC) assay. Molecular dynamics simulation of NPATY was further utilized to analyze interactive bonds and key residues. ALA354 was identified as a key residue of ACE inhibitors. Hydrophobic effect of VAL518 and electrostatic effects of HIS383, HIS387, HIS513 and Zn2+ were also regarded as playing a key role in inhibiting ACE activities. This study provides a research strategy to explore the pharmacological mechanism of Traditional Chinese Medicine (TCM) proteins based on in silico proteolysis and virtual screening, which could be beneficial to reveal the pharmacological action of TCM proteins and provide new lead compounds for peptides-based drug design. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Figures

Open AccessArticle Decrease in Circulating Fatty Acids Is Associated with Islet Dysfunction in Chronically Sleep-Restricted Rats
Int. J. Mol. Sci. 2016, 17(12), 2102; doi:10.3390/ijms17122102
Received: 23 October 2016 / Revised: 6 December 2016 / Accepted: 10 December 2016 / Published: 14 December 2016
PDF Full-text (8390 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Previous studies have shown that sleep restriction-induced environmental stress is associated with abnormal metabolism, but the underlying mechanism is poorly understood. In the current study, we investigated the possible lipid and glucose metabolism patterns in chronically sleep-restricted rat. Without changes in food intake,
[...] Read more.
Previous studies have shown that sleep restriction-induced environmental stress is associated with abnormal metabolism, but the underlying mechanism is poorly understood. In the current study, we investigated the possible lipid and glucose metabolism patterns in chronically sleep-restricted rat. Without changes in food intake, body weight was decreased and energy expenditure was increased in sleep-restricted rats. The effects of chronic sleep disturbance on metabolites in serum were examined using 1H NMR metabolomics and GC-FID/MS analysis. Six metabolites (lipoproteins, triglycerides, isoleucine, valine, choline, and phosphorylcholine) exhibited significant alteration, and all the fatty acid components were decreased, which suggested fatty acid metabolism was impaired after sleep loss. Moreover, increased blood glucose, reduced serum insulin, decreased glucose tolerance, and impaired glucose-stimulated insulin secretion of islets were also observed in sleep-restricted rats. The islet function of insulin secretion could be partially restored by increasing dietary fat to sleep-disturbed rats suggested that a reduction in circulating fatty acids was related to islet dysfunction under sleep deficiency-induced environmental stress. This study provides a new perspective on the relationship between insufficient sleep and lipid/glucose metabolism, which offers insights into the role of stressful challenges in a healthy lifestyle. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Figures

Open AccessArticle Skin Involvement and Pulmonary Hypertension Are Associated with Vitamin D Insufficiency in Scleroderma
Int. J. Mol. Sci. 2016, 17(12), 2103; doi:10.3390/ijms17122103
Received: 1 September 2016 / Revised: 5 December 2016 / Accepted: 9 December 2016 / Published: 14 December 2016
PDF Full-text (599 KB) | HTML Full-text | XML Full-text
Abstract
Vitamin D status has been linked to immune system and autoimmune disorders; in fact, low levels of vitamin D are common in many autoimmune disorders. The aims of our study were to assess the prevalence of vitamin D insufficiency and the possible correlation
[...] Read more.
Vitamin D status has been linked to immune system and autoimmune disorders; in fact, low levels of vitamin D are common in many autoimmune disorders. The aims of our study were to assess the prevalence of vitamin D insufficiency and the possible correlation with clinical parameters in systemic sclerosis (SSc). We recruited 40 patients (38 female and two male) with scleroderma and 40 healthy controls matched for age and gender. Demographic and clinical parameters were recorded and the 25-hydroxivitamin D3 serum levels were measured. Serum 25-hydroxivitamin D3 levels were significantly lower in patients with systemic sclerosis than in the control group. The prevalence of 25-hydroxivitamin D3 insufficiency was 50% in the patients and 22.5% in the control group. A statistically significant association was observed between the insufficiency of 25-hydroxivitamin D3 and skin involvement (p = 0.02) and echocardiography systolic pulmonary artery pressure >35 mmHg (p = 0.02). Our data show that the systemic sclerosis group has significantly lower serum 25-hydroxivitamin D3 concentrations compared to the control group; skin involvement and pulmonary hypertension are associated with vitamin D3 insufficiency. Full article
(This article belongs to the Special Issue Inflammatory Skin Conditions)
Figures

Figure 1

Open AccessCommunication Cre Fused with RVG Peptide Mediates Targeted Genome Editing in Mouse Brain Cells In Vivo
Int. J. Mol. Sci. 2016, 17(12), 2104; doi:10.3390/ijms17122104
Received: 19 October 2016 / Revised: 2 December 2016 / Accepted: 8 December 2016 / Published: 14 December 2016
PDF Full-text (1502 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Cell penetrating peptides (CPPs) are short peptides that can pass through cell membranes. CPPs can facilitate the cellular entry of proteins, macromolecules, nanoparticles and drugs. RVG peptide (RVG hereinafter) is a 29-amino-acid CPP derived from a rabies virus glycoprotein that can cross the
[...] Read more.
Cell penetrating peptides (CPPs) are short peptides that can pass through cell membranes. CPPs can facilitate the cellular entry of proteins, macromolecules, nanoparticles and drugs. RVG peptide (RVG hereinafter) is a 29-amino-acid CPP derived from a rabies virus glycoprotein that can cross the blood-brain barrier (BBB) and enter brain cells. However, whether RVG can be used for genome editing in the brain has not been reported. In this work, we combined RVG with Cre recombinase for bacterial expression. The purified RVG-Cre protein cut plasmids in vitro and traversed cell membranes in cultured Neuro2a cells. By tail vein-injecting RVG-Cre into Cre reporter mouse lines mTmG and Rosa26lacZ, we demonstrated that RVG-Cre could target brain cells and achieve targeted somatic genome editing in adult mice. This direct delivery of the gene-editing enzyme protein into mouse brains with RVG is much safer than plasmid- or viral-based methods, holding promise for further applications in the treatment of various brain diseases. Full article
(This article belongs to the Special Issue Cell-Penetrating Peptides 2016)
Figures

Figure 1

Open AccessArticle Lunasin Attenuates Obesity-Associated Metastasis of 4T1 Breast Cancer Cell through Anti-Inflammatory Property
Int. J. Mol. Sci. 2016, 17(12), 2109; doi:10.3390/ijms17122109
Received: 18 November 2016 / Revised: 9 December 2016 / Accepted: 12 December 2016 / Published: 15 December 2016
Cited by 1 | PDF Full-text (2891 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Obesity prevalence is increasing worldwide and is accompanied by low-grade inflammation with macrophage infiltration, which is linked with a poorer breast cancer prognosis. Lunasin is a natural seed peptide with chemopreventive properties and multiple bioactivities. This is the first study to explore the
[...] Read more.
Obesity prevalence is increasing worldwide and is accompanied by low-grade inflammation with macrophage infiltration, which is linked with a poorer breast cancer prognosis. Lunasin is a natural seed peptide with chemopreventive properties and multiple bioactivities. This is the first study to explore the chemopreventive effects of lunasin in the obesity-related breast cancer condition using 4T1 breast cancer cells, 3T3-L1 adipocytes, and conditioned media. An obesity-related environment, such as leptin-treatment or adipocyte-conditioned medium (Ad-CM), promoted 4T1 cell proliferation and metastasis. Lunasin treatment inhibited metastasis of breast cancer cells, partially through modestly inhibiting production of the angiogenesis-mediator vascular endothelial growth factor (VEGF) and significantly by inhibiting secretion in the Ad-CM condition. Subsequently, two adipocytes inflammation models, 3T3-L1 adipocytes were stimulated by tumor necrosis factor (TNF)-α, and RAW 264.7 cell-conditioned medium (RAW-CM) was used to mimic the obese microenvironment. Lunasin significantly inhibited interleukin (IL)-6 and macrophage chemoattractant protein (MCP)-1 secretion by TNF-α stimulation, and MCP-1 secretion in the RAW-CM model. This study highlights that lunasin suppressed 3T3-L1 adipocyte inflammation and inhibited 4T1 breast cancer cell migration. Interestingly, lunasin exerted more effective anti-metastasis activity in the obesity-related condition models, indicating that it possesses anti-inflammatory properties and blocks adipocyte-cancer cell cross-talk. Full article
(This article belongs to the Special Issue Adipokines)
Figures

Open AccessArticle Validating Intravascular Imaging with Serial Optical Coherence Tomography and Confocal Fluorescence Microscopy
Int. J. Mol. Sci. 2016, 17(12), 2110; doi:10.3390/ijms17122110
Received: 31 August 2016 / Revised: 25 November 2016 / Accepted: 9 December 2016 / Published: 15 December 2016
PDF Full-text (7720 KB) | HTML Full-text | XML Full-text
Abstract
Atherosclerotic cardiovascular diseases are characterized by the formation of a plaque in the arterial wall. Intravascular ultrasound (IVUS) provides high-resolution images allowing delineation of atherosclerotic plaques. When combined with near infrared fluorescence (NIRF), the plaque can also be studied at a molecular level
[...] Read more.
Atherosclerotic cardiovascular diseases are characterized by the formation of a plaque in the arterial wall. Intravascular ultrasound (IVUS) provides high-resolution images allowing delineation of atherosclerotic plaques. When combined with near infrared fluorescence (NIRF), the plaque can also be studied at a molecular level with a large variety of biomarkers. In this work, we present a system enabling automated volumetric histology imaging of excised aortas that can spatially correlate results with combined IVUS/NIRF imaging of lipid-rich atheroma in cholesterol-fed rabbits. Pullbacks in the rabbit aortas were performed with a dual modality IVUS/NIRF catheter developed by our group. Ex vivo three-dimensional (3D) histology was performed combining optical coherence tomography (OCT) and confocal fluorescence microscopy, providing high-resolution anatomical and molecular information, respectively, to validate in vivo findings. The microscope was combined with a serial slicer allowing for the imaging of the whole vessel automatically. Colocalization of in vivo and ex vivo results is demonstrated. Slices can then be recovered to be tested in conventional histology. Full article
(This article belongs to the Special Issue Atherosclerosis and Vascular Imaging 2016) Printed Edition available
Figures

Figure 1

Open AccessArticle Characterization of Starch Degradation Related Genes in Postharvest Kiwifruit
Int. J. Mol. Sci. 2016, 17(12), 2112; doi:10.3390/ijms17122112
Received: 27 October 2016 / Revised: 5 December 2016 / Accepted: 13 December 2016 / Published: 15 December 2016
PDF Full-text (2226 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Starch is one of the most important storage carbohydrates in plants. Kiwifruit typically accumulate large amounts of starch during development. The fruit retain starch until commercial maturity, and its postharvest degradation is essential for consumer acceptance. The activity of genes related to starch
[...] Read more.
Starch is one of the most important storage carbohydrates in plants. Kiwifruit typically accumulate large amounts of starch during development. The fruit retain starch until commercial maturity, and its postharvest degradation is essential for consumer acceptance. The activity of genes related to starch degradation has, however, rarely been investigated. Based on the kiwifruit genome sequence and previously reported starch degradation-related genes, 17 novel genes were isolated and the relationship between their expression and starch degradation was examined using two sets of materials: ethylene-treated (100 µL/L, 20 °C; ETH) vs. control (20 °C; CK) and controlled atmosphere stored (CA, 5% CO2 + 2% O2, 0 °C) vs. normal atmosphere in cold storage (NA, 0 °C). Physiological analysis indicated that ETH accelerated starch degradation and increased soluble solids content (SSC) and soluble sugars (glucose, fructose and sucrose), while CA inhibited starch reduction compared with NA. Using these materials, expression patterns of 24 genes that may contribute to starch degradation (seven previously reported and 17 newly isolated) were analyzed. Among the 24 genes, AdAMY1, AdAGL3 and AdBAM3.1/3L/9 were significantly induced by ETH and positively correlated with starch degradation. Furthermore, these five genes were also inhibited by CA, conforming the likely involvement of these genes in starch degradation. Thus, the present study has identified the genes with potential for involvement in starch degradation in postharvest kiwifruit, which will be useful for understanding the regulation of kiwifruit starch content and metabolism. Full article
(This article belongs to the Special Issue Ripening Control and Induction of the Defence and Antioxidant Systems)
Figures

Figure 1

Open AccessArticle Systematic Understanding of Mechanisms of a Chinese Herbal Formula in Treatment of Metabolic Syndrome by an Integrated Pharmacology Approach
Int. J. Mol. Sci. 2016, 17(12), 2114; doi:10.3390/ijms17122114
Received: 20 September 2016 / Revised: 9 December 2016 / Accepted: 12 December 2016 / Published: 16 December 2016
PDF Full-text (2675 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Metabolic syndrome (MS) is becoming a worldwide health problem. Wendan decoction (WDD)—a famous traditional Chinese medicine formula—has been extensively employed to relieve syndromes related to MS in clinical practice in China. However, its pharmacological mechanisms still remain vague. In this study, a comprehensive
[...] Read more.
Metabolic syndrome (MS) is becoming a worldwide health problem. Wendan decoction (WDD)—a famous traditional Chinese medicine formula—has been extensively employed to relieve syndromes related to MS in clinical practice in China. However, its pharmacological mechanisms still remain vague. In this study, a comprehensive approach that integrated chemomics, principal component analysis, molecular docking simulation, and network analysis was established to elucidate the multi-component and multi-target mechanism of action of WDD in treatment of MS. The compounds in WDD were found to possess chemical diversity, complexity and drug-likeness compared to MS drugs. Six nuclear receptors were obtained to have strong binding affinity with 217 compounds of five herbs in WDD. The importance roles of targets and herbs were also identified due to network parameters. Five compounds from Radix Glycyrrhizae Preparata can hit all six targets, which can assist in screening new MS drugs. The pathway network analysis demonstrated that the main pharmacological effects of WDD might lie in maintaining lipid and glucose metabolisms and anticancer activities as well as immunomodulatory and hepatoprotective effects. This study provided a comprehensive system approach for understanding the multi-component, multi-target and multi-pathway mechanisms of WDD during the treatment of MS. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Figures

Open AccessArticle Maternal Food Restriction during Pregnancy and Lactation Adversely Affect Hepatic Growth and Lipid Metabolism in Three-Week-Old Rat Offspring
Int. J. Mol. Sci. 2016, 17(12), 2115; doi:10.3390/ijms17122115
Received: 26 October 2016 / Revised: 2 December 2016 / Accepted: 11 December 2016 / Published: 15 December 2016
PDF Full-text (1549 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Maternal malnutrition influences the early development of foetal adaptive changes for survival. We explored the effects of maternal undernutrition during gestation and lactation on hepatic growth and function. Sprague-Dawley rats were fed a normal or a food-restricted (FR) diet during gestation and/or lactation.
[...] Read more.
Maternal malnutrition influences the early development of foetal adaptive changes for survival. We explored the effects of maternal undernutrition during gestation and lactation on hepatic growth and function. Sprague-Dawley rats were fed a normal or a food-restricted (FR) diet during gestation and/or lactation. We performed analyses of covariance (adjusting for the liver weight/body weight ratio) to compare hepatic growth and lipid metabolism among the offspring. Maternal FR during gestation triggered the development of wide spaces between hepatic cells and increased the expression of mammalian target of rapamycin (mTOR) in three-week-old male offspring compared with controls (both p < 0.05). Offspring nursed by FR dams exhibited wider spaces between hepatic cells and a lower liver weight/body weight ratio than control offspring, and increased mTOR expression (p < 0.05). Interestingly, the significant decrease in expression of lipogenic-related genes was dependent on carbohydrate-responsive element-binding protein, despite the increased expression of sterol regulatory element-binding protein 1 (SREBP1) (p < 0.05). This study demonstrated increased expression of key metabolic regulators (mTOR and SREBP1), alterations in lipid metabolism, and deficits in hepatic growth in the offspring of FR-treated dams. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Figures

Figure 1

Open AccessArticle Discovery of a New Class of Cathepsin K Inhibitors in Rhizoma Drynariae as Potential Candidates for the Treatment of Osteoporosis
Int. J. Mol. Sci. 2016, 17(12), 2116; doi:10.3390/ijms17122116
Received: 2 October 2016 / Revised: 5 December 2016 / Accepted: 6 December 2016 / Published: 16 December 2016
PDF Full-text (6301 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Rhizoma Drynariae (RD), as one of the most common clinically used folk medicines, has been reported to exert potent anti-osteoporotic activity. The bioactive ingredients and mechanisms that account for its bone protective effects are under active investigation. Here we adopt a novel in
[...] Read more.
Rhizoma Drynariae (RD), as one of the most common clinically used folk medicines, has been reported to exert potent anti-osteoporotic activity. The bioactive ingredients and mechanisms that account for its bone protective effects are under active investigation. Here we adopt a novel in silico target fishing method to reveal the target profile of RD. Cathepsin K (Ctsk) is one of the cysteine proteases that is over-expressed in osteoclasts and accounts for the increase in bone resorption in metabolic bone disorders such as postmenopausal osteoporosis. It has been the focus of target based drug discovery in recent years. We have identified two components in RD, Kushennol F and Sophoraflavanone G, that can potentially interact with Ctsk. Biological studies were performed to verify the effects of these compounds on Ctsk and its related bone resorption process, which include the use of in vitro fluorescence-based Ctsk enzyme assay, bone resorption pit formation assay, as well as Receptor Activator of Nuclear factor κB (NF-κB) ligand (RANKL)-induced osteoclastogenesis using murine RAW264.7 cells. Finally, the binding mode and stability of these two compounds that interact with Ctsk were determined by molecular docking and dynamics methods. The results showed that the in silico target fishing method could successfully identify two components from RD that show inhibitory effects on the bone resorption process related to protease Ctsk. Full article
(This article belongs to the Special Issue Advances in Bone and Cartilage Research)
Figures

Open AccessArticle Knockdown of ELMO3 Suppresses Growth, Invasion and Metastasis of Colorectal Cancer
Int. J. Mol. Sci. 2016, 17(12), 2119; doi:10.3390/ijms17122119
Received: 4 October 2016 / Revised: 5 December 2016 / Accepted: 12 December 2016 / Published: 16 December 2016
PDF Full-text (5533 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The engulfment and cell motility (ELMOs) family of proteins plays a crucial role in tumor cell migration and invasion. However, the function of ELMO3 is poorly defined. To elucidate its role in the development and progression of colorectal cancer (CRC), we examined the
[...] Read more.
The engulfment and cell motility (ELMOs) family of proteins plays a crucial role in tumor cell migration and invasion. However, the function of ELMO3 is poorly defined. To elucidate its role in the development and progression of colorectal cancer (CRC), we examined the expression of ELMO3 in 45 cases of paired CRC tumor tissues and adjacent normal tissues. Furthermore, we assessed the effect of the knockdown of ELMO3 on cell proliferation, cell cycle, migration, invasion and F-actin polymerization in HCT116 cells. The result shows that the expression of ELMO3 in CRC tissues was significantly increased in comparison to the adjacent normal colorectal tissues. Moreover, this overexpression was associated with tumor size (p = 0.007), tumor differentiation (p = 0.001), depth of invasion (p = 0.009), lymph node metastasis (p = 0.003), distant metastasis (p = 0.013) and tumor, node, metastasis (TNM)-based classification (p = 0.000). In in vitro experiments, the silencing of ELMO3 inhibited cell proliferation, invasion, metastasis, and F-actin polymerization, and induced Gap 1 (G1) phase cell cycle arrest. Our study demonstrates that ELMO3 is involved in the processes of growth, invasion and metastasis of CRC, and could be used a potential molecular diagnostic tool or therapy target of CRC. Full article
Figures

Open AccessCommunication Gene-Specific Methylation Analysis in Thymomas of Patients with Myasthenia Gravis
Int. J. Mol. Sci. 2016, 17(12), 2121; doi:10.3390/ijms17122121
Received: 11 November 2016 / Revised: 6 December 2016 / Accepted: 12 December 2016 / Published: 16 December 2016
PDF Full-text (921 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Thymomas are uncommon neoplasms that arise from epithelial cells of the thymus and are often associated with myasthenia gravis (MG), an autoimmune disease characterized by autoantibodies directed to different targets at the neuromuscular junction. Little is known, however, concerning epigenetic changes occurring in
[...] Read more.
Thymomas are uncommon neoplasms that arise from epithelial cells of the thymus and are often associated with myasthenia gravis (MG), an autoimmune disease characterized by autoantibodies directed to different targets at the neuromuscular junction. Little is known, however, concerning epigenetic changes occurring in thymomas from MG individuals. To further address this issue, we analyzed DNA methylation levels of genes involved in one-carbon metabolism (MTHFR) and DNA methylation (DNMT1, DNMT3A, and DNMT3B) in blood, tumor tissue, and healthy thymic epithelial cells from MG patients that underwent a surgical resection of a thymic neoplasm. For the analyses we applied the methylation-sensitive high-resolution melting technique. Both MTHFR and DNMT3A promoters showed significantly higher methylation in tumor tissue with respect to blood, and MTHFR also showed significantly higher methylation levels in tumor tissue respect to healthy adjacent thymic epithelial cells. Both DNMT1 and DNMT3B promoter regions were mostly hypomethylated in all the investigated tissues. The present study suggests that MTHFR methylation is increased in thymomas obtained from MG patients; furthermore, some degrees of methylation of the DNMT3A gene were observed in thymic tissue with respect to blood. Full article
(This article belongs to the Special Issue Tumor Microenvironment and Metabolism)
Figures

Figure 1

Open AccessArticle Testosterone Deficiency Induces Changes of the Transcriptomes of Visceral Adipose Tissue in Miniature Pigs Fed a High-Fat and High-Cholesterol Diet
Int. J. Mol. Sci. 2016, 17(12), 2125; doi:10.3390/ijms17122125
Received: 12 October 2016 / Revised: 8 December 2016 / Accepted: 12 December 2016 / Published: 16 December 2016
PDF Full-text (4152 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Testosterone deficiency causes fat deposition, particularly in visceral fat, and its replacement might reverse fat accumulation, however, the underlying mechanisms of such processes under diet-induced adiposity are largely unknown. To gain insights into the genome-wide role of androgen on visceral adipose tissue (VAT),
[...] Read more.
Testosterone deficiency causes fat deposition, particularly in visceral fat, and its replacement might reverse fat accumulation, however, the underlying mechanisms of such processes under diet-induced adiposity are largely unknown. To gain insights into the genome-wide role of androgen on visceral adipose tissue (VAT), RNA-Seq was used to investigate testosterone deficiency induced changes of VAT in miniature pigs fed a high-fat and high-cholesterol (HFC) diet among intact male pigs (IM), castrated male pigs (CM), and castrated male pigs with testosterone replacement (CMT) treatments. The results showed that testosterone deficiency significantly increased VAT deposition and serum leptin concentrations. Moreover, a total of 1732 differentially expressed genes (DEGs) were identified between any two groups. Compared with gene expression profiles in IM and CMT pigs, upregulated genes in CM pigs, i.e., LOC100520753 (CD68), LCN2, EMR1, S100A9, NCF1 (p47phox), and LEP, were mainly involved in inflammatory response, oxidation-reduction process, and lipid metabolic process, while downregulated genes in CM pigs, i.e., ABHD5, SPP1, and GAS6, were focused on cell differentiation and cell adhesion. Taken together, our study demonstrates that testosterone deficiency alters the expression of numerous genes involved in key biological processes of VAT accumulation under HFC diet and provides a novel genome-wide view on the role of androgen on VAT deposition under HFC diet, thus improving our understanding of the molecular mechanisms involved in VAT changes induced by testosterone deficiency. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Figures

Figure 1

Open AccessArticle Characterization of the Microenvironment of Nodular Lymphocyte Predominant Hodgkin Lymphoma
Int. J. Mol. Sci. 2016, 17(12), 2127; doi:10.3390/ijms17122127
Received: 9 November 2016 / Revised: 9 December 2016 / Accepted: 12 December 2016 / Published: 16 December 2016
PDF Full-text (1117 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) is characterized by a low percentage of neoplastic lymphocyte predominant (LP) cells in a background of lymphocytes. The goal of this study is to characterize the microenvironment in NLPHL. Ten NLPHL cases and seven reactive lymph nodes
[...] Read more.
Nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) is characterized by a low percentage of neoplastic lymphocyte predominant (LP) cells in a background of lymphocytes. The goal of this study is to characterize the microenvironment in NLPHL. Ten NLPHL cases and seven reactive lymph nodes (RLN) were analyzed by flow cytometry for the main immune cells and multiple specific subpopulations. To discriminate between cells in or outside the tumor cell area, we used CD26. We observed significantly lower levels of CD20+ B-cells and CD56+ NK cells and higher levels of CD4+ T-cells in NLPHL in comparison to RLN. In the subpopulations, we observed increased numbers of PD-1+CD4+ T follicular helper cells (TFH), CD69+CD4+ and CD69+CD8+ T-cells and CCR7-CD45RA-CD4+ effector memory T-cells, while FoxP3+CD4+ T regulatory cells (Tregs) and CCR7-CD45RA+ terminally differentiated CD4+ T-cells were decreased in NLPHL compared to RLN. CD69+ cells were increased in the tumor cell area in CD4+ and CD8+ T-cells, while FoxP3+CD25+CD4+ Tregs and CD25+CD8+ T-cells were significantly increased outside the tumor area. Thus, we show a markedly altered microenvironment in NLPHL, with lower numbers of NK cells and Tregs. PD-1+CD4+ and CD69+ T-cells were located inside, and Tregs and CD25+CD8+ cells outside the tumor cell area. Full article
(This article belongs to the Special Issue Tumor Microenvironment and Metabolism)
Figures

Figure 1

Open AccessArticle Metabolomic Approaches to Explore Chemical Diversity of Human Breast-Milk, Formula Milk and Bovine Milk
Int. J. Mol. Sci. 2016, 17(12), 2128; doi:10.3390/ijms17122128
Received: 24 October 2016 / Revised: 28 November 2016 / Accepted: 11 December 2016 / Published: 17 December 2016
Cited by 4 | PDF Full-text (8570 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Although many studies have been conducted on the components present in human breast milk (HM), research on the differences of chemical metabolites between HM, bovine milk (BM) and formula milk (FM) is limited. This study was to explore the chemical diversity of HM,
[...] Read more.
Although many studies have been conducted on the components present in human breast milk (HM), research on the differences of chemical metabolites between HM, bovine milk (BM) and formula milk (FM) is limited. This study was to explore the chemical diversity of HM, BM and FM by metabolomic approaches. GC-TOFMS and UPLC-QTOFMS were applied to investigate the metabolic compositions in 30 HM samples, 20 FM samples and 20 BM samples. Metabolite profiling identified that most of the non-esterified fatty acids, which reflected the hydrolysis of triglycerides, were much more abundant in HM than those in FM and BM, except for palmitic acid and stearic acid. The levels of tricarboxylic acid (TCA) intermediates were much higher in FM and BM than those in HM. Each type of milk also showed its unique composition of free amino acids and free carbohydrates. In conclusion, higher levels of non-esterified saturated fatty acids with aliphatic tails <16 carbons, monounsaturated fatty acids and polyunsaturated fatty acids and lower levels of TCA intermediates are characteristic of HM, as compared with FM and BM. The content of non-esterified fatty acids may reflect the hydrolysis of triglycerides in different milk types. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Figures

Figure 1

Open AccessArticle Downregulation of Homer1b/c in SOD1 G93A Models of ALS: A Novel Mechanism of Neuroprotective Effect of Lithium and Valproic Acid
Int. J. Mol. Sci. 2016, 17(12), 2129; doi:10.3390/ijms17122129
Received: 25 July 2016 / Revised: 5 December 2016 / Accepted: 9 December 2016 / Published: 17 December 2016
PDF Full-text (2035 KB) | HTML Full-text | XML Full-text
Abstract
Background: Mutations in the Cu/Zn superoxide dismutase (SOD1) gene have been linked to amyotrophic lateral sclerosis (ALS). However, the molecular mechanisms have not been elucidated yet. Homer family protein Homer1b/c is expressed widely in the central nervous system and plays important
[...] Read more.
Background: Mutations in the Cu/Zn superoxide dismutase (SOD1) gene have been linked to amyotrophic lateral sclerosis (ALS). However, the molecular mechanisms have not been elucidated yet. Homer family protein Homer1b/c is expressed widely in the central nervous system and plays important roles in neurological diseases. In this study, we explored whether Homer1b/c was involved in SOD1 mutation-linked ALS. Results: In vitro studies showed that the SOD1 G93A mutation induced an increase of Homer1b/c expression at both the mRNA and protein levels in NSC34 cells. Knockdown of Homer1b/c expression using its short interfering RNA (siRNA) (si-Homer1) protected SOD1 G93A NSC34 cells from apoptosis. The expressions of Homer1b/c and apoptosis-related protein Bax were also suppressed, while Bcl-2 was increased by lithium and valproic acid (VPA) in SOD1 G93A NSC34 cells. In vivo, both the mRNA and protein levels of Homer1b/c were increased significantly in the lumbar spinal cord in SOD1 G93A transgenic mice compared with wild type (WT) mice. Moreover, lithium and VPA treatment suppressed the expression of Homer1b/c in SOD1 G93A mice. Conclusion: The suppression of SOD1 G93A mutation-induced Homer1b/c upregulation protected ALS against neuronal apoptosis, which is a novel mechanism of the neuroprotective effect of lithium and VPA. This study provides new insights into pathogenesis and treatment of ALS. Full article
(This article belongs to the Special Issue Neuroprotective Strategies 2016)
Figures

Figure 1

Open AccessArticle Identification of Heat Shock Transcription Factor Genes Involved in Thermotolerance of Octoploid Cultivated Strawberry
Int. J. Mol. Sci. 2016, 17(12), 2130; doi:10.3390/ijms17122130
Received: 2 September 2016 / Revised: 12 December 2016 / Accepted: 13 December 2016 / Published: 17 December 2016
Cited by 1 | PDF Full-text (6077 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Heat shock transcription factors (HSFs) are mainly involved in the activation of genes in response to heat stress as well as other abiotic and biotic stresses. The growth, development, reproduction, and yield of strawberry are strongly limited by extreme temperatures and droughts. In
[...] Read more.
Heat shock transcription factors (HSFs) are mainly involved in the activation of genes in response to heat stress as well as other abiotic and biotic stresses. The growth, development, reproduction, and yield of strawberry are strongly limited by extreme temperatures and droughts. In this study, we used Illumina sequencing and obtained transcriptome data set from Fragaria × ananassa Duchessne cv. Toyonoka. Six contigs and three unigenes were confirmed to encode HSF proteins (FaTHSFs). Subsequently, we characterized the biological functions of two particularly selected unigenes, FaTHSFA2a and FaTHSFB1a, which were classified into class A2 and B HSFs, respectively. Expression assays revealed that FaTHSFA2a and FaTHSFB1a expression was induced by heat shock and correlated well with elevated ambient temperatures. Overexpression of FaTHSFA2a and FaTHSFB1a resulted in the activation of their downstream stress-associated genes, and notably enhanced the thermotolerance of transgenic Arabidopsis plants. Besides, both FaTHSFA2a and FaTHSFB1a fusion proteins localized in the nucleus, indicating their similar subcellular distributions as transcription factors. Our yeast one-hybrid assay suggested that FaTHSFA2a has trans-activation activity, whereas FaTHSFB1a expresses trans-repression function. Altogether, our annotated transcriptome sequences provide a beneficial resource for identifying most genes expressed in octoploid strawberry. Furthermore, HSF studies revealed the possible insights into the molecular mechanisms of thermotolerance, thus rendering valuable molecular breeding to improve the tolerance of strawberry in response to high-temperature stress. Full article
(This article belongs to the Section Molecular Botany)
Figures

Figure 1

Open AccessArticle Circulating Cell-Free DNA Levels Could Predict Oncological Outcomes of Patients Undergoing Esophagectomy for Esophageal Squamous Cell Carcinoma
Int. J. Mol. Sci. 2016, 17(12), 2131; doi:10.3390/ijms17122131
Received: 19 October 2016 / Revised: 5 December 2016 / Accepted: 14 December 2016 / Published: 17 December 2016
PDF Full-text (751 KB) | HTML Full-text | XML Full-text
Abstract
Circulating cell-free DNA (cfDNA) is a potential biomarker for cancer progression but its role is unclear in patients with esophageal squamous cell carcinoma (ESCC) after esophagectomy. We investigated relationships between plasma cfDNA levels and clinicopathological parameters in ESCC patients. Eighty-one ESCC patients who
[...] Read more.
Circulating cell-free DNA (cfDNA) is a potential biomarker for cancer progression but its role is unclear in patients with esophageal squamous cell carcinoma (ESCC) after esophagectomy. We investigated relationships between plasma cfDNA levels and clinicopathological parameters in ESCC patients. Eighty-one ESCC patients who received esophagectomy were enrolled. Plasma samples from these patients and 95 normal controls were collected. DNA copy numbers were measured by real-time quantitative PCR. Subjects were divided into two groups by cfDNA level. Clinicopathological data were collected retrospectively and relationships between cfDNA levels and clinical parameters were evaluated. The cfDNA level in normal controls ranged from 0–4157 copies/mL. The cfDNA level of 96.3% ESCC patients was higher than the cutoff value (2447.26 copies/mL) with a specificity of 94.1%. The mean cfDNA concentration was 5918 copies/mL in lower and 53,311 copies/mL in higher cfDNA groups. No correlations were found between clinicopathological factors and cfDNA levels except for lymphovascular invasion. Higher cfDNA levels were associated with tumor relapse (p = 0.018). Five-year disease-free survival (DFS) and overall survival (OS) rates were 34.7% and 33.8%, respectively. Patients with higher cfDNA levels had poorer DFS (p = 0.013). Patients with higher cfDNA levels had poorer OS, but not significantly (p = 0.164). Circulating cfDNA could be a biomarker for tumor relapse of ESCC with high sensitivity and specificity. Higher cfDNA levels were associated with tumor relapse and shorter DFS after esophagectomy in ESCC patients. Full article
Figures

Figure 1

Open AccessArticle EGFR and KRAS Mutations Predict the Incidence and Outcome of Brain Metastases in Non-Small Cell Lung Cancer
Int. J. Mol. Sci. 2016, 17(12), 2132; doi:10.3390/ijms17122132
Received: 28 September 2016 / Revised: 6 December 2016 / Accepted: 7 December 2016 / Published: 18 December 2016
PDF Full-text (234 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Background: Lung cancer is the leading cause of brain metastases (BM). The identification of driver oncogenes and matched targeted therapies has improved outcome in non-small cell lung cancer (NSCLC) patients; however, a better understanding of BM molecular biology is needed to further drive
[...] Read more.
Background: Lung cancer is the leading cause of brain metastases (BM). The identification of driver oncogenes and matched targeted therapies has improved outcome in non-small cell lung cancer (NSCLC) patients; however, a better understanding of BM molecular biology is needed to further drive the process in this field. Methods: In this observational study, stage IV NSCLC patients tested for EGFR and KRAS mutations were selected, and BM incidence, recurrence and patients’ outcome were assessed. Results: A total of 144 patients (142 Caucasian and two Asian) were selected, including 11.27% with EGFR-mutant and 33.10% with KRAS-mutant tumors, and 57.04% patients had developed BM. BM incidence was more frequent in patients with EGFR mutation according to multivariate analyses (MVA) (Odds ratio OR = 8.745 [1.743–43.881], p = 0.008). Among patients with treated BM, recurrence after local treatment was less frequent in patients with KRAS mutation (OR = 0.234 [0.078–0.699], p = 0.009). Among patients with untreated BM, overall survival (OS) was shorter for patients with KRAS mutation according to univariate analysis (OR = 7.130 [1.240–41.012], p = 0.028), but not MVA. Conclusions: EGFR and KRAS mutations have a predictive role on BM incidence, recurrence and outcome in Caucasian NSCLC patients. These results may impact the routine management of disease in these patients. Further studies are required to assess the influence of other biomarkers on NSCLC BM. Full article
(This article belongs to the Special Issue Brain Metastasis 2016)
Figures

Open AccessArticle Modulation of GLO1 Expression Affects Malignant Properties of Cells
Int. J. Mol. Sci. 2016, 17(12), 2133; doi:10.3390/ijms17122133
Received: 31 August 2016 / Revised: 8 December 2016 / Accepted: 12 December 2016 / Published: 18 December 2016
Cited by 2 | PDF Full-text (2256 KB) | HTML Full-text | XML Full-text
Abstract
The energy metabolism of most tumor cells relies on aerobic glycolysis (Warburg effect) characterized by an increased glycolytic flux that is accompanied by the increased formation of the cytotoxic metabolite methylglyoxal (MGO). Consequently, the rate of detoxification of this reactive glycolytic byproduct needs
[...] Read more.
The energy metabolism of most tumor cells relies on aerobic glycolysis (Warburg effect) characterized by an increased glycolytic flux that is accompanied by the increased formation of the cytotoxic metabolite methylglyoxal (MGO). Consequently, the rate of detoxification of this reactive glycolytic byproduct needs to be increased in order to prevent deleterious effects to the cells. This is brought about by an increased expression of glyoxalase 1 (GLO1) that is the rate-limiting enzyme of the MGO-detoxifying glyoxalase system. Here, we overexpressed GLO1 in HEK 293 cells and silenced it in MCF-7 cells using shRNA. Tumor-related properties of wild type and transformed cells were compared and key glycolytic enzyme activities assessed. Furthermore, the cells were subjected to hypoxic conditions to analyze the impact on cell proliferation and enzyme activities. Our results demonstrate that knockdown of GLO1 in the cancer cells significantly reduced tumor-associated properties such as migration and proliferation, whereas no functional alterations where found by overexpression of GLO1 in HEK 293 cells. In contrast, hypoxia caused inhibition of cell growth of all cells except of those overexpressing GLO1. Altogether, we conclude that GLO1 on one hand is crucial to maintaining tumor characteristics of malignant cells, and, on the other hand, supports malignant transformation of cells in a hypoxic environment when overexpressed. Full article
(This article belongs to the Special Issue Glyoxalase System)
Figures

Figure 1a

Open AccessArticle Neurotoxicity of a Biopesticide Analog on Zebrafish Larvae at Nanomolar Concentrations
Int. J. Mol. Sci. 2016, 17(12), 2137; doi:10.3390/ijms17122137
Received: 6 October 2016 / Revised: 7 December 2016 / Accepted: 10 December 2016 / Published: 19 December 2016
PDF Full-text (4406 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Despite the ever-increasing role of pesticides in modern agriculture, their deleterious effects are still underexplored. Here we examine the effect of A6, a pesticide derived from the naturally-occurring α-terthienyl, and structurally related to the endocrine disrupting pesticides anilinopyrimidines, on living zebrafish larvae. We
[...] Read more.
Despite the ever-increasing role of pesticides in modern agriculture, their deleterious effects are still underexplored. Here we examine the effect of A6, a pesticide derived from the naturally-occurring α-terthienyl, and structurally related to the endocrine disrupting pesticides anilinopyrimidines, on living zebrafish larvae. We show that both A6 and an anilinopyrimidine, cyprodinyl, decrease larval survival and affect central neurons at micromolar concentrations. Focusing on a superficial and easily observable sensory system, the lateral line system, we found that defects in axonal and sensory cell regeneration can be observed at much lower doses, in the nanomolar range. We also show that A6 accumulates preferentially in lateral line neurons and hair cells. We examined whether A6 affects the expression of putative target genes, and found that genes involved in apoptosis/cell proliferation are down-regulated, as well as genes reflecting estrogen receptor activation, consistent with previous reports that anilinopyrimidines act as endocrine disruptors. On the other hand, canonical targets of endocrine signaling are not affected, suggesting that the neurotoxic effect of A6 may be due to the binding of this compound to a recently identified, neuron-specific estrogen receptor. Full article
(This article belongs to the Special Issue Zebrafish: A Model for Toxicological Research)
Figures

Figure 1

Open AccessArticle Triptolide Combined with Radiotherapy for the Treatment of Nasopharyngeal Carcinoma via NF-κB-Related Mechanism
Int. J. Mol. Sci. 2016, 17(12), 2139; doi:10.3390/ijms17122139
Received: 13 October 2016 / Revised: 12 December 2016 / Accepted: 15 December 2016 / Published: 19 December 2016
Cited by 1 | PDF Full-text (12552 KB) | HTML Full-text | XML Full-text
Abstract
Advanced nasopharyngeal carcinoma (NPC) has a poor prognosis because of the lack of an effective treatment. Here we explored the efficiency and the molecular mechanisms of combined treatment with triptolide and ionizing radiation for treating NPC. Human nasopharyngeal carcinoma (CNE) cells were treated
[...] Read more.
Advanced nasopharyngeal carcinoma (NPC) has a poor prognosis because of the lack of an effective treatment. Here we explored the efficiency and the molecular mechanisms of combined treatment with triptolide and ionizing radiation for treating NPC. Human nasopharyngeal carcinoma (CNE) cells were treated with triptolide, ionizing radiation, or triptolide plus ionizing radiation in vitro. Tumor potency was examined in an in vivo CNE cell xenograft mouse model, which was treated as above. Our results demonstrated that triptolide caused a significant reduction in cell growth and colony number, and induced a marked apoptosis that was further enhanced with increasing doses of ionizing radiation. Combination treatment synergistically reduced tumor weight and volume without obvious toxicity. Western blot analysis in vitro and in vivo showed that triptolide induced apoptotic protein Bax expression and inhibited phosph-NF-κB p65, Bcl-2 and VEGF proteins without affecting other NF-κB related protein expression. In conclusion, our findings revealed that triptolide plus ionizing radiation had synergistic anti-tumor and anti-angiogenesis effects in NPC via down-regulating NF-κB p65 phosphorylation. The combination therapy may provide novel mechanism insights into inhibit NPC. Full article
(This article belongs to the Special Issue Translational Molecular Medicine & Molecular Drug Discovery)
Figures

Figure 1

Open AccessArticle Prediction of Hepatocellular Carcinoma Development after Hepatitis C Virus Eradication Using Serum Wisteria floribunda Agglutinin-Positive Mac-2-Binding Protein
Int. J. Mol. Sci. 2016, 17(12), 2143; doi:10.3390/ijms17122143
Received: 12 October 2016 / Revised: 30 November 2016 / Accepted: 14 December 2016 / Published: 20 December 2016
PDF Full-text (1589 KB) | HTML Full-text | XML Full-text
Abstract
We aimed to clarify the association between a novel serum fibrosis marker, Wisteria floribunda agglutinin-positive Mac-2-binding protein (WFA+-M2BP), and hepatocellular carcinoma (HCC) development in 355 patients with chronic hepatitis C who achieved sustained virologic response (SVR) through interferon-based antiviral therapy. Pretreatment
[...] Read more.
We aimed to clarify the association between a novel serum fibrosis marker, Wisteria floribunda agglutinin-positive Mac-2-binding protein (WFA+-M2BP), and hepatocellular carcinoma (HCC) development in 355 patients with chronic hepatitis C who achieved sustained virologic response (SVR) through interferon-based antiviral therapy. Pretreatment serum WFA+-M2BP levels were quantified and the hazard ratios (HRs) for HCC development were retrospectively analyzed by Cox proportional hazard analysis. During the median follow-up time of 2.9 years, 12 patients developed HCC. Multivariate analysis demonstrated that high serum WFA+-M2BP (≥2.80 cut off index (COI), HR = 15.20, p = 0.013) and high fibrosis-4 (FIB-4) index (≥3.7, HR = 5.62, p = 0.034) were independent risk factors for HCC development. The three- and five-year cumulative incidence of HCC in patients with low WFA+-M2BP were 0.4% and 0.4%, respectively, whereas those of patients with high WFA+-M2BP were 7.7% and 17.6%, respectively (p < 0.001). In addition, combination of serum WFA+-M2BP and FIB-4 indices successfully stratified the risk of HCC: the five-year cumulative incidences of HCC were 26.9%, 6.8%, and 0.0% in patients with both, either, and none of these risk factors, respectively (p < 0.001). In conclusion, pretreatment serum WFA+-M2BP level is a useful predictor for HCC development after achieving SVR. Full article
(This article belongs to the Special Issue Hepatitis Virus Infection and Research)
Figures

Figure 1

Open AccessArticle A Novel Pathogenic BRCA1 Splicing Variant Produces Partial Intron Retention in the Mature Messenger RNA
Int. J. Mol. Sci. 2016, 17(12), 2145; doi:10.3390/ijms17122145
Received: 28 October 2016 / Revised: 30 November 2016 / Accepted: 14 December 2016 / Published: 21 December 2016
PDF Full-text (2586 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
About 10% of all breast cancers arise from hereditary mutations that increase the risk of breast and ovarian cancers; and about 25% of these are associated with the BRCA1 or BRCA2 genes. The identification of BRCA1/BRCA2 mutations can enable physicians to
[...] Read more.
About 10% of all breast cancers arise from hereditary mutations that increase the risk of breast and ovarian cancers; and about 25% of these are associated with the BRCA1 or BRCA2 genes. The identification of BRCA1/BRCA2 mutations can enable physicians to better tailor the clinical management of patients; and to initiate preventive measures in healthy carriers. The pathophysiological significance of newly identified variants poses challenges for genetic counseling. We characterized a new BRCA1 variant discovered in a breast cancer patient during BRCA1/2 screening by next-generation sequencing. Bioinformatic predictions; indicating that the variant is probably pathogenetic; were verified using retro-transcription of the patient’s RNA followed by PCR amplifications performed on the resulting cDNA. The variant causes the loss of a canonic donor splice site at position +2 in BRCA1 intron 21; and consequently the partial retention of 156 bp of intron 21 in the patient’s transcript; which demonstrates that this novel BRCA1 mutation plays a pathogenetic role in breast cancer. These findings enabled us to initiate appropriate counseling and to tailor the clinical management of this family. Lastly; these data reinforce the importance of studying the effects of sequence variants at the RNA level to verify their potential role in disease onset. Full article
(This article belongs to the Special Issue Next-Generation Sequencing for Clinical Application)
Figures

Figure 1

Open AccessArticle Genetic Analysis of Human Chymotrypsin-Like Elastases 3A and 3B (CELA3A and CELA3B) to Assess the Role of Complex Formation between Proelastases and Procarboxypeptidases in Chronic Pancreatitis
Int. J. Mol. Sci. 2016, 17(12), 2148; doi:10.3390/ijms17122148
Received: 7 November 2016 / Revised: 14 December 2016 / Accepted: 14 December 2016 / Published: 20 December 2016
PDF Full-text (1057 KB) | HTML Full-text | XML Full-text
Abstract
Human chymotrypsin-like elastases 3A and 3B (CELA3A and CELA3B) are the products of gene duplication and share 92% identity in their primary structure. CELA3B forms stable complexes with procarboxypeptidases A1 and A2 whereas CELA3A binds poorly due to the evolutionary substitution of Ala241
[...] Read more.
Human chymotrypsin-like elastases 3A and 3B (CELA3A and CELA3B) are the products of gene duplication and share 92% identity in their primary structure. CELA3B forms stable complexes with procarboxypeptidases A1 and A2 whereas CELA3A binds poorly due to the evolutionary substitution of Ala241 with Gly in exon 7. Since position 241 is polymorphic both in CELA3A (p.G241A) and CELA3B (p.A241G), genetic analysis can directly assess whether individual variability in complex formation might alter risk for chronic pancreatitis. Here we sequenced exon 7 of CELA3A and CELA3B in a cohort of 225 subjects with chronic pancreatitis (120 alcoholic and 105 non-alcoholic) and 300 controls of Hungarian origin. Allele frequencies were 2.5% for CELA3A p.G241A and 1.5% for CELA3B p.A241G in controls, and no significant difference was observed in patients. Additionally, we identified six synonymous variants, two missense variants, a gene conversion event and ten variants in the flanking intronic regions. Variant c.643-7G>T in CELA3B showed an association with alcoholic chronic pancreatitis with a small protective effect (OR = 0.59, 95% CI = 0.39–0.89, p = 0.01). Functional analysis of missense variants revealed no major defects in secretion or activity. We conclude that variants affecting amino-acid position 241 in CELA3A and CELA3B are not associated with chronic pancreatitis, indicating that changes in complex formation between proelastases and procarboxypeptidases do not alter pancreatitis risk. Full article
(This article belongs to the Special Issue Pancreatic Disorders)
Figures

Figure 1

Open AccessArticle Dermal Delivery of Constructs Encoding Cre Recombinase to Induce Skin Tumors in PtenLoxP/LoxP;BrafCA/+ Mice
Int. J. Mol. Sci. 2016, 17(12), 2149; doi:10.3390/ijms17122149
Received: 28 October 2016 / Revised: 28 November 2016 / Accepted: 6 December 2016 / Published: 20 December 2016
PDF Full-text (1631 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Current genetically-engineered mouse melanoma models are often based on Tyr::CreERT2-controlled MAPK pathway activation by the BRAFV600E mutation and PI3K pathway activation by loss of PTEN. The major drawback of these models is the occurrence of spontaneous tumors caused by leakiness
[...] Read more.
Current genetically-engineered mouse melanoma models are often based on Tyr::CreERT2-controlled MAPK pathway activation by the BRAFV600E mutation and PI3K pathway activation by loss of PTEN. The major drawback of these models is the occurrence of spontaneous tumors caused by leakiness of the Tyr::CreERT2 system, hampering long-term experiments. To address this problem, we investigated several approaches to optimally provide local delivery of Cre recombinase, including injection of lentiviral particles, DNA tattoo administration and particle-mediated gene transfer, to induce melanomas in PtenLoxP/LoxP;BrafCA/+ mice lacking the Tyr::CreERT2 allele. We found that dermal delivery of the Cre recombinase gene under the control of a non-specific CAG promoter induced the formation of melanomas, but also keratoacanthoma and squamous cell carcinomas. Delivery of Cre recombinase DNA under the control of melanocyte-specific promoters in PtenLoxP/LoxP;BrafCA/+ mice resulted in sole melanoma induction. The growth rate and histological features of the induced tumors were similar to 4-hydroxytamoxifen-induced tumors in Tyr::CreERT2;PtenLoxP/LoxP;BrafCA/+ mice, while the onset of spontaneous tumors was prevented completely. These novel induction methods will allow long-term experiments in mouse models of skin malignancies. Full article
(This article belongs to the Special Issue Animal Models of Melanoma)
Figures

Figure 1

Open AccessArticle Neuropeptide Y1 Receptor Regulates Glucocorticoid-Induced Inhibition of Osteoblast Differentiation in Murine MC3T3-E1 Cells via ERK Signaling
Int. J. Mol. Sci. 2016, 17(12), 2150; doi:10.3390/ijms17122150
Received: 26 October 2016 / Revised: 5 December 2016 / Accepted: 12 December 2016 / Published: 21 December 2016
PDF Full-text (3296 KB) | HTML Full-text | XML Full-text
Abstract
High dose glucocorticoid (GC) administration impairs the viability and function of osteoblasts, thus causing osteoporosis and osteonecrosis. Neuropeptide Y1 receptor (Y1 receptor) is expressed in bone tissues and cells, and regulates bone remodeling. However, the role of Y1 receptor in glucocorticoid-induced inhibition of
[...] Read more.
High dose glucocorticoid (GC) administration impairs the viability and function of osteoblasts, thus causing osteoporosis and osteonecrosis. Neuropeptide Y1 receptor (Y1 receptor) is expressed in bone tissues and cells, and regulates bone remodeling. However, the role of Y1 receptor in glucocorticoid-induced inhibition of osteoblast differentiation remains unknown. In the present study, osteoblastic cell line MC3T3-E1 cultured in osteogenic differentiation medium was treated with or without of 10−7 M dexamethasone (Dex), Y1 receptor shRNA interference, Y1 receptor agonist [Leu31, Pro34]-NPY, and antagonist BIBP3226. Cell proliferation and apoptosis were assessed by cell counting kit-8 (CCK-8) assay and cleaved caspase expression, respectively. Osteoblast differentiation was evaluated by Alizarin Red S staining and osteogenic marker gene expressions. Protein expression was detected by Western blot analysis. Dex upregulated the expression of Y1 receptor in MC3T3-E1 cells associated with reduced osteogenic gene expressions and mineralization. Blockade of Y1 receptor by shRNA transfection and BIBP3226 significantly attenuated the inhibitory effects of Dex on osteoblastic activity. Y1 receptor signaling modulated the activation of extracellular signal-regulated kinases (ERK) as well as the expressions of osteogenic genes. Y1 receptor agonist inhibited ERK phosphorylation and osteoblast differentiation, while Y1 receptor blockade exhibited the opposite effects. Activation of ERK signaling by constitutive active mutant of MEK1 (caMEK) abolished Y1 receptor-mediated Dex inhibition of osteoblast differentiation in MC3T3-E1 cells. Taken together, Y1 receptor regulates Dex-induced inhibition of osteoblast differentiation in murine MC3T3-E1 cells via ERK signaling. This study provides a novel role of Y1 receptor in the process of GC-induced suppression in osteoblast survival and differentiation. Full article
(This article belongs to the Special Issue Advances in Bone and Cartilage Research)
Figures

Figure 1

Open AccessArticle Synthesis, Bioevaluation and Molecular Dynamic Simulation Studies of Dexibuprofen–Antioxidant Mutual Prodrugs
Int. J. Mol. Sci. 2016, 17(12), 2151; doi:10.3390/ijms17122151
Received: 1 November 2016 / Revised: 14 December 2016 / Accepted: 14 December 2016 / Published: 21 December 2016
PDF Full-text (4909 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Dexibuprofen–antioxidant conjugates were synthesized with the aim to reduce its gastrointestinal effects. The esters analogs of dexibuprofen 5ac were obtained by reacting its –COOH group with chloroacetyl derivatives 3ac. The in vitro hydrolysis data confirmed that synthesized prodrugs
[...] Read more.
Dexibuprofen–antioxidant conjugates were synthesized with the aim to reduce its gastrointestinal effects. The esters analogs of dexibuprofen 5ac were obtained by reacting its –COOH group with chloroacetyl derivatives 3ac. The in vitro hydrolysis data confirmed that synthesized prodrugs 5ac were stable in stomach while undergo significant hydrolysis in 80% human plasma and thus release free dexibuprofen. The minimum reversion was observed at pH 1.2 suggesting that prodrugs are less irritating to stomach than dexibuprofen. The anti-inflammatory activity of 5c (p < 0.001) is more significant than the parent dexibuprofen. The prodrug 5c produced maximum inhibition (42.06%) of paw-edema against egg-albumin induced inflammation in mice. Anti-pyretic effects in mice indicated that prodrugs 5a and 5b showed significant inhibition of pyrexia (p < 0.001). The analgesic activity of 5a is more pronounced compared to other synthesized prodrugs. The mean percent inhibition indicated that the prodrug 5a was more active in decreasing the number of writhes induced by acetic acid than standard dexibuprofen. The ulcerogenic activity results assured that synthesized prodrugs produce less gastrointestinal adverse effects than dexibuprofen. The ex vivo antiplatelet aggregation activity results also confirmed that synthesized prodrugs are less irritant to gastrointestinal mucosa than the parent dexibuprofen. Molecular docking analysis showed that the prodrugs 5ac interacts with the residues present in active binding sites of target protein. The stability of drug–target complexes is verified by molecular dynamic simulation study. It exhibited that synthesized prodrugs formed stable complexes with the COX-2 protein thus support our wet lab results. It is therefore concluded that the synthesized prodrugs have promising pharmacological activities with reduced gastrointestinal adverse effects than the parent drug. Full article
Figures

Figure 1

Open AccessArticle Transcriptional Response of Silkworm (Bombyx mori) Eggs to O2 or HCl Treatment
Int. J. Mol. Sci. 2016, 17(12), 1838; doi:10.3390/ijms17121838
Received: 9 September 2016 / Revised: 19 October 2016 / Accepted: 1 November 2016 / Published: 7 December 2016
PDF Full-text (5449 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Diapause is a common biological phenomenon that occurs in many organisms, including fish, insects, and nematodes. In the silkworm (Bombyx mori), diapause generally occurs in the egg stage. Treatment with O2, HCl, or other compounds can prevent egg diapause.
[...] Read more.
Diapause is a common biological phenomenon that occurs in many organisms, including fish, insects, and nematodes. In the silkworm (Bombyx mori), diapause generally occurs in the egg stage. Treatment with O2, HCl, or other compounds can prevent egg diapause. Here, we characterized the transcriptomic responses of newly laid eggs treated with O2 or HCl. Digital gene expression analysis showed that 610 genes in O2-treated eggs and 656 in HCl-treated eggs were differentially expressed. Of these, 343 genes were differentially expressed in both treatments. In addition to trehalases, sorbic acid dehydrogenases, and some enzymes involved in the carbohydrate metabolism, we also identified heat shock proteins, cytochrome P450, and GADD45, which are related to stress tolerance. Gene ontology enrichment analysis showed differentially expressed genes in O2-treated eggs were involved in oxidoreductase activity as well as in binding, catalytic, and metabolic processes. The Kyoto Encyclopedia of Genes and Genomes analysis showed that the pathways for ribosome biogenesis, spliceosome, and circadian rhythm were significantly enriched in HCl-treated eggs. The reliability of the data was confirmed by qRT-PCR analysis. Our results improved the understanding of the mechanism of diapause blocking in silkworm eggs treated with O2 or HCl and identified novel molecular targets for future studies. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Figures

Open AccessArticle A Jacalin-Related Lectin Regulated the Formation of Aerial Mycelium and Fruiting Body in Flammulina velutipes
Int. J. Mol. Sci. 2016, 17(12), 1884; doi:10.3390/ijms17121884
Received: 27 September 2016 / Revised: 2 November 2016 / Accepted: 8 November 2016 / Published: 28 November 2016
PDF Full-text (2558 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Flammulina velutipes, one of the most popular mushroom species in the world, has been recognized as a useful model system to study the biochemical and physiological aspects of the formation and elongation of fruit body. However, few reports have been published on
[...] Read more.
Flammulina velutipes, one of the most popular mushroom species in the world, has been recognized as a useful model system to study the biochemical and physiological aspects of the formation and elongation of fruit body. However, few reports have been published on the regulation of fruiting body formation in F. velutipes at the molecular level. In this study, a jacalin-related lectin gene from F. velutipes was characterized. The phylogenetic tree revealed that Fv-JRL1 clustered with other basidiomycete jacalin-like lectins. Moreover, the transcriptional pattern of the Fv-JRL1 gene in different developmental stages of F. velutipes implied that Fv-JRL1 could be important for formation of fruit body. Additionally, RNA interference (RNAi) and overexpression analyses provided powerful evidence that the lectin gene Fv-JRL1 from F. velutipes plays important roles in fruiting body formation. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Figures

Open AccessArticle Rapid, Sensitive Detection of Bartonella quintana by Loop-Mediated Isothermal Amplification of the groEL Gene
Int. J. Mol. Sci. 2016, 17(12), 1902; doi:10.3390/ijms17121902
Received: 2 September 2016 / Revised: 8 November 2016 / Accepted: 10 November 2016 / Published: 1 December 2016
PDF Full-text (7469 KB) | HTML Full-text | XML Full-text
Abstract
Trench fever, caused by Bartonella quintana, is recognized as a re-emerging and neglected disease. Rapid and sensitive detection approaches are urgently required to monitor and help control B. quintana infections. Here, loop-mediated isothermal amplification (LAMP), which amplifies target DNA at a fixed
[...] Read more.
Trench fever, caused by Bartonella quintana, is recognized as a re-emerging and neglected disease. Rapid and sensitive detection approaches are urgently required to monitor and help control B. quintana infections. Here, loop-mediated isothermal amplification (LAMP), which amplifies target DNA at a fixed temperature with high sensitivity, specificity and rapidity, was employed to detect B. quintana. Thirty-six strains, including 10 B. quintana, 13 other Bartonella spp., and 13 other common pathogens, were applied to verify and evaluate the LAMP assay. The specificity of the LAMP assay was 100%, and the limit of detection was 125 fg/reaction. The LAMP assay was compared with qPCR in the examination of 100 rhesus and 20 rhesus-feeder blood samples; the diagnostic accuracy was found to be 100% when LAMP was compared to qPCR, but the LAMP assay was significantly more sensitive (p < 0.05). Thus, LAMP methodology is a useful for diagnosis of trench fever in humans and primates, especially in low-resource settings, because of its rapid, sensitive detection that does not require sophisticated equipment. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Figures

Figure 1

Open AccessArticle Histone H3 Methyltransferase Suv39h1 Prevents Myogenic Terminal Differentiation by Repressing MEF2 Activity in Muscle Cells
Int. J. Mol. Sci. 2016, 17(12), 1908; doi:10.3390/ijms17121908
Received: 22 July 2016 / Revised: 5 November 2016 / Accepted: 8 November 2016 / Published: 28 November 2016
PDF Full-text (4302 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The myogenic regulatory factors (MRFs) and myocyte enhancer factor 2 (MEF2) transcription factors have been extensively studied as key transcription factors that regulate myogenic gene expression. However, few reports on the molecular mechanism that modulates chromatin remodeling during skeletal muscle differentiation are available.
[...] Read more.
The myogenic regulatory factors (MRFs) and myocyte enhancer factor 2 (MEF2) transcription factors have been extensively studied as key transcription factors that regulate myogenic gene expression. However, few reports on the molecular mechanism that modulates chromatin remodeling during skeletal muscle differentiation are available. We reported here that the expression of the H3-K9 methyltransferase Suv39h1 was decreased during myoblast differentiation. Ectopic expression of Suv39h1 could inhibit myoblast differentiation, increasing H3-K9 methylation levels, whereas knockdown of Suv39h1 stimulated myoblast differentiation. Furthermore, Suv39h1 interacted with MEF2C directly and inhibited MEF2 transcription activity in a dose-dependent manner. Together, our studies revealed a molecular mechanism wherein Suv39h1 modulated myogenic gene expression and activation during skeletal muscle differentiation. Full article
(This article belongs to the collection Advances in Proteomic Research)
Figures

Open AccessArticle Aspirin down Regulates Hepcidin by Inhibiting NF-κB and IL6/JAK2/STAT3 Pathways in BV-2 Microglial Cells Treated with Lipopolysaccharide