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Abstract: With the aim of reducing human exposure to Bisphenol A (BPA) derivatives in dentistry,
a fluorinated dimethacrylate monomer was synthesized to replace 2,2-bis[4-(2-hydroxy-3-methacryloy-
loxypropyl)-phenyl]propane (Bis-GMA) as the base monomer of dental resin. After mixing with
reactive diluent triethyleneglycol dimethacrylate (TEGDMA), fluorinated dimethacrylate (FDMA)/
TEGDMA was prepared and compared with Bis-GMA/TEGDMA in physicochemical properties,
such as double bond conversion (DC), volumetric shrinkage (VS), water sorption (WS) and solubility
(WSL), flexural strength (FS) and modulus (FM). The results showed that, when compared with
Bis-GMA based resin, FDMA-based resin had several advantages, such as higher DC, lower VS, lower
WS, and higher FS after water immersion. All of these revealed that FDMA had potential to be used
as a substitute for Bis-GMA. Of course, many more studies, such as biocompatibility testing, should
be undertaken to prove whether FDMA could be applied in clinic.
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1. Introduction

Since they were first applied in dentistry in the 1960s, light-curable methacrylate-based dental
composites have been widely used in clinic because of their advantages, such as excellent aesthetic
property and easy handling [1]. Usually, dental composites consist of a methacrylate-based resin
matrix, a photoinitiation system, and silane coupling agent-treated fillers [2]. The commonly used resin
matrix is a mixture of two or more dimethacrylate monomers chosen from 2,2-bis[4-(2-hydroxy-3-
methacryloy-loxypropyl)-phenyl]propane (Bis-GMA), ethoxylated Bis-GMA (Bis-EMA), 1,6-bis-[2-
methacryloloxyethoxycarbonyl-amino]-2,4,4-trimethyl-hexane (UDMA), and triethyleneglycol
dimethacrylate (TEGDMA) [2–4]. The performances of dental composites were strongly influenced by
the composition of the resin matrix [5–7].

Bis-GMA is a predominant monomer used in commercial dental composites, and the dominance
of Bis-GMA is attributed to its low volumetric shrinkage, high reactivity, good mechanical properties,
low volatility and diffusivity into tissues [2,8]. However, the estrogenic potential problem of
Bis-GMA-based dental composites has come out, because Bis-GMA was synthesized from bisphenol A
(BPA) and glycidyl methacrylate (GMA), and BPA is one kind of endocrine disrupting compound that
can cause several health problems, such as male reproductive abnormalities [9,10], spermatogenesis
impairment [11,12], and high probability of heart disease and diabetes [13,14]. Though it was reported
that Bis-GMA could not hydrolyze into BPA [15–17], BPA was still detected to be released out of
commercial Bis-GMA based dental composites [8,18]. With the aim of minimizing human exposure to
BPA, using methacrylate monomers that are not derived from BPA might be an effective way.
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In order to prepare Bis-GMA-free dental materials, UDMA, which is another typical
dimethacrylate monomer applied in dentistry, has been considered to be used to replace Bis-GMA as the
base resin of dental materials [19]. Unfortunately, compared with Bis-GMA-based resin, UDMA-based
resin had a critical shortcoming in its higher volumetric shrinkage [20]. The higher volumetric
shrinkage of UDMA-based resin might lead to a greater marginal gap between tooth and restorations,
resulting in a higher possibility of secondary caries [21]. Liang and coworkers synthesized a siloxane
containing BPA-free dimethacrylate monomer (SiMA) and applied it into dental resin. Compared to
Bis-GMA based resin, SiMA had advantages such as higher double bond conversion, lower volumetric
shrinkage, and lower water sorption, but SiMA-based resin had much lower flexural strength and
modulus [22,23].

Fluorocarbon-containing polymers were reported to have several advantages such as high
hydrophobicity, excellent resistance to a wide range of chemicals, potential resistance to microbial
attachment, and good biocompatibility [2]. In addition, several researches showed that mechanical
properties could be improved by introducing fluorine into a dental monomer [24–26]. All of these
properties make fluorinated polymers very attractive for dental application.

In this research, a new dimethacrylate monomer with fluorine (FDMA) was synthesized and
applied to dental resin with the aim of preparing Bis-GMA free dental resin. An unfilled dental resin
was prepared by mixing FDMA and TEGDMA together. Properties such as viscosity, double bond
conversion, volumetric shrinkage, water sorption and solubility, flexural strength and modulus of
FDM- based dental resin were investigated and compared with Bis-GMA-based dental resin.

2. Results

FT-IR and 1H-NMR spectra of FDMA are shown in Figures 1 and 2, respectively. Figures 1 and 2
revealed that the structure of synthesized monomer was the same as designed monomer.

The viscosity of each resin system was listed in Table 1; the FDMA-based resin system had higher
viscosity than the Bis-GMA-based resin system (p < 0.05). Figure 3 depicts the curves of irradiation
time versus the double conversion (DC) of each resin system, and DCs at the irradiation time of 60 s
were shown in Table 1. From Figure 3 and Table 1, it could be seen that the FDMA-based resin system
had a higher photopolymerization rate in the early stage of polymerization and higher DC (p < 0.05)
than the Bis-GMA-based resin system. The results of volumetric shrinkage (VS) were also shown
in Table 1, and the FDMA-based resin system had lower VS than the Bis-GMA-based resin system
(p < 0.05).
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Table 1. Viscosity, double bond conversion at an irradiation time of 60 s (DC60s) and volumetric
shrinkage (VS) of each resin system.

Resin Formulation Viscosity (mPa·s) DC60s (%) VS (%)

Bis-GMA/TEGDMA 164.7 ± 1.5 A 53.8 ± 2.1 a 9.2 ± 0.8 a

FDMA/TEGDMA 201.7 ± 1.5 B 65.4 ± 3.7 b 7.8 ± 0.9 b

A,B Different upper case letters indicate statistical differences with a column by the Student’s t-test (p < 0.004);
a,b Different lower case letters indicate statistical differences with a column (p < 0.05).

The results of water sorption (WS), water solubility (WSL), flexural strength (FS) and flexural
modulus (FM) before and after water immersion were summarized in Table 2. Compared with the
Bis-GMA-based polymer, the FDMA-based polymer had lower WS (p < 0.05) and higher WSL (p < 0.05).
Before water immersion, the FDMA-based polymer had comparable FS and FM as the Bis-GMA-based
polymer (p > 0.05). After water immersion, the FS and FM of every polymer decreased significantly
(p < 0.05); the FS of the FDMA-based polymer became higher than that of the Bis-GMA-based polymer
(p < 0.05), and the FM of the FDMA-based polymer was still the same as the FM of the Bis-GMA-based
polymer (p > 0.05).
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Table 2. Flexural strength (FS), flexural modulus (FM), water sorption (WS), and solubility (WSL) of
cured resins.

Resin Formulation

FS (MPa) FM (GPa)
WS (%) WSL (%)Before Water

Immersion
After Water
Immersion

Before Water
Immersion

After Water
Immersion

Bis-GMA/TEGDMA 100.3 ± 6.0 a,A 77.6 ± 5.3 a,B 2.38 ± 0.05 a,C 1.83 ± 0.10 a,D 4.08 ± 0.05 a 0.83 ± 0.08 a

FDMA/TEGDMA 96.5 ± 4.6 a,A 88.6 ± 4.5 b,B 2.33 ± 0.08 a,C 1.99 ± 0.13 a,D 3.85 ± 0.04 b 1.14 ± 0.09 b

a,b Different lower case letters indicate statistical differences with a column (p < 0.05); A,B,C,D Different upper case
letters indicate statistical differences between FSs or FMs of the same cured resin before and after immersion
(p < 0.05).

3. Discussion

The resin matrix used in dental composites should fulfill a series of requirements in
physicochemical properties, such as high photopolymerization rate, low volumetric shrinkage,
sufficient mechanical properties, and low water sorption [2]. In order to prepare the Bis-GMA-free
dental resin system, the new resin system should have comparable or better physicochemical properties.
In this research, the differences in properties between Bis-GMA-based resin and FDMA-based resin
was mainly attributed to the difference in structure between Bis-GMA and FDMA.

The viscosity of monomer, defined as a parameter that reflects the resistance of molecules to flow,
has been reported to influence the photopolymerization rate and DC [27,28]. At an early stage of
polymerization, an insoluble cross-linking network will form when polymerizing dimethacrylate
monomers and the termination step of polymerization will change from chemical controlled to
diffusion controlled. This variance will lead to a decrease in the termination rate and an increase
in the polymerization rate which is known as autoacceleration or the gel effect, and this effect is
more pronounced in highly viscous monomers [28]. Therefore, the higher initial polymerization rate
of FDMA-based resin should be due to its higher viscosity. On the other hand, high viscosity that
is induced by the intermolecular interaction is not good for the dental resin system, because it can
decrease the flexibility of the polymer chain and the mobility of the reactive monomer, leading to
a decrease in DC [28–30]. However, FDMA-based resin had higher viscosity than Bis-GMA-based
resin, but it still had higher DC in this work. It might be attributed to the -NH- groups in FDMA,
which can increase the mobility of radical sites on the network by causing a chain transfer reaction [28].
This phenomenon was also observed in previous research, i.e., UDMA had higher DC than ethoxylated
bisphenol-A-dimethacrylate (Bis-EMA), even though UDMA had higher viscosity than Bis-EMA [28].

As an inevitable drawback of methacrylate-based dental composite, volumetric shrinkage should
be reduced as much as possible. According to abundant studies, volumetric shrinkage was revealed
to be dependent on double bond concentration and conversion [23,31–37]. Lower double bond
concentration and conversion will lead to lower volumetric shrinkage. Though FDMA-based resin
had much higher DC than Bis-GMA-based resin, its VS was lower than that of Bis-GMA-based resin.
This should be mainly attributed to the higher molecular weight of FDMA (1166), which made the
double bond concentration of FDMA (8.58 × 10−4 mol/g) significantly lower than that of Bis-GMA
(1.95 × 10−3 mol/g).

In the structure of FDMA, there exist four flexible urethane linkages, which might make the
FDMA-based polymer chain more flexible than the Bis-GMA-based polymer chain. However, the FS
and FM of the FDMA-based polymer were comparable with those of the Bis-GMA-based polymer;
this might be due to the higher cross-linking density of FDMA-based resin caused by its higher DC.
The same result was also found in other studies comparing urethane-based resins and Bis-GMA-based
resin; urethane-based resins had FS and FM comparable to those of Bis-GMA-based resin because
of their higher cross-linking density caused by the higher DC [4,20]. In addition, though FDMA has
a long -(CF2)8- chain, it still performed as a rigid compound because the rotation of the -(CF2)8- chain
is bonded by bulky fluorine [26]. This should be another reason why the FDMA-based polymer had
FS and FM comparable to those of the Bis-GMA based polymer.
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The WS of dental materials influences the long-term stability of dental materials appliances in
an aqueous environment, such as in the mouth, because the water intrusion can induce them several
adverse effects, such as hydrolysis of the polymeric network [38], reducing thermal stability [39],
impairing mechanical properties [40], and elution of unreacted monomers [41]. Previous research
has reported that fluorinated resins demonstrated excellent hydrophobicity, which was much higher
than that of Bis-GMA-based resin, and water uptake of fluorinated resins was much lower than that
of Bis-GMA-based resin [42]. Therefore, the lower WS of FDMA-based resin might be due to the
fluorinated structure in FDMA. Because of its lower WS, FDMA-based resin might have better water
resistance than Bis-GMA-based resin. It could be observed clearly that, before water immersion,
FDMA and Bis-GMA-based resins had comparable FS, while FS of FDMA became higher than that of
Bis-GMA-based resin after water immersion, and the lower descent rate (8.2% for FDMA based resin
and 22.6% for Bis-GMA based resin) of FS for FDMA-based resin after water immersion could be one
sign of its better water resistance.

The WSL reveals the amount of unreacted monomers being leached out of polymeric networks.
The release of monomers is the main source of cytotoxicity and tissue inflammation [43]. It was
reported that WSL was correlated with DC, and higher DC could lead to lower WSL [44]. However,
compared with Bis-GMA-based resin, FDMA-based resin had higher WSL, though it had higher DC.
The same phenomenon was also observed in some other studies, i.e., some urethane methacrylate based
resin systems had higher WSL than the Bis-GMA-based resin system, even though their DCs were
higher [3,45]. This should be attributed to the leachability of unreacted monomers in the polymeric
network. The inter-molecular hydrogen bonds formed by -OH groups were stronger than hydrogen
bonds formed by -NH- because of the higher cohesive energy density of -OH groups [44]. Therefore,
the unreacted monomer could be absorbed to the surrounding network much more tightly in the
Bis-GMA-based polymer as well as being harder to leach out of the polymer, leading to lower WSL of
the Bis-GMA-based polymer.

4. Materials and Methods

4.1. Materials

Isophorone diisocyanate (IPDI), 1H,1H,10H,10H-Perfluorodecane-1,10-diol (PFDOL), 2-hydroxyethyl
methacrylate (HEMA), TEGDMA, and extra dry tetrahydrofuran (THF) were purchased from J & K
Scientific Ltd. (Guangzhou, China). Camphorquinone (CQ), and dibutyltin dilaurate (DBTDL) were
purchased from Tokyo Chemical Industry Co. (Tokoy, Japan). Bis-GMA, and 2-(N,N-dimethylamino)ethyl
methacrylate (DMAEMA) were purchased from Sigma-Aldrich Co. (St. Luois, MO, USA). All of the
reagents were used directly without purification.

4.2. Synthesis of FDMA

FDMA was synthesized according to the reaction route shown in Scheme 1. Firstly, a urethane
precursor was synthesized through the reaction between (22.23 g, 0.10 mol) IPDI (1) and (23.11 g,
0.05 mol) PFDOL (2) at 45 ◦C. In this reaction, THF and a few droplets of DBTDL were used as
the solvent and catalyst, respectively. When the -NCO groups content reached half of the initial
content (determined by dibutyl amine titration) to form (3), 13.01 g (0.10 mol) of HEMA (4) were
added into the reactor and the reaction was continued under 45 ◦C. The reaction was stopped until
the infrared absorbance peak of the -NCO group (2270 cm−1) disappeared in the FT-IR (Fourier
Transform Infrared; Vector33, Bruker Co., Bremen, Germany) spectra of the samples taken from the
reaction medium every 1 h. After removing the THF by distillation under vacuum, the product FDMA
(5) was obtained as a colorless viscose liquid. The structure of FDMA was investigated by FT-IR
and 1H-NMR (Proton Nuclear Magnetic Resonance Instrument; Avance AV 400 MHz, Bruker Co.,
Fällanden, Switzerland) spectra.
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4.3. Preparation of Resin Formulation

FDMA (or Bis-GMA), TEGDMA, CQ, and DMAEMA were mixed together to form an unfilled
dental resin system at a mass ratio of 49.3:49.3:0.7:0.7 (FDMA (or Bis-GMA):TEGDMA:CQ:DMAEMA).
CQ and DMAEMA were used as a photoinitiation system. All of the compounds were mixed and
stirred magnetically at room temperature until a uniform system was obtained. The prepared dental
resin systems were stored in the dark before being used.

4.4. Measurement of Viscosity of Dental Resin

The viscosities of the prepared dental resin systems were measured by a rotary viscometer
(NDJ-79, Shanghai Pingxuan Instrument Co., Ltd., Shanghai, China) with a plate diameter of 1.6 cm.
An amount of 18 mL dental resin was used for each test. The measurement was taken at 25 ◦C with
a rotor speed of 750 r/min. Measurement was repeated four times for each dental resin system.

4.5. Measurement of Double Bond Conversion

The DCs at different irradiation times were monitored by a FT-IR according to the method
reported previously by Luo et al. [45]. The resin sample was coated on a KBr Pellets gently to form
a very thin film and the absorbance peak of the uncured sample was obtained. Then, a dental light
source (Mini LED Curing Lights, λ = 390–510 nm, I ≈ 1250 mW·cm−2, 8 mm of curing light diameter,
Satelec Inc., Bordeaux, France) was used to irradiate the resin sample at room temperature. The spectra
during the irradiation process was recorded every 10 s for 1 min (as shown in Figure 4). The DC was
calculated from the aliphatic C=C peak at 1636 cm−1 and normalized against the carbonyl C=O peak
at 1720 cm−1 according to the Equation (1):

DC(t) =
(AC=C/AC=O)0 − (AC=C/AC=O)t

(AC=C/AC=O)0
(1)

where AC=C and AC=O are the absorbance peak area of methacrylate C=C at 1636 cm−1 and carbonyl
at 1720 cm−1, respectively; (AC=C/AC=O)0 and (AC=C/AC=O)t are the normalized absorbance of the
functional group at the radiation time of 0 and t, respectively; DC(t) is the conversion of methacrylate
C=C as a function of radiation time.
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4.6. Measurement of Volumetric Shrinkage

The VS of dental resin was investigated through the variation in density before and after
photopolymerization, and the density was determined according to the Archimedes’ principle.
The measurement was carried out with a commercial Density Determination Kit of the analytical
balance Mettler Toledo X according to ISO 17304:2013 (E).

In order to measure the density of the unpolymerized sample, a glass dish was used. Firstly,
the mass of the glass dish was weighed in air and in water, and the density of the glass dish $gd was
calculated according to Equation (2):

$gd =
mgd1 × $0

mgd1 − mgd2
(2)

where $0 is the density of water, mgd1 and mgd2 are the mass of the glass dish in air and in
water, respectively.

The measurement of the density of the glass dish was repeated three times to get the mean
value $gd,m.

Then, a certain amount of the unpolymerized sample was dispensed into the glass dish, the total
mass of the sample and the glass dish was weighed in air and in water, and the density of the
unpolymerized sample $up was calculated according to Equation (3)

$up =
mud1 − mgd1

mud1 −
(

mgd1×$0
$gd,m

)
− mud2

× $0 (3)

where mgd1 is the mass of the glass dish in air, mud1 is the mass of the unpolymerized sample and the
glass dish measured together in air, mud2 is the mass of the unpolymerized sample and the glass dish
measured together in water, $gd,m is the mean density of the glass dish, $0 is the density of water.

After the measurement, the glass dish was cleaned carefully, and the measurement was repeated
on four more samples to get the mean value of the density of the unpolymerized sample $up,m.

Resins were poured into a steel mold sized 2 mm × 2 mm × 25 mm, then light-cured using the
same dental light source as shown in DC measurement (60 s for one portion until the whole sample
was irradiated). The mass of the polymerized sample (size) was weighed in air and in water, and the
density of the polymerized sample $ps was calculated according to Equation (4)
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$ps =
mps1 × $0

mps1 − mps2
(4)

where $0 is the density of water, mps1 is the mass of the polymerized sample in air, mps2 is the mass of
the polymerized sample in water.

The measurement on the polymerized sample was repeated five times to get the mean value of
the density of the polymerized sample $ps,m.

Finally, the VS of the sample was calculated according to Equation (5)

VS =
$ps,m − $up,m

$ps,m
× 100% (5)

4.7. Measurement of Water Sorption and Solubility

Resins were poured into a cylindrical steel mold (15 mm in internal diameter and 1.00 mm in
height) between two transparent Mylar sheets, and a glass slide with 1 mm thickness was used to
cover the upper surface. After that, the samples were irradiated (60 s for one portion until the whole
sample was irradiated) using the same dental light source as shown in DC measurement. For each
dental resin system, five specimens were prepared. The initial weight (M1) of every specimen was
measured with an electronic balance (Mettler A30, Mettler Instrument Co., Highstone, NJ, USA) with
an accuracy of 0.1 mg. Then, the specimens were put into 30 mL of distilled water and stored at
37 ◦C. At fixed time intervals, they were removed, blotted dry to remove excess water, re-weighed
and returned to the water. At 30 days of immersion, there was no significant variance in mass and
M2 was obtained as equilibrium mass. The specimens were then dried at 60 ◦C until their mass kept
constant, and the result was recorded as M3. Water sorption and solubility were then calculated using
Equations (6) and (7):

WS =
M2 − M3

V
× 100% (6)

WSL =
M1 − M3

V
× 100% (7)

4.8. Measurement of Flexural Strength and Modulus

Resins were poured into a steel mold sized 2 mm × 2 mm × 25 mm, then light-cured using the
same dental light source as shown in DC measurement (60 s for one portion until the whole sample was
irradiated). Eight specimens were prepared for every dental resin system. Flexural strength (FS) and
modulus (FM) were investigated by a three-point bending test (span, 20 mm) according to ISO 10477:92
standard with a universal testing machine (Model Z010, Zwick GmbH & Co. KG, Ulm, Germany),
at a cross-head speed of 1.00 mm/min. The FS in MPa was then calculated using Equation (8):

FS =
3 pL
2 bd2 (8)

where p stands for load at fracture (N), L is the span length (20 mm), and b and d are the width and
thickness of the specimens in mm, respectively. The FM was also determined from the slope of the
initial linear part of the stress-strain curve.

Another eight samples of each resin formulation were prepared and immersed in water for
30 days. The FS and FM of samples after water immersion were also investigated.

4.9. Statistical Analysis

The results of viscosity measurement were subjected to the Student’s t-test. All the other results
were statistically analyzed and compared using one-way ANOVA and Tukey’s test at the significance
level of 0.05 by software SPSS 13.0 (SPSS Inc., Chicago, CA, USA).
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5. Conclusions

Despite the limitations of this work, it could be concluded that the synthesized fluorinated
dimethacrylate FDMA had potential to be used as a substitute for Bis-GMA in dental resin because
FDMA-based resin had several advantages when compared with Bis-GMA-based resin, such as
higher double bond conversion, lower volumetric shrinkage, and better water resistance. Though
water solubility of FDMA-based resin was a little bit higher, more research is still needed, such as
biocompatibility testing, to prove whether it would influence FDMA-based resin used in clinic.
Moreover, further research should also be undertaken to investigate whether FDMA-based material
had resistance to an oral microbial attachment.
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