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Abstract: The recent thriving development of biobanks and associated high-throughput phenotyping
studies requires the elaboration of large-scale approaches for monitoring biological sample quality
and compliance with standard protocols. We present a metabolomic investigation of human blood
samples that delineates pitfalls and guidelines for the collection, storage and handling procedures
for serum and plasma. A series of eight pre-processing technical parameters is systematically
investigated along variable ranges commonly encountered across clinical studies. While metabolic
fingerprints, as assessed by nuclear magnetic resonance, are not significantly affected by altered
centrifugation parameters or delays between sample pre-processing (blood centrifugation) and
storage, our metabolomic investigation highlights that both the delay and storage temperature
between blood draw and centrifugation are the primary parameters impacting serum and plasma
metabolic profiles. Storing the blood drawn at 4 ◦C is shown to be a reliable routine to confine
variability associated with idle time prior to sample pre-processing. Based on their fine sensitivity
to pre-analytical parameters and protocol variations, metabolic fingerprints could be exploited as
valuable ways to determine compliance with standard procedures and quality assessment of blood
samples within large multi-omic clinical and translational cohort studies.
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1. Introduction

The parallel development of biobanking and high-throughput sequencing, genotyping and
phenotyping technologies has enabled a new generation of successful molecular epidemiology
studies, such as genome-wide association studies (GWAS) [1], metabolome-wide association studies
(MWAS) [2,3] and even metabolomics GWASes [4–6]. It currently provides a wide range of new
opportunities for the development of biomarkers of medical interest with current applications in
toxicology [7], cancer [8–10], cardiovascular disease [11,12], prediction of treatment outcomes [13–15]
or “pharmacometabonomics” [16,17], and more recently metabolic modelling of the patient journey in a
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clinical environment [18,19]. Untargeted metabolomics is typically achieved using a range of analytical
technologies, such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) [20–22], resulting
in the monitoring of hundreds to thousands of molecular species potentially involved in the molecular
fingerprints of diseases.

For NMR, a range of high-level biomarkers discovery tools is available to identify novel
compounds involved in disease signature. Biomarkers, in order to be valuable, need to be immune to
uncontrolled variation in the technical handling of the samples, vary minimally over the short term
for a given individual, and present clear associations with disease risks, progression or response to
treatment, or environmental exposures. Mining of large datasets, such as complex NMR metabolic
profiles, is inevitably associated with multiple statistical testing, resulting in an increased risk of
spurious conclusions if great care is not taken to eliminate bias and minimize uncontrolled experimental
variance. While the parallel progress in biobanking and high-throughput sequencing/phenotyping
opens a wide range of new research opportunities, they consequently require both standardized
protocols and large-scale monitoring of samples quality.

Serum and plasma are dynamically regulated and their compositions progressively change ex vivo
as many of the components are not stable and subject to oxidation, aggregation, or degradation. Poorly
defined pre-analytical procedures may be a major source of variability and artefacts. In metabolomics,
the influence of the pre-analytics practices for blood samples have been widely studied over
the last few years [23,24]. For NMR-based metabolomics, it was demonstrated for plasma that
ethylenediaminetetraacetic acid (EDTA), heparin or citrate anticoagulants can heavily influence
metabolic information recovery [25–29]. Similarly, the UK biobank showed that storage of serum
spectra at 4 ◦C for 24 h before freezing significantly affects the NMR-based metabolic profile [25].
Clot time, clot temperature as well as the number of freeze-thaw cycles have also been shown to
influence NMR-based metabolic profiles for blood serum [23,26,30–33]. Despite the definition of
standardized protocols, a strict execution of these protocols within single- or multi-center clinical
studies can be challenging when dealing with continuous fluxes of samples, and analytical approaches
to monitor the compliance to best practices or to qualify samples available from biobanks are yet to be
implemented at the large-scale.

In this work, we investigate a series of technical parameters that may impact high-throughput
molecular phenotyping when poorly controlled in clinical research settings. These parameters are
precisely controlled and varied and NMR-based metabolomics profiling is carried out for each
considered variant condition. Data analysis identifies the major experimental causes of phenotypic
variations that allow delineation of precise guidelines for sample collection, storage and subsequent
handling of serum and plasma intended for high-throughput molecular phenotyping investigations.
We suggest that metabolomic analysis could also provide a relevant set of biomarkers or a global
metabolic fingerprint adequate to eventually select serum and plasma samples provided by biobanks
or clinical centres, and qualify them for large cohort studies.

2. Results

Serum and plasma were analyzed to probe the effect of blood pre-analytics common practices by
comparing metabolic profiles obtained after following well-defined reference and variant protocols.
First, the delay (dead time) and conservation temperature of the samples between blood draw and
centrifugation were examined both individually and concurrently to monitor their impact on the blood
metabolome as well as their optimal combination. Two temperature conditions (22 ◦C and 4 ◦C) were
considered, corresponding to samples left idle on the workbench or preserved in a fridge for a delay of
either 1 or 6 h prior to centrifugation. Three variants protocols were thus obtained (Vp1: 1 h at 4 ◦C,
Vp2: 6 h at 4 ◦C and Vp3: 6 h at 22 ◦C) in addition to the reference protocol (Ref: 1 h at 22 ◦C) (Table 1).
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Table 1. Overview of the study protocol. Fasting blood samples are obtained and handled according to
the reference protocol or one of eight variant protocols.

Protocol

Processing Freezing & Storage

Delay of
Incubation

Temperature
of Incubation

Centrifugation Parameters Delay between
Sample Preparation &

Freezing at−80 ◦C

Time at
−80 ◦CSpeed Temperature Time

Reference (Ref) 1 h 22 ◦C 2000 g 20 ◦C 10′ 15′ 3
months

Variant 1 (Vp1) 1 h 4 ◦C 2000 g 20 ◦C 10′ 15′ 3 months

Variant 2 (Vp2) 6 h 4 ◦C 2000 g 20 ◦C 10′ 15′ 3 months

Variant 3 (Vp3) 6 h 22 ◦C 2000 g 20 ◦C 10′ 15′ 3 months

Variant 4 (Vp4) 1 h 22 ◦C 2000 g 20 ◦C 20′ 15′ 3 months

Variant 5 (Vp5) 1 h 22 ◦C 2000 g 4 ◦C 10′ 15′ 3 months

Variant 6 (Vp6) 1 h 22 ◦C 3000 g 20 ◦C 10′ 15′ 3 months

Variant 7 (Vp7) 1 h 22 ◦C 2000 g 20 ◦C 10′ 1 h 3 months

Variant 8 (Vp8) 1 h 22 ◦C 2000 g 20 ◦C 10′ 15′ 48 h

Partial least squares discriminant analysis (PLS-DA; 4 classes) was carried out on the NMR
metabolic profiles obtained for the same set of patients following these four protocols, and the
corresponding score plots show a clear clustering of Vp3 samples in serum and plasma with respect to
other groups of samples (Figure 1A). Furthermore, a clear discrimination between Vp3 (13 patients)
and all Ref samples (96 patients) of serum (R2Y = 0.7, Q2 = 0.652, ANOVA of the cross-validated
residuals (CV-ANOVA) p-value = 2.7 × 10−21) and plasma (R2Y = 0.796, Q2 = 0.771, CV-ANOVA
p-value = 1.9 × 10−26) metabolic profiles is observed from orthogonal partial least squares discriminant
analysis (OPLS-DA), as illustrated in Figure 1B. Statistical significance of these OPLS models is assessed
by high values of goodness-of-fit parameters R2 and Q2, CV-ANOVA p-values < 0.05 and model
resampling under the null hypothesis (Figure S1A). At room temperature, the degradation process
occurs at the time scale of our 6 h intervention, both for serum and plasma.

The absence of significant discrimination between Ref samples and Vp1 or Vp2 samples, as
illustrated in Figure S1B,C, shows that storage at 4 ◦C during idle time after blood collection efficiently
slows down the degradation process, which becomes undetectable from a metabolic point of view
even when blood samples are left idle up to 6 h before centrifugation. Meanwhile, it may be noted that
although an increased serum clot-contact time at room temperature affected Proton NMR (1H NMR)
metabolic profiles, interindividual variations remained clearly predominant with respect to variations
due to pre-analytical parameters, as shown by the first component in principal component analysis
(PCA) (Figure S2). An equivalent observation was made in the case of plasma (data not shown).

Centrifugation parameters (rotational speed, temperature and time of centrifugation) were then
tested, with no significant difference detected between Ref (at 20 ◦C) and Vp5 (4 ◦C) protocols
(Figure 2B). Similarly, no effects of the centrifugation time and rotational speed were reflected in the
serum/plasma metabolic profiles (Figure 2A,C). In order to study the effects of short-term “storage”
of serum and plasma right after centrifugation, the impact associated with waiting times at room
temperature of 15 min (Ref) and 1 h (Vp7) on serum and plasma metabolic fingerprints was examined.
As shown in Figure 2D, our experimental data present no significant differences between plasma and
serum left either 15 min or 1 h spent at room temperature before their freezing at −80 ◦C. Finally, in
order to investigate whether intermediate medium-term storage at −80 ◦C has an impact on metabolic
profiles, we compared plasma and serum stored at −80 ◦C for 3 ± 1 months (Ref) and 48 ± 24 h (Vp8),
respectively. No significant differences were detected between these groups of samples as illustrated
in Figure 2E, attesting that blood biofluids are stable at −80 ◦C for at least 3 months.
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Figure 1. Impact of the delay and storage temperature between blood draw and centrifugation on 
plasma and serum metabolic profiles. (A) Partial least squares discriminant analysis (PLS-DA) model 
for serum cohort, discriminating variant (Vp) 1, Vp2, Vp3 and a reference (Ref) group (N = 50, nVp1 
= 11, nVp2 = 14, nVp3 = 13, nRef = 12, 1+1 components, R2Y = 0.267, Q2 = 0.192) and for plasma cohort 
(N = 47, nVp1 = 10, nVp2 = 13, nVp3 = 12, nRef = 12, 1+1 components, R2Y = 0.283, Q2 = 0.204). The Ref 
group corresponds to a random mix of samples collected according to the reference protocol Patients 
in the Ref group also underwent the variant protocol Vp1, Vp2 or Vp3; (B) Orthogonal projections to 
latent structures (OPLS) model for serum cohort, discriminating Vp3 vs. Ref samples (N = 109,  
nVp3 = 13, nRef = 96, 1+2 components, R2Y = 0.7, Q2 = 0.652, ANOVA of the cross-validated residuals 
(CV-ANOVA) p-value = 2.7 × 10−21); OPLS model score plot for plasma cohort, discriminating samples 
Vp3 vs. Ref samples (N = 96, nVp3 = 12, nRef = 84, 1+2 components, R2Y = 0.796, Q2 = 0.771, CV-
ANOVA p-value = 1.9 × 10−26); (C) OPLS loading plot is represented for Vp3 vs. Ref serum samples; 
OPLS loading plot is represented for Vp3 vs. Ref plasma samples. Statistically significant individual 
signals correspond to the color spectral regions. Tpred and Tortho correspond to the predictive 
component and orthogonal component of the OPLS model, respectively. 

Further to this analysis, individual metabolites significantly associated with the discrimination 
of Vp3 and Ref samples can be highlighted from univariate analysis of the NMR metabolic profiles, 
and were identified as lactate and glucose (Figure 1C). When increasing the delay between blood 
collection and centrifugation for samples kept at room temperature stored, the lactate content 
increased up to 1.31-fold while glucose simultaneously decreased up to 0.91-fold between Vp3 and 
Ref serum samples (1.58-fold lactate and 0.83-fold glucose, respectively, for plasma). The 
performance of the lactate/glucose ratio as a marker of pre-analytical protocol compliance, with 
respect to the complete multivariate metabolic signature from OPLS-DA, was subsequently assessed 
by receiver operating characteristic (ROC) analysis. Area under the curve (AUC) for the OPLS and 
from lactate/glucose classification was 99% and 91%, respectively for serum, and 100% and 94% for 
plasma samples (Figure 3), consistently demonstrating that global metabolic fingerprints as detected 
by NMR are more accurate to detect protocol deviations and samples quality than a simple 
lactate/glucose concentration ratio. Table S1 details the full set of metabolites contributing to the 
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Figure 1. Impact of the delay and storage temperature between blood draw and centrifugation
on plasma and serum metabolic profiles. (A) Partial least squares discriminant analysis (PLS-DA)
model for serum cohort, discriminating variant (Vp) 1, Vp2, Vp3 and a reference (Ref) group (N = 50,
nVp1 = 11, nVp2 = 14, nVp3 = 13, nRef = 12, 1+1 components, R2Y = 0.267, Q2 = 0.192) and for
plasma cohort (N = 47, nVp1 = 10, nVp2 = 13, nVp3 = 12, nRef = 12, 1+1 components, R2Y = 0.283,
Q2 = 0.204). The Ref group corresponds to a random mix of samples collected according to the
reference protocol Patients in the Ref group also underwent the variant protocol Vp1, Vp2 or Vp3;
(B) Orthogonal projections to latent structures (OPLS) model for serum cohort, discriminating Vp3
vs. Ref samples (N = 109, nVp3 = 13, nRef = 96, 1+2 components, R2Y = 0.7, Q2 = 0.652, ANOVA of
the cross-validated residuals (CV-ANOVA) p-value = 2.7 × 10−21); OPLS model score plot for plasma
cohort, discriminating samples Vp3 vs. Ref samples (N = 96, nVp3 = 12, nRef = 84, 1+2 components,
R2Y = 0.796, Q2 = 0.771, CV-ANOVA p-value = 1.9 × 10−26); (C) OPLS loading plot is represented
for Vp3 vs. Ref serum samples; OPLS loading plot is represented for Vp3 vs. Ref plasma samples.
Statistically significant individual signals correspond to the color spectral regions. Tpred and Tortho
correspond to the predictive component and orthogonal component of the OPLS model, respectively.

Further to this analysis, individual metabolites significantly associated with the discrimination
of Vp3 and Ref samples can be highlighted from univariate analysis of the NMR metabolic profiles,
and were identified as lactate and glucose (Figure 1C). When increasing the delay between blood
collection and centrifugation for samples kept at room temperature stored, the lactate content increased
up to 1.31-fold while glucose simultaneously decreased up to 0.91-fold between Vp3 and Ref serum
samples (1.58-fold lactate and 0.83-fold glucose, respectively, for plasma). The performance of the
lactate/glucose ratio as a marker of pre-analytical protocol compliance, with respect to the complete
multivariate metabolic signature from OPLS-DA, was subsequently assessed by receiver operating
characteristic (ROC) analysis. Area under the curve (AUC) for the OPLS and from lactate/glucose
classification was 99% and 91%, respectively for serum, and 100% and 94% for plasma samples
(Figure 3), consistently demonstrating that global metabolic fingerprints as detected by NMR are more
accurate to detect protocol deviations and samples quality than a simple lactate/glucose concentration
ratio. Table S1 details the full set of metabolites contributing to the multivariate signature, with notable
weights for fatty acids, choline, acetone for both serum and plasma, as well as alanine in the case
of serum.
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Figure 2. Discrimination between variant protocol samples (Vp4, 5, 6, 7, and 8) and reference
protocol samples. (A) OPLS models for serum cohort, discriminating Vp4 vs. Ref samples (N = 108,
nVp4 = 12, nRef = 96, 1+1 components, R2Y = 0.069, Q2 = −0.146) and for plasma cohort (N = 94,
nVp4 = 10, nRef = 84, 1+1 components, R2Y = 0.148, Q2 = −0.019); (B) OPLS models for serum cohort,
discriminating Vp5 vs. Ref samples (N = 108, nVp5 = 12, nRef = 96, 1+1 components, R2Y = 0.069,
Q2 = −0.146) and for plasma cohort (N = 93, nVp1 = 9, nRef = 84, 1+1 components, R2Y = 0.182,
Q2 = −0.104); (C) OPLS models for serum cohort, discriminating Vp6 vs. Ref samples (N = 107,
nVp6 = 11, nRef = 96, 1+1 components, R2Y = 0.07, Q2 = −0.167) and for plasma cohort (N = 94,
nVp6 = 10, nRef = 84, 1+1 components, R2Y = 0.101, Q2 = −0.155); (D) OPLS models for serum cohort,
discriminating Vp7 vs. Ref samples (N = 108, nVp7 = 12, nRef = 96, 1+1 components, R2Y = 0.031,
Q2 = −0.111) and for plasma cohort (N = 94, nVp7 = 10, nRef = 84, 1+1 components, R2Y = 0.053,
Q2 = −0.06); (E) OPLS models for serum cohort, discriminating Vp8 vs. Ref samples (N = 107,
nVp8 = 11, nRef = 96, 1+1 components, R2Y = 0.023, Q2 = −0.05) and for plasma cohort (N = 95,
nVp8 = 11, nRef = 84, 1+1 components, R2Y = 0.052, Q2 = −0.089).
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Figure 3. ROC curves analyses. (A) Receiver operating characteristics (ROC) analyses including OPLS
cross-validated (CV) status and a lactate/glucose ratio for serum and plasma cohort; (B) Area under
the curve (AUC), specificity, sensitivity and accuracy of the ROC models.

3. Discussion

The continuous development of biobanks designed to feed high-throughput molecular
sequencing/phenotyping studies requires the development of large-scale strategies for short and
long-term monitoring of sample quality. This study, through a systematic intervention of eight
independent parameters, identifies in a real-size cohort of human samples both acceptable deviations to
standard pre-analytical protocols and sensitive parameters that should be carefully monitored to ensure
optimal pre-processing practices. Acceptable deviations from standard protocols shall correspond to
those that do not significantly alter the subsequent metabolic profiles. For human blood serum and
plasma, we show that only the delay and storage temperature between blood draw and centrifugation
have a significant impact on the blood metabolome, while centrifugation parameters (temperature,
time and rotational speed), delay between processing and freezing at −80 ◦C, and short-term storage
at −80 ◦C prior to transfer to liquid nitrogen do not alter the observed metabolic profiles.

To our knowledge, several parameters, such as individual variations of centrifugation times or
rotational speeds evaluated both on plasma and serum 1H NMR metabolic profiles, are reported here
for the first time, while others have previously been investigated on very small sets of samples [25–32].
Several studies have focused on defining standard pre-analytical guidelines for omics investigations.
Yet, evaluation of acceptable tolerances to protocol deviations that are inescapable in the context
of large multi-center studies and actual clinical infrastructures is still problematic. Transport of
samples between collection, processing, and storage facilities is a notable factor not well-accounted
for in common standard operating procedures (SOPs), despite being responsible for many protocols
nonconformities and little avoidable in authentic studies.
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Before centrifugation, alterations of the blood metabolome that are reflected in subsequent serum
and plasma profiles are attributable to erythrocyte activity [33]. Our data show that both keeping the
processing delay short and maintaining the samples at 4 ◦C contribute to the efficient preservation
of the samples, while the kinetics of the degradation process can still tolerate loosening one of these
two parameters. A significant impact on the serum and plasma concentrations of lactate and glucose
is only observed when increasing the processing delay to 6 h at room temperature, while serum
and plasma profiles of acceptable quality are still obtained for samples kept at 22 ◦C for 1 h, or at
4 ◦C for 6 h. Our systematic investigation also shows that a short delay (<1 h) at room temperature
between preparation (after centrifugation) and −80 ◦C freezing has no significant influence on the
multivariate metabolomic profiles of serum and plasma, while previous studies have reported a
gradual degradation over longer time periods (several hours) for blood samples, notably regarding
lipids profiles, in the presence of oxygen at room temperature [26,28,32]. Peculiarly, our results
concerning centrifugal parameters do not seem in clear agreement with recent observations from
Lesche et al., where changes in the centrifugation protocol (combined variations of centrifugal force
and spinning time) significantly influenced plasma metabolomics patterns at room temperature [34].
Under our tested variant protocols, serum and plasma metabolic profiles were shown here invariant to
both of these parameters, as well as the centrifugation temperature, when studied individually.

From a different perspective, the sensitivity of the non-targeted metabolomic approach is
highlighted here as a relevant sensor for sample quality. In this line, a recent study has proposed the
use of a simple quality control marker, the ascorbic acid to lactic acid ratio, as an indicator in EDTA
plasma samples of the blood pre-centrifugations conditions, based on gas chromatography–mass
spectrometry (GC–MS) analysis [35]. Here, the NMR multivariate metabolic signature discriminating
Vp3 and Ref human blood samples displays a better sensitivity and specificity for describing the
quality of the sample that a combination of biomarkers (e.g., lactate and glucose) as shown in Figure 3.
This metabolic signature and by extension the corresponding OPLS model are robust reporters of
the blood human samples lifecycle from the biobank to the analytical end-point. Samples scores
on the predictive latent variable (Ref. vs. Vp3) may be used in a broader context to qualify new
samples, without relying on any metadata, as acceptable for further metabolomics studies. While
metabolic profiles are actually sensitive to pre-analytical protocols and sample mishandling, which
can be considered a weakness in the context of large metabolomics investigation, this sharp sensitivity
could be exploited in the context of broad “omics” studies where metabolomics signatures could
constitute an assessable and cost-effective footprint for the quality control of blood-derived samples.

4. Materials and Methods

4.1. Design and Sample Collection

For the present study, 96 participants were selected between July 2013 and October 2014, from
patients recruited in the large-scale French cohort study cancer toxicities (CANTO – NCT01993498)
(12,000 primary breast cancer patients). The local ethics committee (CCP Ile de France VII) approved
the research protocol on 14 October 2011. Written informed consent was obtained from each CANTO
patient before enrolment. For these participants, 40 mL of blood was drawn at enrollment in the study
under fasting conditions. Blood was collected into four 10 mL tubes, either dry or heparin-coated,
in order to recover respectively serum and plasma. Each tube was then processed according to
a strictly defined and independent protocol. Four different samples (two serum and two plasma)
were ultimately obtained per participant. For each individual, one serum and one plasma tubes were
processed according to the CANTO standard protocol (Ref) and define the respective serum and
plasma control groups. Additional serum and plasma samples were processed according to one of the
eight variant protocols (Vp1 to Vp8), where either one (Vp1 and Vp3-8), or two (Vp2) pre-processing
parameters were precisely varied at a time from the Reference (Table 1). The standard CANTO protocol
is defined as follows: samples are kept at room temperature (22 ◦C) for 60 min after collection (to ensure
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complete coagulation in the case of serum), then centrifuged at a speed of 2000× g for 10 min at 20 ◦C.
Once centrifuged, samples are immediately (within 15 min) frozen at −80 ◦C, and stored at −80 ◦C for
3 months prior to transfer to liquid nitrogen. To define variant protocols, a total of eight pre-processing
technical parameters were identified for their potential impact on serum/plasma composition: the
delay and preservation temperature between blood draw and centrifugation, the duration, temperature
and acceleration of the centrifugation step, the delay between the end of centrifugation and freezing
at −80 ◦C, and finally the duration of conservation at −80 ◦C prior to storage at −196 ◦C. These
parameters, and their respective amplitudes of induced variation, were selected as those being the
most likely to occur in the context of a clinical research project. A total of 192 serum samples and
189 plasma samples were in the end available for our NMR metabolic profiling investigation. Detailed
numbers of samples per group (reference and variant protocols) are provided in the Table S2.

4.2. Sample Preparation

For NMR analysis, each serum and plasma sample was prepared according to the standard
protocol from manufacturer (Bruker GmbH, Rheinstetten, Germany). Samples were thawed at room
temperature before use. 200 µL of each was diluted with 400 µL of a buffer solution (0.142 Na2HPO4

w/v, NaN3 4% v/v, D2O/H2O 10% v/v) in a microtube. Samples were then centrifuged for 5 min at
4 ◦C and 12,000× g. Finally, 550 µL of supernatant was transferred into 5 mm NMR tubes. Samples
were kept for less than 24 h at 4 ◦C until NMR analysis. To monitor the good reproducibility of
NMR data acquisition over time, additional quality control (QC) samples were prepared according
to the same protocol. Serum (respectively plasma) QC samples were obtained by aliquoting serum
(respectively plasma) from one healthy blood donor provided by Etablissement Français du Sang
(EFS), Lyon, France.

4.3. 1H NMR Spectroscopy

All NMR spectra were recorded on an Avance III spectrometer (Bruker) operating at 600.55 MHz
for proton, equipped with a 5 mm cryo-cooled triple resonance probe, and automatic sample changer
with a cooling rack at 4 ◦C. The temperature was then regulated at 27 ◦C for serum and 37 ◦C for
plasma throughout the NMR experiments. Independent NMR acquisition sessions were carried out
for the respective sets of serum and plasma samples. For each session, automatic 3D shimming was
performed once at the beginning on a serum/plasma QC sample. In practice, two QC serum/plasma
samples were introduced respectively at the beginning and the end of each samples rack corresponding
to one day of NMR throughput (~40 samples per day) in order to evaluate both the variability between
the first and the last samples of the racks together with the reproducibility over the whole experimental
session. Prior to NMR data acquisition, automatic tuning and matching, frequency locking on D2O
and 1D automatic gradient shimming were performed on each sample. Standard 1H 1D NMR pulse
sequences, nuclear Overhauser effect spectroscopy (NOESY) and Carr–Purcell–Meiboom–Gill (CPMG)
with water presaturation, were applied on each sample to obtain the corresponding metabolic profile.
A total of 128 transient free induction decays (FID) were collected for each experiment into 36,010 points
over a spectral width of 12 kHz (20 ppm). For both sequences, the total acquisition time was 1.49 s with
relaxation delay of 2 s, and the 90◦ pulse length was automatically calibrated for each sample at around
11.7 µs with a power level of 6 W. The NOESY mixing time was set to 10 ms and the CPMG spin-echo
delay to 300 µs (for a total T2 filter of 15.6 ms) allowing an efficient attenuation of the lipid NMR
signals. All FIDs were multiplied by an exponential weighting function corresponding to a 0.3 Hz line
broadening factor, prior to Fourier transformation. All spectra were referenced to the anomeric proton
signal of α-glucose (doublet at δ = 5.23 ppm). 1H NMR spectra were phased and baseline was corrected
using Topspin 3.1 (Bruker GmbH). Prior to statistical analyses, 19 out of 189 out of plasma samples
were excluded due to their poor spectral quality. The final sample set available for further data analysis
therefore included 192 serum and 170 plasma samples. After importing all 1D spectra into the AMIX
software (Bruker GmbH), spectra were divided into 0.001 ppm-wide buckets to obtain 8500 buckets
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over the chemical range of 0.5–9 ppm. The variables range corresponding to residual water signal
(for serum spectra: 4.4 to 5.11 ppm and for plasma spectra: 4.2 to 5.11 ppm) was excluded. Spectra
were normalized to their total intensity and the data matrix was centered. The mean CPMG spectra
of serum and plasma samples are presented in Figure S3. In addition, 2D NMR experiments (1H-13C
HSQC, 1H-1H total correlation spectroscopy (TOCSY) and J-Resolved experiments) were recorded
on a subset of samples to achieve structural assignment of the metabolic signals. The procedure
for metabolite identification exploits knowledge from academic spectral databases such as Human
Metabolome Database (HMDB) [36], as well as proprietary databases (Chenomx NMR Suite v. 7.1,
Chenomx Inc., Edmonton, AB, Canada; AMIX Spectral Base v. 1.1.2, Bruker GmbH).

4.4. Multivariate and Univariate Analysis

Multivariate analyses of the NMR data were conducted using either PCA, or supervised statistical
multivariate methods (PLS or OPLS) to build models for sample classification and extract group-specific
metabolic signatures. They were conducted using SIMCA-P 13 (Umetrics, Umea, Sweden). Score
and loading plots were used to visualize the data. For the score plot, each point represents a NMR
spectrum (i.e., a sample) on the main principal components, and the loading plot visualizes the
contribution of the NMR spectral buckets (i.e., metabolic variables) to principal components. PCA was
first carried out on the full set of samples, including QCs, respectively for serum and plasma to
assess the consistency of the CPMG NMR dataset and reproducibility of measurements over time
(Figure S4). Supervised methods were then performed to discriminate the tested pre-processing
protocols by using a supplementary data matrix Y, containing information about the protocols, to
the X NMR dataset matrix [37]. The goodness-of-fit parameters R2 and Q2, which relate respectively
to the explained and predicted variance, evaluate the OPLS model performance. For each OPLS
model, a model validation in MATLAB R2016b (The MathWorks Inc., Natick, NA, USA), using
homemade OPLS routines, was performed by resampling the model 1000 times under the null
hypothesis through random permutations of the Y matrix. The decrease of goodness-of-fit R2 and
Q2 parameters, when correlation between original model and random models decreases, indicates
the good quality of our model. The statistical significance of the calculated model is also assessed
for each model by CV-ANOVA (p-value < 0.05) [38]. To derive statistically significant associations of
individual metabolites, a univariate methodology previously described that couples an automatic
binning procedure named statistical recoupling of variables (SRV) to subsequent ANOVA analysis
and multiple testing correction of the p-values was used, implemented with MATLAB homemade
routines [39]. Variable importance in the prediction (VIP) values were exploited to evaluate respective
contributions of all metabolites in the metabolic signatures. Variables with a VIP value higher than 1
are considered as important in the model.

4.5. Glucose/Lactate Ratio

To determine the glucose/lactate ratio, peak intensities of both metabolites (unambiguously
identified and with minimal overlap, glucose: α-doublet to 5.23 ppm, lactate: doublet to 1.32 ppm)
were integrated for each sample with AMIX software (Bruker GmbH).

4.6. Receiver Operating Characteristics

ROC curves and corresponding AUC were generated for several models including the
cross-validated predicted Y values (referred to as OPLS CV) and the lactate/glucose ratio for both
serum and plasma samples. The specificity, sensitivity, and accuracy were obtained from the optimal
cut-off point, corresponding to the minimal distance to the ideal point (top left corner).

5. Conclusions

Our investigation conducted on a large cohort of samples shows that among eight parameters
that define standard pre-analytical protocols for human serum and plasma preparation, subsequent
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metabolic profiles are only significantly affected by the delay and storage temperature between blood
collection and sample preparation when systematically reproducing the most common variations
encountered across realistic clinical studies. The storage of blood samples at 4 ◦C for a limited period
of time (<1 h) is a conservative and robust strategy to minimize sample evolution associated with
anaerobic metabolism of the whole blood. Our findings highlight the sensitivity of metabolomics
approaches to detect protocol variations and suggest the metabolic footprint as a global quality probe
for evaluation of human blood samples within large clinical and translational omics studies.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/17/12/2035/s1.

Acknowledgments: The grants received in support of this research work are Agence Nationale de la Recherche
(ANR) grants: ANR-10-INBS-01-01 and ANR-10-COHO-04, CANTO consortium. This project was initiated by
Gilles Thomas (Centre Léon Bérard, Lyon, France).

Author Contributions: Elodie Jobard, Bénédicte Elena-Herrmann, Olivier Trédan, Déborah Postoly and
Sandrine Boyault conceived and designed the experiments; Fabrice André and Anne Laure Martin designed the
CANTO cohort. Elodie Jobard performed the experiments and analyzed the data. All authors wrote the paper
and approved the final version.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study, in the interpretation of data, in the writing of the manuscript and in the decision to publish the results.

References

1. Illig, T.; Gieger, C.; Zhai, G.; Römisch-Margl, W.; Wang-Sattler, R.; Prehn, C.; Altmaier, E.; Kastenmüller, G.;
Kato, B.S.; Mewes, H.-W.; et al. A genome-wide perspective of genetic variation in human metabolism.
Nat. Genet. 2009, 42, 137–141. [CrossRef] [PubMed]

2. Fages, A.; Duarte-Salles, T.; Stepien, M.; Ferrari, P.; Fedirko, V.; Pontoizeau, C.; Trichopoulou, A.;
Aleksandrova, K.; Tjønneland, A.; Olsen, A.; et al. Metabolomic profiles of hepatocellular carcinoma
in a European prospective cohort. BMC Med. 2015, 13, 242. [CrossRef] [PubMed]

3. Holmes, E.; Loo, R.L.; Stamler, J.; Bictash, M.; Yap, I.K.S.; Chan, Q.; Ebbels, T.M.; de Iorio, M.; Brown, I.J.;
Veselkov, K.A.; et al. Human metabolic phenotype diversity and its association with diet and blood pressure.
Nature 2008, 453, 396–400. [CrossRef] [PubMed]

4. Dumas, M.E.; Wilder, S.P.; Bihoreau, M.T.; Barton, R.H.; Fearnside, J.F.; Argoud, K.; D’Amato, L.; Wallis, R.H.;
Blancher, C.; Keun, H.C.; et al. Direct quantitative trait locus mapping of mammalian metabolic phenotypes
in diabetic and normoglycemic rat models. Nat. Genet. 2007, 39, 666–672. [CrossRef] [PubMed]

5. Suhre, K.; Shin, S.Y.; Petersen, A.K.; Mohney, R.P.; Meredith, D.; Wägele, B.; Altmaier, E.; Deloukas, P.;
Erdmann, J.; Grundberg, E.; et al. Human metabolic individuality in biomedical and pharmaceutical
research. Nature 2011, 477, 54–60. [CrossRef] [PubMed]

6. Robinette, S.L.; Holmes, E.; Nicholson, J.K.; Dumas, M.E. Genetic determinants of metabolism in health
and disease: From biochemical genetics to genome-wide associations. Genome Med. 2012, 4, 30. [CrossRef]
[PubMed]

7. Nicholson, J.K. J.; Connelly, J.J.; Lindon, J.C.J.; Holmes, E.E. Metabonomics: A platform for studying drug
toxicity and gene function. Nat. Rev. Drug Discov. 2002, 1, 153–161. [CrossRef] [PubMed]

8. Lu, Y.; Huang, C.; Gao, L.; Xu, Y.-J.; Chia, S.E.; Chen, S.; Li, N.; Yu, K.; Ling, Q.; Cheng, Q.; et al. Identification
of serum biomarkers associated with hepatitis B virus-related hepatocellular carcinoma and liver cirrhosis
using mass-spectrometry-based metabolomics. Metabolomics 2015, 11, 1526–1538. [CrossRef]

9. Jobard, E.; Pontoizeau, C.; Blaise, B.J.; Bachelot, T.; Elena-Herrmann, B.; Tredan, O. A serum nuclear magnetic
resonance-based metabolomic signature of advanced metastatic human breast cancer. Cancer Lett. 2014, 343,
33–41. [CrossRef] [PubMed]

10. Ravipati, S.; Baldwin, D.R.; Barr, H.L.; Fogarty, A.W.; Barrett, D.A. Plasma lipid biomarker signatures in
squamous carcinoma and adenocarcinoma lung cancer patients. Metabolomics 2015, 11, 1600–1611. [CrossRef]

11. Brindle, J.; Antti, H.; Holmes, E.; Tranter, G.; Nicholson, J.; Bethell, H.; Clarke, S.; Schofield, P.; McKilligin, E.;
Mosedale, D.; et al. Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease
using 1H NMR-based metabonomics (vol 8, pg 1439, 2002). Nat. Med. 2003, 9, 477.

www.mdpi.com/1422-0067/17/12/2035/s1
http://dx.doi.org/10.1038/ng.507
http://www.ncbi.nlm.nih.gov/pubmed/20037589
http://dx.doi.org/10.1186/s12916-015-0462-9
http://www.ncbi.nlm.nih.gov/pubmed/26399231
http://dx.doi.org/10.1038/nature06882
http://www.ncbi.nlm.nih.gov/pubmed/18425110
http://dx.doi.org/10.1038/ng2026
http://www.ncbi.nlm.nih.gov/pubmed/17435758
http://dx.doi.org/10.1038/nature10354
http://www.ncbi.nlm.nih.gov/pubmed/21886157
http://dx.doi.org/10.1186/gm329
http://www.ncbi.nlm.nih.gov/pubmed/22546284
http://dx.doi.org/10.1038/nrd728
http://www.ncbi.nlm.nih.gov/pubmed/12120097
http://dx.doi.org/10.1007/s11306-015-0804-9
http://dx.doi.org/10.1016/j.canlet.2013.09.011
http://www.ncbi.nlm.nih.gov/pubmed/24041867
http://dx.doi.org/10.1007/s11306-015-0811-x


Int. J. Mol. Sci. 2016, 17, 2035 11 of 12

12. Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; DuGar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.;
Chung, Y.-M.; et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature
2012, 472, 57–63. [CrossRef] [PubMed]

13. Jobard, E.; Blanc, E.; Negrier, S.; Gravis, G.; Chevreau, C.; Elena-Herrmann, B.; Trédan, O. A serum
metabolomic fingerprint of bevacizumab and temsirolimus combination as first-line treatment of metastatic
renal cell carcinoma. Br. J. Cancer 2015, 113, 1148–1157. [CrossRef] [PubMed]

14. Tenori, L.; Oakman, C.; Claudino, W.M.; Bernini, P.; Cappadona, S.; Nepi, S.; Biganzoli, L.; Arbushites, M.C.;
Luchinat, C.; Bertini, I.; et al. Exploration of serum metabolomic profiles and outcomes in women with
metastatic breast cancer: A pilot study. Mol. Oncol. 2012, 6, 437–444. [CrossRef] [PubMed]

15. Wei, S.; Liu, L.; Zhang, J.; Bowers, J.; Gowda, G.A.N.; Seeger, H.; Fehm, T.; Neubauer, H.J.; Vogel, U.;
Clare, S.E.; et al. Metabolomics approach for predicting response to neoadjuvant chemotherapy for breast
cancer. Mol. Oncol. 2013, 7, 297–307. [CrossRef] [PubMed]

16. Clayton, T.; Lindon, J.; Cloarec, O.; Antti, H.; Charuel, C.; Hanton, G.; Provost, J.; Le Net, J.; Baker, D.;
Walley, R.; et al. Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature 2006, 440,
1073–1077. [CrossRef] [PubMed]

17. Clayton, T.A.; Baker, D.; Lindon, J.C.; Everett, J.R.; Nicholson, J.K. Pharmacometabonomic identification of
a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc. Natl. Acad.
Sci. USA 2009, 106, 14728–14733. [CrossRef] [PubMed]

18. Kinross, J.M.; Holmes, E.; Darzi, A.W.; Nicholson, J.K. Metabolic phenotyping for monitoring surgical
patients. Lancet 2011, 377, 1817–1819. [CrossRef]

19. Mirnezami, R.; Nicholson, J.; Darzi, A. Preparing for precision medicine. N. Engl. J. Med. 2012, 366, 489–491.
[CrossRef] [PubMed]

20. Beckonert, O.; Keun, H.C.; Ebbels, T.M.D.; Bundy, J.G.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Metabolic
profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and
tissue extracts. Nat. Protoc. 2007, 2, 2692–2703. [CrossRef] [PubMed]

21. Want, E.J.; Wilson, I.D.; Gika, H.; Theodoridis, G.; Plumb, R.S.; Shockcor, J.; Holmes, E.; Nicholson, J.K.
Global metabolic profiling procedures for urine using UPLC-MS. Nat. Protoc. 2010, 5, 1005–1018. [CrossRef]
[PubMed]

22. Dona, A.C.; Jimenez, B.; Schaefer, H.; Humpfer, E.; Spraul, M.; Lewis, M.R.; Pearce, J.T.M.; Holmes, E.;
Lindon, J.C.; Nicholson, J.K. Precision high throughput proton NMR spectroscopy of human urine, serum
and plasma for large-scale metabolic phenotyping. Anal. Chem. 2014, 86, 9887–9894. [CrossRef] [PubMed]

23. Yin, P.; Lehmann, R.; Xu, G. Effects of pre-analytical processes on blood samples used in metabolomics
studies. Anal. Bioanal. Chem. 2015, 407, 4879–4892. [CrossRef] [PubMed]

24. Kohler, I.; Verhoeven, A.; Derks, R.J.; Giera, M. Analytical pitfalls and challenges in clinical metabolomics.
Bioanalysis 2016, 8, 1509–1532. [CrossRef] [PubMed]

25. Barton, R.H.; Nicholson, J.K.; Elliott, P.; Holmes, E. High-throughput 1H NMR-based metabolic analysis of
human serum and urine for large-scale epidemiological studies: Validation study. Int. J. Epidemiol. 2008, 37
(Suppl. 1), i31–i40. [CrossRef] [PubMed]

26. Teahan, O.; Gamble, S.; Holmes, E.; Waxman, J. Impact of Analytical Bias in Metabonomic Studies of Human
Blood Serum and Plasma. Anal. Chem. 2006, 78, 4307–4318. [CrossRef] [PubMed]

27. Hebels, D.G.A.J.; Georgiadis, P.; Keun, H.C.; Athersuch, T.J.; Vineis, P.; Vermeulen, R.; Portengen, L.;
Bergdahl, I.A.; Hallmans, G.; Palli, D.; et al. Performance in Omics Analyses of Blood Samples in
Long-Term Storage: Opportunities for the Exploitation of Existing Biobanks in Environmental Health
Research. Environ. Health Perspect. 2013, 121, 480–487. [CrossRef] [PubMed]

28. Pinto, J.; Domingues, M.R.M.; Galhano, E.; Pita, C.; Almeida, M.D.C.; Carreira, I.M.; Gil, A.M. Human
plasma stability during handling and storage: Impact on NMR metabolomics. Analyst 2014, 139, 1168–1177.
[CrossRef] [PubMed]

29. Barton, R.H.; Waterman, D.; Bonner, F.W.; Holmes, E.; Clarke, R.; Consortium, T.P.; Nicholson, J.K.;
Lindon, J.C. The influence of EDTA and citrate anticoagulant addition to human plasma on information
recovery from NMR-based metabolic profiling studies. Mol. BioSyst. 2009, 6, 215–224. [CrossRef] [PubMed]

30. Bervoets, L.; Louis, E.; Reekmans, G.; Mesotten, L.; Thomeer, M.; Adriaensens, P.; Linsen, L. Influence of
preanalytical sampling conditions on the 1H NMR metabolic profile of human blood plasma and introduction
of the Standard PREanalytical Code used in biobanking. Metabolomics 2015, 11, 1197–1207. [CrossRef]

http://dx.doi.org/10.1038/nature09922
http://www.ncbi.nlm.nih.gov/pubmed/21475195
http://dx.doi.org/10.1038/bjc.2015.322
http://www.ncbi.nlm.nih.gov/pubmed/26372698
http://dx.doi.org/10.1016/j.molonc.2012.05.003
http://www.ncbi.nlm.nih.gov/pubmed/22687601
http://dx.doi.org/10.1016/j.molonc.2012.10.003
http://www.ncbi.nlm.nih.gov/pubmed/23142658
http://dx.doi.org/10.1038/nature04648
http://www.ncbi.nlm.nih.gov/pubmed/16625200
http://dx.doi.org/10.1073/pnas.0904489106
http://www.ncbi.nlm.nih.gov/pubmed/19667173
http://dx.doi.org/10.1016/S0140-6736(11)60171-2
http://dx.doi.org/10.1056/NEJMp1114866
http://www.ncbi.nlm.nih.gov/pubmed/22256780
http://dx.doi.org/10.1038/nprot.2007.376
http://www.ncbi.nlm.nih.gov/pubmed/18007604
http://dx.doi.org/10.1038/nprot.2010.50
http://www.ncbi.nlm.nih.gov/pubmed/20448546
http://dx.doi.org/10.1021/ac5025039
http://www.ncbi.nlm.nih.gov/pubmed/25180432
http://dx.doi.org/10.1007/s00216-015-8565-x
http://www.ncbi.nlm.nih.gov/pubmed/25736245
http://dx.doi.org/10.4155/bio-2016-0090
http://www.ncbi.nlm.nih.gov/pubmed/27323646
http://dx.doi.org/10.1093/ije/dym284
http://www.ncbi.nlm.nih.gov/pubmed/18381391
http://dx.doi.org/10.1021/ac051972y
http://www.ncbi.nlm.nih.gov/pubmed/16808437
http://dx.doi.org/10.1289/ehp.1205657
http://www.ncbi.nlm.nih.gov/pubmed/23384616
http://dx.doi.org/10.1039/c3an02188b
http://www.ncbi.nlm.nih.gov/pubmed/24443722
http://dx.doi.org/10.1039/b907021d
http://www.ncbi.nlm.nih.gov/pubmed/20024083
http://dx.doi.org/10.1007/s11306-015-0774-y


Int. J. Mol. Sci. 2016, 17, 2035 12 of 12

31. Fliniaux, O.; Gaillard, G.; Lion, A.; Cailleu, D.; Mesnard, F.; Betsou, F. Influence of common preanalytical
variations on the metabolic profile of serum samples in biobanks. J. Biomol. NMR 2011, 51, 457–465.
[CrossRef] [PubMed]

32. Bernini, P.; Bertini, I.; Luchinat, C.; Nincheri, P.; Staderini, S.; Turano, P. Standard operating procedures for
pre-analytical handling of blood and urine for metabolomic studies and biobanks. J. Biomol. NMR 2011, 49,
231–243. [CrossRef] [PubMed]

33. Deprez, S.; Sweatman, B.C.; Connor, S.C.; Haselden, J.N.; Waterfield, C.J. Optimisation of collection, storage
and preparation of rat plasma for 1H NMR spectroscopic analysis in toxicology studies to determine inherent
variation in biochemical profiles. J. Pharm. Biomed. Anal. 2002, 30, 1297–1310. [CrossRef]

34. Lesche, D.; Geyer, R.; Lienhard, D.; Nakas, C.T.; Diserens, G.; Vermathen, P.; Leichtle, A.B. Does centrifugation
matter? Centrifugal force and spinning time alter the plasma metabolome. Metabolomics 2016, 12, 1–6.
[CrossRef] [PubMed]

35. Trezzi, J.-P.; Bulla, A.; Bellora, C.; Rose, M.; Lescuyer, P.; Kiehntopf, M.; Hiller, K.; Betsou, F. LacaScore:
A novel plasma sample quality control tool based on ascorbic acid and lactic acid levels. Metabolomics 2016,
12, 1–11. [CrossRef] [PubMed]

36. Wishart, D.S.; Knox, C.; Guo, A.C.; Eisner, R.; Young, N.; Gautam, B.; Hau, D.D.; Psychogios, N.; Dong, E.;
Bouatra, S.; et al. HMDB: A knowledgebase for the human metabolome. Nucleic Acids Res. 2009, 37,
D603–D610. [CrossRef] [PubMed]

37. Trygg, J.; Wold, S. Orthogonal projections to latent structures (O-PLS). J. Chemom. 2002, 16, 119–128.
[CrossRef]

38. Eriksson, L.; Trygg, J.; Wold, S. CV-ANOVA for significance testing of PLS and OPLS (R) models. J. Chemom.
2008, 22, 594–600. [CrossRef]

39. Blaise, B.J.; Shintu, L.; Elena, B.; Emsley, L.; Dumas, M.E.; Toulhoat, P. Statistical Recoupling Prior to
Significance Testing in Nuclear Magnetic Resonance Based Metabonomics. Anal. Chem. 2009, 81, 6242–6251.
[CrossRef] [PubMed]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10858-011-9574-5
http://www.ncbi.nlm.nih.gov/pubmed/21964699
http://dx.doi.org/10.1007/s10858-011-9489-1
http://www.ncbi.nlm.nih.gov/pubmed/21380509
http://dx.doi.org/10.1016/S0731-7085(02)00455-7
http://dx.doi.org/10.1007/s11306-016-1109-3
http://www.ncbi.nlm.nih.gov/pubmed/27729833
http://dx.doi.org/10.1007/s11306-016-1038-1
http://www.ncbi.nlm.nih.gov/pubmed/27199628
http://dx.doi.org/10.1093/nar/gkn810
http://www.ncbi.nlm.nih.gov/pubmed/18953024
http://dx.doi.org/10.1002/cem.695
http://dx.doi.org/10.1002/cem.1187
http://dx.doi.org/10.1021/ac9007754
http://www.ncbi.nlm.nih.gov/pubmed/19585975
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Discussion 
	Materials and Methods 
	Design and Sample Collection 
	Sample Preparation 
	1H NMR Spectroscopy 
	Multivariate and Univariate Analysis 
	Glucose/Lactate Ratio 
	Receiver Operating Characteristics 

	Conclusions 

