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Abstract: Nodular lymphocyte predominant Hodgkin lymphoma (NLPHL) is characterized by a
low percentage of neoplastic lymphocyte predominant (LP) cells in a background of lymphocytes.
The goal of this study is to characterize the microenvironment in NLPHL. Ten NLPHL cases and
seven reactive lymph nodes (RLN) were analyzed by flow cytometry for the main immune cells and
multiple specific subpopulations. To discriminate between cells in or outside the tumor cell area,
we used CD26. We observed significantly lower levels of CD20+ B-cells and CD56+ NK cells and
higher levels of CD4+ T-cells in NLPHL in comparison to RLN. In the subpopulations, we observed
increased numbers of PD-1+CD4+ T follicular helper cells (TFH), CD69+CD4+ and CD69+CD8+
T-cells and CCR7-CD45RA-CD4+ effector memory T-cells, while FoxP3+CD4+ T regulatory cells
(Tregs) and CCR7-CD45RA+ terminally differentiated CD4+ T-cells were decreased in NLPHL
compared to RLN. CD69+ cells were increased in the tumor cell area in CD4+ and CD8+ T-cells, while
FoxP3+CD25+CD4+ Tregs and CD25+CD8+ T-cells were significantly increased outside the tumor
area. Thus, we show a markedly altered microenvironment in NLPHL, with lower numbers of NK
cells and Tregs. PD-1+CD4+ and CD69+ T-cells were located inside, and Tregs and CD25+CD8+ cells
outside the tumor cell area.

Keywords: microenvironment; nodular lymphocyte predominant Hodgkin lymphoma; T-cells;
flow cytometry

1. Introduction

Hodgkin Lymphoma (HL) is a unique type of B-cell lymphoma characterized by presence of
a minority of neoplastic cells (less than 1%) in a background of infiltrating reactive cells [1]. The
microenvironment is considered to be shaped by the neoplastic cells and provides survival signals for
the neoplastic cells and protection against anti-tumor immune responses [2].

Based on differences in histopathology and neoplastic cells, HL is classified in two subgroups:
classical (c)HL and nodular lymphocyte predominant Hodgkin lymphoma (NLPHL). CHL accounts
for 95% of all HL cases, whereas NLPHL accounts for only 5% of all cases [1]. Both the neoplastic
cells of NLPHL, i.e., the lymphocyte predominant (LP) cells, and the composition of the cells present
in the microenvironment of NLPHL are different from cHL. Increased numbers of CD4+CD57+ [3],
CD4+PD-1+ [4], CD4+CD57+PD-1+ [5], and CD4+CD8+ [6] T-cells have been specifically reported in
the microenvironment of NLPHL. In cHL increased numbers of Tregulatory (Treg) cells [7,8], and an
increased number of T helper (Th)2 [3] and Th1 [9] cells has been reported.

The infiltrating cells located in the close vicinity of the LP cells might be the most important cells
for providing survival signals and for protection against anti-tumor responses. These cells have lost
expression of CD26 [10], and this characteristic can be used to distinguish them from cells that are not
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in the close vicinity of the LP cells in a flow cytometric analysis. A comprehensive characterization of
the microenvironment, including Th cell subpopulations such as Th1, Th2, Treg and T follicular helper
(TFH) cells might help to elucidate the putative interactions between the microenvironment and LP
cells that play a role in the pathogenesis of NLPHL.

In this study, we analyzed 47 immune cell subpopulations to determine differences between
NLPHL and reactive lymph node (RLN) by flow cytometry. Within NLPHL, changes in cell populations
were also determined between CD26- and CD26+ cells, as a marker for cells within and outside the
tumor cell area. Immunohistochemistry staining was performed to verify the flow cytometry results.

2. Results

2.1. Comparison of Total Cell Populations between NLPHL and RLN

In the main cell populations, a significantly lower level of CD20+ cells was observed in NLPHL
(median 25%) in comparison to RLN (median 37%) (Figure 1A). The percentage of CD4+ cells was
significantly higher in NLPHL than in RLN (median 62% and 36%) (Figure 1B). The number of CD56+
NK-cells was significantly lower in NLPHL compared to RLN (4%–13%) (Figure 1C). The percentages
of CD3+, CD8+ and CD68+ cells were not significantly different between RLN and NLPHL (Table 1).

2.2. Comparison of Subpopulations between NLPHL and RLN

The percentage of CD26- cells in the CD4+ population is significantly higher in NLPHL (median
35% vs. 74%) (Figure 1D). Within CD4+ cells, the percentage of CCR7-CD45RA-T effector memory
(TEM) was significantly increased in NLPHL compared to RLN (median 56% vs. 78%) (Figure 1E),
while the percentage of CD45RA+CCR7- terminally differentiated T-cells (TEMRA) was significantly
lower in NLPHL compared to RLN (median 37% vs. 18%) (Figure 1F). Moreover, significantly increased
percentages of CD69+ cells (median 68% vs. 42%) (Figure 1G), decreased Foxp3+ cells (median 11% vs.
4.5%) (Figure 1H) and increased PD-1+ (also known as CD279) cells (median 71% vs. 30%) (Figure 1I)
were observed in CD4+ cells of NLPHL compared to RLN. In CD8+ cells, the only significant difference
was observed in CD69+ cells, with a higher percentage in NLPHL compared to RLN (median 53% vs.
35%) (Figure 1J). The other subpopulations did not show significant differences between NLPHL and
RLN (Table 1).
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Figure 1. Comparison of cell populations in RLN and NLPHL. Median percentage of each group and
significant changes according to p-value (0.001 < * <0.01, ** < 0.001) are indicated in each graph. Main
cell populations of (A) CD20+; (B) CD4+ and (C) CD56+ cells. Subpopulations (D) CD26- in CD4+
cells; (E) CCR7-CD45RA- in CD4+ cells; (F) CCR7-CD45RA+ in CD4+ cells; (G) CD69+ in CD4+ cells;
(H) FoxP3+ in CD4+ cells; (I) PD-1+ in CD4+ cells; and (J) CD69+ in CD8+ cells.



Int. J. Mol. Sci. 2016, 17, 2127 3 of 9

Table 1. Median percentages of cell populations analyzed in NLPHL and RLN.

Cell Type Population
Median % (Range)

p-Value
RLN NLPHL

Main cell populations

CD20+ in live 37 27–58 25 10–34 0.007
CD3+ in live 57 39–65 76 46–89 0.017
CD4+ in live 36 29–51 62 41–71 0.002
CD8+ in live 22 15–40 20 13–27 0.1

CD56+ in live 13 9–14 4 2–8 0.00005
CD68+ in live 2 1–2 1.5 1–3 1

CD4+CD8+ in live 3 2–9 8 3–17 0.016

CD26-
CD26- in CD4+ 35 15–56 74 46–84 0.0012
CD26- in CD8+ 34 26–61 34 26–72 0.2439

Maturation of CD4+

Naive (CCR7+CD45RA+ in CD4+) 6 3–11 2.5 1–7 0.016
TCM (CCR7+CD45RA- in CD4+) 1 0–2 2 1–8 0.08
TEM (CCR7-CD45RA- in CD4+) 56 23–70 78 59–91 0.002

TEMRA (CCR7-CD45RA+ in CD4+) 37 18–65 18 6–30 0.007

Activation of CD4+
CD69+ in CD4+ 42 21–59 68 37–94 0.003
CD25+ in CD4+ 10 5–21 11 4–18 0.5

Th1 CXCR3+ in CD4+ 18 11–56 15 8–33 0.3

Th2
ST2L+ in CD4+ 14 4–23 9 4–18 0.3

CXCR4+ in CD4+ 5 3–14 6 3–9 1

Treg

GITR+ in CD4+ 17 10–66 33 15–43 0.3
GITR+CD25+ in CD4+ 6 2–11 8.5 5–17 0.2

CD127- in CD4+ 15 5–31 24 19–56 0.02
CD127-CD25+ in CD4+ 2 1–3 1 1–4 0.8

CD152+ in CD4+ 8 5–17 6.5 3–9 0.3
CD152+CD25+ in CD4+ 7 3–13 4.5 2–6 0.4

FoxP3+ in CD4+ 11 7–28 4.5 1–9 0.001
CD25+FoxP3+ in CD4+ 4 2–11 2.5 1–5 0.1

CD25+CD45RA- inCD4+ 4 0–6 4 0–11 0.1

TFH

CD57+ in CD4+ 8 3–22 21 3–39 0.1
PD-1+ in CD4+ 30 9–63 71 27–86 0.009

PD-1+CD57+ in CD4+ 7 2–21 20 2–38 0.2
CXCR5+ICOS+ in CD4+ 8 5–27 5 1–15 0.017

CXCR5+ X ICOS+ in CD25+/CD4+ 31 18–50 26 11–36 0.4
Bcl6+ in CD4+ 15 3–35 25 4–40 0.2

CXCR5+BCL6+ in CD4+ 12 2–30 13 1–30 0.7
Bcl6+CD57+ in CD4+ 7 3–15 11 3–15 0.1

Cytotoxic CD4+ TIA-1+ in CD4+ 7 1–13 15 3–32 0.012
Granzyme-B+ in CD4+ 2 1–5 3 1–4 0.8

Activation of CD8+
CD25+ in CD8+ 30 12–32 27 14–51 0.6
CD69+ in CD8+ 35 14–51 53 35–79 0.005

CD8+

CXCR4+ in CD8+ 30 21–44 33.5 10–78 0.8
CXCR3+ in CD8+ 41 20–63 33 21–44 0.2
TIA-1+ in CD8+ 25 19–49 40.5 28–72 0.03

Granzyme-B+ in CD8+ 6 4–27 11 4–21 0.04

NK/NKT

CD56+ in CD3- 17 15–26 4 1–22 0.8
CD16+ in CD3- 13 6–24 8.5 3–21 0.2
CD57+ in CD3- 4 1–8 5 3–16 0.1

CD56+CD16+ in CD3- 4 1–11 1.5 1–6 0.1
CD56+CD107a+ in CD3- 1 1–1 1 0–2 0.2
CD56+CD16+ in CD3+ 4 2–10 2 1–5 0.04

Macrophage CD163+ in CD68+ 17 7–32 19 12–36 0.1

Th1: T helper 1; Th2: T helper 2; Treg: T regulatory; TFH: T follicular helper; NK/NKT: natural killer/natural
killer T; TCM: central memory T; TEM: effector memory T; TEMRA: terminally differentiated.

2.3. Comparison of Subpopulations of Cells within CD26- and CD26+ of NLPHL

To discriminate between T-cells inside (CD26-) and outside (CD26+) the tumor cell area in
NLPHL, we co-stained T-cell subsets with CD26. The percentage of CD4+CD69+ cells in CD26- cells
(median 60%) was significantly higher compared to the percentage of CD4+CD69+ cells in CD26+ cells
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(median 8%) (Figure 2A). A significantly lower percentage of Foxp3+CD25+CD4+ cells was observed in
CD26- cells compared to CD26+ cells (median 2% vs. 5%) (Figure 2B). Significantly higher percentages
of CD8+CD69+ cells were found in CD26- compared to CD26+ cells (median 34% vs. 15%) (Figure 2C).
Significantly lower percentages of CD8+CD25+ were detected in CD26- cells compared to CD26+ cells
(median 5% vs. 20%) (Figure 2D). The other subpopulations did not show any significant differences
(Table 2).
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Table 2. Comparison of median percentages of CD26+ and CD26- cell populations in NLPHL.

Cell Type
Median % [Range]

p-Value
CD26+ CD26-

CD69+ in CD4+ 8 3–20 60 27–74 0.00001
CD25+ in CD4+ 5 2–11 3 1–7 0.2
FoxP3+ in CD4+ 2 1–3 4 0–7 0.1

Foxp3+CD25+ in CD4+ 5 3–15 2 0–6 0.003
CXCR3+ in CD4+ 4 2–12 7 3–21 0.017

ST2L+ in CD4+ 3.5 2–6 4.4 2–12 0.3
CXCR3+ in CD8+ 17 10–29 19 10–29 0.5
CD69+ in CD8+ 15 6–49] 34 19–58 0.004
CD25+ in CD8+ 20 11–44 5 1–10 0.00004

2.4. Immunohistochemical Staining of NLPHL

Immunohistochemical staining with CD26 revealed rare CD26+ cells in the nodules that contain
the tumor cells, while the number of CD26+ cells was high outside the tumor cell areas (Figure 3A).
CD4+ cells were scattered in high numbers all over the tissue both in and outside the tumor cell area
(Figure 3B). CD8 cells showed a similar distribution pattern as CD4+ cells albeit at lower numbers
(Figure 3C). A low number of Foxp3+ cells was observed out of the tumor cell area, while no FoxP3+
cells were detected in the tumor cell area (Figure 3D). CD69+ cells were present at higher numbers
in the tumor cell areas as compared to outside the tumor cell areas (Figure 3E). A few CD25+ cells
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were present both in and out the tumor cell areas (Figure 3F). The immunohistochemistry results were
consistent with the findings by flow cytometry using CD26 to discriminate between cells within and
outside the tumor cell areas.
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Figure 3. Immunohistochemistry of a representative NLPHL case. All figures show the same area
of tumor with magnification 40×. The line discriminates between the tumor cell rich area, i.e., area
above line, from the tumor cell depleted area. Positive staining is visualized in red, counterstaining
of the nucleus with hematoxylin is blue. (A) CD26+ cells are found mainly outside the tumor area;
(B) CD4+ cells are scattered all over the tissue; (C) CD8+ cells are scattered all over the tissue; (D) No
expression of Foxp3 in the cells in tumor area, few Foxp3 positive cells are present outside of the tumor
area; (E) Aggregation of CD69 stained cells in the tumor area; and (F) Few CD25 stained cells in the
tumor area and out of the tumor area.

3. Discussion

The composition of the cell types in the microenvironment of NLPHL and their role in the survival
of LP cells are less studied than the composition and relevance of the cells in the microenvironment
of cHL. The goal of this study was to generate a comprehensive overview of the cell types present in
the microenvironment of NLPHL. We detected a decrease in the number of B-cells and an increase in
CD4+ T-cells compared to RLN, which has been reported previously [11]. The number of NK cells was
decreased in NLPHL. NK cells along with macrophages form the innate immune response against
tumor cells. A reduced number of NK cells might thus contribute to the failure of the immune system
to eradicate the LP cells. The lower number of NK cells in NLPHL compared to RLN has not been
reported previously. Consistent with a previous study showing an increased percentage of double
positive CD4+CD8+ T-cells in NLPHL [6], we also observed an increase in our data (3% in RLN to 8%
in NLPHL), although this did not reach significance.
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The subpopulation that showed the most prominent increase in NLPHL compared to RLN is
PD-1+CD4+ T-cell subset, and these cells have been reported to surround the LP cells [4]. We have
previously described the phenotype of these TFH cells, which are PD-1+, partially CD57+ and BCL-6
positive [5]. Since the IL21 receptor is upregulated in LP cells [12], and IL-21 is produced by TFH
cells, these cells might be beneficial for survival of LP cells. The decreased number of FoxP3+ Tregs in
the tumor cell area might explain the increased numbers of TFH cells, as Tregs control the number
of TFH cells [13]. Of the different marker combinations we used to analyze the percentages of TFH
cells, we observed a significant increase only in PD-1+CD4+ cells (30 and 70%) and no change in the
percentages of CXCR5+ICOS+CD4+ (8% and 5%) and CXCR5+BCL6+CD4+ (12% and 13%) cells in
NLPHL. LP rosetting cells have been reported to be negative for the inducible T-cell co-stimulator
(ICOS) by IHC [14]. Expression of ICOS in TFH cells is important for maintaining expression of CXCR5
and BCL6 and for maintaining their location in the germinal center [15,16]. Thus, our data suggest
that lack of ICOS expression in the LP rosetting PD-1+CD4+ cells NLPHL might explain their unusual
phenotype. How these cells lose ICOS expression and whether LP cells play a role in this phenomenon
is not known. On the other hand, PD-1 also is a marker of T-cell exhaustion, and it is possible the
PD-1+CD4+ cells in NLPHL are not TFH cells but exhausted CD4+ cells. Treatment with anti-PD-1 has
shown promising effects in several tumors, including cHL [17] and might possibly also be effective
in NLPHL, although PD-L1 is not expressed in LP cells [18]. The level of PD-1 expression has been
shown to distinguish between TFH cells (high expression) and exhausted T-cells (low expression) [19].
The PD-1+CD4+ cells in NLPHL show high PD-1 expression [4,5] and are mostly likely not exhausted.
So, the nature of these PD-1+CD4+ cells in NLPHL remains unclear.

We found an increase in the population of CCR7-CD45RA-CD4+ TEM cells in NLPHL compared
to RLN. TEM cells are present in peripheral blood and, upon infection, home to peripheral tissues to
initiate an inflammatory response [20,21]. The high level of both TEM and PD-1+CD4+ cells in NLPHL
suggests that at least a part of the TEM cells overlap with PD-1+CD4+ cells. Our flow cytometry and
IHC results indicate a significant increase in CD69+CD4+ cells in the tumor cell areas. In addition
to being an early activation marker, CD69 expression also inhibits the egress of CD4+ T-cells from
lymphoid organs, and is expressed on tissue remaining memory cells (TRM) [22]. The increased
percentages of TEM and PD-1+CD4+ cells in NLPHL, combined with the increased numbers of CD69+
cells in the tumor cell area, suggests that egress of these cells from the tumor cell area is inhibited [23].
Thus, these putative CD69/PD-1 double positive cells might in fact represent TRM cells. CD69+ cells
have been proposed to downregulate autoimmunity by producing TGF-β [24]. Vice versa, loss of
CD69+ cells and thus loss of TGF-β production can result in enhanced anti-tumor responses [25].
These data suggest that the presence of CD69+ T-cells in the tumor cell area of NLPHL has an immune
suppressive effect by producing TGF-β. TGF-β was indeed present in NLPHL derived CD4+CD57+,
CD4+CD57- and CD4-CD57- cells at the mRNA level, but the levels were not different from tonsil
derived T-cells, in which the number of CD69+ cells are lower [3]. As fibrosis normally caused by
TGF-β is not seen in NLPHL, further studies to elucidate the actual role of these cells in NLPHL
are required.

The number of Foxp3+CD25+CD4+ cells is significantly lower within the tumor cell area as
compared to the number outside the tumor cell area. This is different from cHL where an increased
number of Tregs was found within the tumor cell area [26]. This suggests different anti-tumor escape
mechanisms in both HL subtypes.

CD69+CD8+ cells are present in the tumor cell area, whereas outside the tumor area CD8+ cells
expressed the late activation marker CD25+. Presence of early-activated CD8+ cells that lack expression
of CD25 in the tumor cell areas of NLPHL might explain why CD8+ cells are not able to eradicate the
neoplastic cells. The CD25+CD8+ cells are found especially outside the tumor cell area where Tregs
are present in somewhat higher numbers to downregulate putative immune responses.
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In conclusion, Tregs and NK cells are decreased in NLPHL compared to RLN. LP cells in NLPHL
are surrounded by PD-1+CD4+ and CD69+CD4+ cells with a TEM phenotype, while levels of Tregs
and CD25+CD8+ cells are increased outside the tumor cell area.

4. Methods and Materials

4.1. Patients

Cell suspensions of RLN (n = 7) and NLPHL (n = 10) were obtained from fresh tissue and stored
in liquid nitrogen. The age of the patients was not significantly different between RLN (mean 43,
range 17–72) and NLPHL (mean 36, range 6–75), neither was the gender (RLN 4 males (56%) and
NLPHL 7 males (70%)). The study protocol was consistent with international ethical and professional
guidelines (the Declaration of Helsinki and the International Conference on Harmonization Guidelines
for Good Clinical Practice). The use of anonymous remnantmaterial is regulated under the code
for good clinical practice in the Netherlands. Informed consent was waived in accordance with
Dutch regulations.

4.2. Flow Cytometry

For flow cytometry, cell suspension of 7 samples from RLN and 10 samples of NLPHL were used.
0.5 × 106 cells were incubated with different mixes of fluorescent labeled antibodies (Table S1) for
30 min in the dark at 4 ◦C. For intracellular staining, cells were treated with fixation/permeabilization
buffer (E-biosciences, San Diego, CA, USA) for 30 min, followed by incubation with permeabilization
buffer containing 5% human serum for 15 min, before incubation with the primary antibodies. Fixation
of the cells was done with 2% paraformaldehyde in PBS. Unstained samples were used to set gating
for membrane markers and isotype controls were used for intracellular labeling. All samples were
analyzed on the BD FACSCalibur (BD, Franklin Lakes, NJ, USA) and the Winlist software package
(Verity Software House, Topsham, ME, USA) was used for data analysis.

4.3. Immunohistochemistry

Frozen tissue sections of 4 RLN and lymph nodes of 10 NLPHL patients were used for
immunostaining of selected markers. After fixation with acetone, CD4 (1:10), CD8 (1:10), CD25
(1:20) (IQ Products, Groningen, The Netherlands), CD69 (1:100), Foxp3 (1:100) (Abcam, Cambridge,
UK) and CD26 (undiluted, our lab) antibodies were incubated for 60 min. Secondary (polyclonal
rabbit anti mouse immunoglobulin horseradish peroxidase labeled, 1:100) and tertiary (polyclonal
goat anti rabbit immunoglobulin horseradish peroxidase labeled, 1:100) (Dako, Glostrup, Denmark)
antibody incubation steps in PBS with 1% human serum were performed for one hour. Visualization
was done using 3-Amino-9-ethylcarbazole as a substrate for peroxidase. Slides were counterstained
with Mayer’s hematoxylin. Slides were scored for the positive staining in and outside the tumor area.

4.4. Statistics

The SPSS software package (version 22, IBM, Amsterdam, The Netherlands) was used for
statistical analysis. Differences in age and gender between RLN and NLPHL patient groups were
determined by Mann-Whitney test and Fisher exact test respectively. Flow cytometry results were
analyzed by a Mann-Whitney test to assess significant differences between the two groups. To correct
for multiple testing of subpopulations, which were at least in part dependent, we considered p < 0.01
as being statistically significant.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/17/12/2127/s1.
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