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Abstract: Ferritins are protein nanocages that accumulate inside their cavity thousands of oxidized iron
atoms bound to oxygen and phosphates. Both characteristic types of eukaryotic ferritin subunits are
present in secreted ferritins from insects, but here dimers between Ferritin 1 Heavy Chain Homolog
(Fer1HCH) and Ferritin 2 Light Chain Homolog (Fer2LCH) are further stabilized by disulfide-bridge in
the 24-subunit complex. We addressed ferritin assembly and iron loading in vivo using novel transgenic
strains of Drosophila melanogaster. We concentrated on the intestine, where the ferritin induction process
can be controlled experimentally by dietary iron manipulation. We showed that the expression pattern
of Fer2LCH-Gal4 lines recapitulated iron-dependent endogenous expression of the ferritin subunits
and used these lines to drive expression from UAS-mCherry-Fer2LCH transgenes. We found that the
Gal4-mediated induction of mCherry-Fer2LCH subunits was too slow to effectively introduce them into
newly formed ferritin complexes. Endogenous Fer2LCH and Fer1HCH assembled and stored excess
dietary iron, instead. In contrast, when flies were genetically manipulated to co-express Fer2LCH and
mCherry-Fer2LCH simultaneously, both subunits were incorporated with Fer1HCH in iron-loaded
ferritin complexes. Our study provides fresh evidence that, in insects, ferritin assembly and iron loading
in vivo are tightly regulated.

Keywords: biosynthesis; complex formation; confocal microscopy; enterocyte; feedback control;
insect; iron; metal; midgut; vesicular traffic

1. Introduction

With over one million insect species on earth [1], there can be no simple generalized description of
the iron storage strategies they employ [2–11]. Nevertheless, insect ferritins are widely recognized as
the key protein complexes involved in the biological handling of excess cytosolic ferrous iron [12–16].
In particular, the study of Drosophila melanogaster ferritins has informed the field of insect iron
physiology (reviewed in [17–19]). With exception of the testis-specific mitochondrial ferritin [20], most
cell types of Drosophila melanogaster involved in iron storage accumulate ferritin in their endomembrane
system [21–25]. Subcellular localization within the vesicular system comes with distinct evolutionary
adaptations for the insect ferritins. First, the Ferritin 1 Heavy Chain Homolog (Fer1HCH) and
Ferritin 2 Light Chain Homolog (Fer2LCH) subunits have N-terminal signal peptides that direct
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them to the endoplasmic reticulum [26,27]; Second, Fer1HCH and Fer2LCH are cross-linked to
each other by disulfide bonds, giving rise to a highly organized symmetrical arrangement of 12
Fer1HCH and 12 Fer2LCH subunits in the assembled ferritin complex [28]; Third, the Fer1HCH and
Fer2LCH genes share common enhancers (they are transcriptionally co-regulated) being chromosomal
neighbors and also showing post-transcriptional co-regulation to ensure the provision of roughly
equal amounts of subunits [16,21,29]. These regulatory relationships are conserved in other insects
besides Drosophila melanogaster [30,31]; Fourth, iron loading into ferritin critically depends on transport
from the cytosol to the endoplasmic reticulum, a function likely mediated by the zinc regulated and
iron regulated transporter 13 (Zip13) [25]; Fifth, the two subunits Fer1HCH and Fer2LCH have been
detected in distinct vesicular compartments at the initial stages of the ferritin biosynthetic process,
one hour post-feeding on iron-containing media, suggesting that subunit-specific trafficking and
post-translational modifications may precede the formation of the ferritin complex [21]. A recent
complementary effort in mosquito cells is likely to provide independent information for the ferritin
assembly and secretion processes [32].

Despite the differences between the subcellular accumulation of ferritin: in the cytosol of
vertebrates [33], in the chloroplasts of plants [34] and in the secretory pathway of many insect ferritins
(for insects with cytosolic ferritins see [4] and also the ferritin sequences of Rhodnius prolixus [35]),
strong evolutionary links exist between ferritins from prokaryotes and archaea to eukaryotes [36–40].
In particular, the mechanism of iron mineralization in assembled ferritins is highly conserved [38–40].
Ferritin assembly is generally thought to occur spontaneously, aided by the high stability of the ferritin
subunit dimers [41–45]. Recently, self-assembly of ferritin was shown to be required for achieving
ferroxidase catalytic activity [46]. Given that ferritins isolated from different mammalian tissues show
differences in the ratios of the two types of their subunits, the regulation of ferritin assembly in vivo
requires further investigation [47–53].

The Drosophila intestine is highly compartmentalized with small groups of enterocytes and
adjacent enteroendocrine cells specializing in different functions [54–59], including metal storage and
detoxification [17,18,60–64]. The larval anterior midgut provides an ideal epithelium to observe the ferritin
biosynthetic process because it contains large enterocytes, which do not normally express ferritin, but
readily induce its expression upon iron treatment [2,16,21,22,65–67]. The Fer1HCHG188 allele, which splices
the green fluorescent protein (GFP) into the endogenous Fer1HCH gene and assembles GFP-Fer1HCH
subunits in iron-loaded ferritin complexes, was previously used together with Fer2LCH-specific antibodies
to detect both subunits in larval intestines [21]. In the iron region, Fer2LCH subunits fully co-localized
with GFP-Fer1HCH, i.e., there were no vesicles in which the subunits could be seen separately [21].
These vesicles represent a specialized Golgi compartment, packed with assembled, iron-loaded ferritin [2,3].
In the anterior midgut, ferritin assembly had not occurred 1 h after the transfer of larvae on an
iron-rich diet, but was complete by 4 h [21]. Accordingly, 1 h after the transfer, Fer2LCH was readily
detectable in a separate vesicular compartment to GFP-Fer1HCH, whereas 4 h after the transfer only
vesicles containing both subunits were detected in anterior midgut cells of Fer1HCHG188/+ larvae [21].
These observations led to a model, whereby individual ferritin subunits are modified in separate vesicular
compartments prior to assembly of the ferritin complex. The present study was undertaken to further
test the hypothesis of a regulated ferritin assembly process involving separate vesicular compartments
by using fluorescent-protein-based imaging to allow for the simultaneous visualization of Fer1HCH and
Fer2LCH subunits in the larval intestine.

2. Results and Discussion

To visualize the ferritin assembly process in vivo, a UAS-mCherry-Fer2LCH construct was designed.
The mCherry fluorescent protein was inserted in the N-terminus of the Fer2LCH gene, immediately
after the predicted cleavage site associated with the signal peptide that targets Fer2LCH to the
endoplasmic reticulum [27]. To express mCherry-Fer2LCH in an iron-inducible manner in the
larval anterior midgut, a Fer2LCH-Gal4 driver was generated by transposition [68] of the P{GawB}
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element [69] into Fer2LCHEP1059 [10]. Both the parental EP and the new Gal4 lines were homozygous
lethal, because normal Fer2LCH gene function was interrupted by the insertions. In contrast,
Fer2LCH-Gal4, UAS-Fer2LCH recombinants were homozygous viable, indicating that the new driver
could express heterologous Fer2LCH where it was required during development. Fer2LCH-Gal4,
UAS-mCherry-Fer2LCH flies were not homozygous viable, consistent with previous observations that
ferritin consisting solely of GFP-Fer1HCH and Fer2LCH subunits was not functional [10,21]. It was
still possible, however, to form functional ferritin complexes if GFP-Fer1HCH was present together
with Fer1HCH and Fer2LCH [21], which provided a rational to work with UAS-mCherry-Fer2LCH in
the presence of endogenous Fer2LCH.

Two further Fer2LCH-Gal4 lines became available from the Kyoto stock center [70] and all three
lines gave identical intestinal expression. Ferritin is also expressed in the brain [10,24,71–75]. Images
obtained from the brains indicated some differences between the three Fer2LCH-Gal4 lines, but these
results are not presented here.

2.1. Ferritin Gal4 Driver Lines Recapitulate Iron-Dependent Induction in the Anterior Midgut

To test whether the Fer2LCH-Gal4 lines recapitulated the endogenous ferritin expression pattern in
larvae [22] and, in particular, the iron-dependent inducible expression in the anterior midgut, they were
crossed to flies carrying a recombinant Fer1HCHG188, UAS-stinger-RFP chromosome. Simultaneous
monitoring of cytoplasmic green fluorescence from the endogenous GFP-Fer1HCH protein trap
and nuclear red fluorescence from cells expressing Fer2LCH-Gal4 was possible in the progeny of
this cross. Under iron limiting conditions, defined by addition of 200 µM Bathophenanthroline
Sulfate (BPS; an effective iron chelator [15,20,76]) into the standard yeast and molasses based diet [77],
Fer2LCHNP4763-Gal4 expressed strongly in the iron region enterocytes, but also in cells posterior
to this region (Figure 1a). Under dietary iron supplementation (1 mM Ferric Ammonium Citrate;
FAC), the driver was clearly induced in the anterior midgut cells, in each and every cell that
also expressed GFP-Fer1HCH from the endogenous gene promoter (Figure 1b). Expression in the
iron region and in cells posterior to it remained. The same results were obtained with another
driver, Fer2LCHNP2602-Gal4 (Figure 1c,d). Thus, in the anterior midgut region, the Fer2LCH-Gal4 lines
recapitulated the well-established, iron-dependent ferritin expression pattern.

2.2. mCherry-Tagged Fer2LCH Subunit Expression Driven by Fer2LCH-Gal4 in the Intestine

The intestines of 3rd instar larvae from the Fer2LCH-Gal4, UAS-mCherry-Fer2LCH/Fer1HCHG188

genotype raised in diets containing 200 µM BPS (Figure 2a–c) or 1 mM FAC (Figure 2d–f) were imaged
to detect mCherry-tagged Fer2LCH subunit expression driven by Fer2LCH-Gal4. Under low iron
conditions, mCherry-Fer2LCH accumulated in the iron region enterocytes (Figure 2a,b) and in cells
posterior to the iron region (Figure 2a). Somewhat surprisingly, given the very low expression of
UAS-stinger-RFP in the anterior midgut (Figure 1a,c), mCherry-Fer2LCH also accumulated in cells of
the anterior midgut (Figure 2c). One possible explanation would be that mCherry-Fer2LCH is more
stable than stinger-RFP in these cells and the fluorescence reflects an earlier or lower-level induction of
the Fer2LCH-Gal4 driver, or, alternatively, secreted mCherry-Fer2LCH is taken up by these cells, as has
been shown to be the case for the nephrocyte-like garland cells [10].

When the intestines were dissected from larvae grown in diets supplemented with 1 mM
FAC, both mCherry-Fer2LCH and GFP-Fer1HCH were detected in the anterior midgut region, but,
curiously, mCherry-Fer2LCH appeared to be absent from the cells posterior to the iron region and
only accumulated in the iron region enterocytes in the middle midgut (Figure 2d). This raised the
question whether mCherry-Fer2LCH was being secreted to the hemolymph or to its neighboring
iron-region cells or, less intuitively, whether it was being degraded despite the presence of dietary iron.
The absence of mCherry-Fer2LCH is consistent with the known fact that these cells posterior to the
iron region do not accumulate assembled, iron-loaded ferritin [22].
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Figure 1. (a) Expression pattern of the Fer2LCHNP4763-Gal4 driver line in the larval intestine as 
revealed by the nuclear stinger red fluorescent protein originating from UAS-stinger-RFP. Larvae 
were raised on a diet containing 200 µM of the iron chelator Bathophenanthroline Sulfate (BPS). Note 
that all cells of the iron region (IR), marked by Green Fluorescent Protein tagged Ferritin 1 Heavy 
Chain Homolog (GFP-Fer1HCH) from the Fer1HCHG188 allele, also express stinger-RFP, but the Gal4 
driver expresses in cells posterior to the iron region (PIR) as well. The anterior midgut (AM) is marked 
with a dotted line in the top part of the panel; (b) The same genotype Fer1HCHG188/Fer2LCHNP4763, 
UAS-stinger-RFP raised on a diet supplemented with 1 mM Ferric Ammonium Citrate (FAC). Note 
the clear coincidence in anterior midgut cells of red fluorescence in the nuclei and green fluorescence 
in the cytoplasm. This region specifically responds to iron by expressing ferritin and the 
Fer2LCHNP4763-Gal4 driver faithfully recapitulates the endogenous enhancer in this region of the 
intestine; (c) An identical pattern of expression for ferritin could be seen with the independent 
Fer2LCHNP2602-Gal4 driver line in BPS treated larvae (d) and in the FAC treatment. 

The reasons that would explain the differences in some cell types between the presence of the 
reporter gene expression and the mCherry-Fer2LCH accumulation are not understood, however 
these observations suggest that active transport of the ferritin subunits may be implicated in the 
assembly of functional ferritin complexes in vivo. Further evidence in support of this notion came 
from the altered accumulation of GFP-Fer1HCH (arising from Fer1HCHG188/+) when the secretory 
pathway was blocked in embryos by means of a lethal mutation in Sec23 [10]. Nevertheless, 
Fer2LCH-Gal4, UAS-mCherry-Fer2LCH/Fer1HCHG188 larvae grown in 1 mM FAC accumulated 
mCherry-Fer2LCH in the same cell types where GFP-Fer1HCH was present (Figure 2e,f), suggesting 
that some aspects of the expected intestinal response to dietary iron were being reported faithfully 
with these tools. 

Inspection of the iron region in the Fer2LCH-Gal4, UAS-mCherry-Fer2LCH/Fer1HCHG188 larvae 
revealed some abnormally large vesicular compartments, reminiscent of autophagosomes [78,79], 
where red and green fluorescence was readily observable. These compartments were substantially 
larger in intestines from larvae grown in 1 mM FAC food (compare Figure 2b–e) and they appeared 
to be present in the posterior half of the iron region. These larger compartments (autophagosomes) 
were not readily observable in intestines dissected from Fer1HCHG188/+ larvae and we therefore 
considered that they indicated a cellular stress imposed in the presence of mCherry-Fer2LCH and 
iron. The autophagosomes are a likely response to endoplasmic reticulum stress [80–82]. Moreover, 
it is possible that the fluorescent proteins are more resistant to degradation in this environment than 
their attached subunits [83], so the fact that mCherry and GFP signals are abundant suggests that 
both ferritin subunits had reached these compartments, but whether they were assembled, present 
as single subunits, or degraded remains unclear. 

Figure 1. (a) Expression pattern of the Fer2LCHNP4763-Gal4 driver line in the larval intestine as revealed
by the nuclear stinger red fluorescent protein originating from UAS-stinger-RFP. Larvae were raised on
a diet containing 200 µM of the iron chelator Bathophenanthroline Sulfate (BPS). Note that all cells of
the iron region (IR), marked by Green Fluorescent Protein tagged Ferritin 1 Heavy Chain Homolog
(GFP-Fer1HCH) from the Fer1HCHG188 allele, also express stinger-RFP, but the Gal4 driver expresses
in cells posterior to the iron region (PIR) as well. The anterior midgut (AM) is marked with a dotted
line in the top part of the panel; (b) The same genotype Fer1HCHG188/Fer2LCHNP4763, UAS-stinger-RFP
raised on a diet supplemented with 1 mM Ferric Ammonium Citrate (FAC). Note the clear coincidence
in anterior midgut cells of red fluorescence in the nuclei and green fluorescence in the cytoplasm.
This region specifically responds to iron by expressing ferritin and the Fer2LCHNP4763-Gal4 driver
faithfully recapitulates the endogenous enhancer in this region of the intestine; (c) An identical pattern
of expression for ferritin could be seen with the independent Fer2LCHNP2602-Gal4 driver line in BPS
treated larvae (d) and in the FAC treatment.

The reasons that would explain the differences in some cell types between the presence of the
reporter gene expression and the mCherry-Fer2LCH accumulation are not understood, however these
observations suggest that active transport of the ferritin subunits may be implicated in the assembly
of functional ferritin complexes in vivo. Further evidence in support of this notion came from the
altered accumulation of GFP-Fer1HCH (arising from Fer1HCHG188/+) when the secretory pathway
was blocked in embryos by means of a lethal mutation in Sec23 [10]. Nevertheless, Fer2LCH-Gal4,
UAS-mCherry-Fer2LCH/Fer1HCHG188 larvae grown in 1 mM FAC accumulated mCherry-Fer2LCH in
the same cell types where GFP-Fer1HCH was present (Figure 2e,f), suggesting that some aspects of the
expected intestinal response to dietary iron were being reported faithfully with these tools.

Inspection of the iron region in the Fer2LCH-Gal4, UAS-mCherry-Fer2LCH/Fer1HCHG188 larvae
revealed some abnormally large vesicular compartments, reminiscent of autophagosomes [78,79],
where red and green fluorescence was readily observable. These compartments were substantially
larger in intestines from larvae grown in 1 mM FAC food (compare Figure 2b–e) and they appeared
to be present in the posterior half of the iron region. These larger compartments (autophagosomes)
were not readily observable in intestines dissected from Fer1HCHG188/+ larvae and we therefore
considered that they indicated a cellular stress imposed in the presence of mCherry-Fer2LCH and
iron. The autophagosomes are a likely response to endoplasmic reticulum stress [80–82]. Moreover,
it is possible that the fluorescent proteins are more resistant to degradation in this environment than
their attached subunits [83], so the fact that mCherry and GFP signals are abundant suggests that both
ferritin subunits had reached these compartments, but whether they were assembled, present as single
subunits, or degraded remains unclear.
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Figure 2. (a) Larvae of the genotype Fer1HCHG188/Fer2LCHNP4763, UAS-mCherry-Fer2LCH were grown 
on a diet supplemented with 200 µM BPS. Intestines were dissected, mounted in Vectashield with 
DAPI and imaged by confocal microscopy. Green fluorescence is from GFP-Fer1HCH; red fluorescence 
from mCherry-Fer2LCH; cyan fluorescence from DAPI. Using the 10× objective, GFP-Fer1HCH is 
readily observed only in the iron region (IR) as previously described. In contrast, mCherry-Fer2LCH 
is detected both in the iron region and in cells posterior to the iron region (PIR), recapitulating the 
expression pattern seen in Figure 1a, but it is also readily observable in the anterior midgut (AM); (b) 
Closer view of the iron region using the 40× objective (anterior is to the left) (c) and of the anterior 
midgut: only mCherry-Fer2LCH was detected here; (d) Larvae of the genotype 
Fer1HCHG188/Fer2LCHNP4763, UAS-mCherry-Fer2LCH were grown on a diet supplemented with 1 mM 
FAC. There is a visible induction of GFP-Fer1HCH and mCherry-Fer2LCH in the anterior midgut. In 
the majority of larvae observed (n > 10) the cells posterior to the iron region no longer express 
mCherry-Fer2LCH when raised on an iron-rich diet; (e) Closer view of the iron region—stars mark 
abnormally large vesicular compartments, which may represent an autophagic response in some 
cells of the larvae grown on food supplemented with 1 mM FAC; (f) Closer view of the anterior 
midgut region. 

2.3. Subcellular Distribution of GFP-Fer1HCH and mCherry-Fer2LCH in Iron Region and Anterior  
Midgut Enterocytes 

The cells that had no signs of autophagosome formation were imaged at a higher magnification 
(using a 63× objective & 2× optical zoom at the Confocal) to detect the subcellular localization of the 
ferritin subunits in enterocytes of Fer2LCH-Gal4, UAS-mCherry-Fer2LCH/Fer1HCHG188 larval intestines, 
raised in a diet supplemented with 1 mM FAC. Initial focus was on the iron region enterocytes 
(Figure 3a), where a perfect co-localization between mCherry-Fer2LCH and GFP-Fer1HCH had been 
expected [21]. In contrast to our expectations, only a limited number of vesicles containing both 
tagged ferritin subunits were visible and these were almost exclusively in the perinuclear region of 
cells. Further to the periphery, mCherry-Fer2LCH and GFP-Fer1HCH could be clearly detected in 
distinct vesicular compartments. Judging by morphological criteria and relative abundance, 
GFP-Fer1HCH was present in the Golgi-like vesicles that specialize in iron storage in these cells, 
whereas mCherry-Fer2LCH accumulated in a less abundant type of vesicle, which is normally 
devoid of ferritin (compare to Figure 6C in [21]). This distribution brought to question whether the 
mCherry-Fer2LCH subunits were being properly incorporated into the ferritin complexes of these 
cells. 

Figure 2. (a) Larvae of the genotype Fer1HCHG188/Fer2LCHNP4763, UAS-mCherry-Fer2LCH were grown
on a diet supplemented with 200 µM BPS. Intestines were dissected, mounted in Vectashield with DAPI
and imaged by confocal microscopy. Green fluorescence is from GFP-Fer1HCH; red fluorescence from
mCherry-Fer2LCH; cyan fluorescence from DAPI. Using the 10ˆ objective, GFP-Fer1HCH is readily
observed only in the iron region (IR) as previously described. In contrast, mCherry-Fer2LCH is detected
both in the iron region and in cells posterior to the iron region (PIR), recapitulating the expression
pattern seen in Figure 1a, but it is also readily observable in the anterior midgut (AM); (b) Closer
view of the iron region using the 40ˆ objective (anterior is to the left) (c) and of the anterior midgut:
only mCherry-Fer2LCH was detected here; (d) Larvae of the genotype Fer1HCHG188/Fer2LCHNP4763,
UAS-mCherry-Fer2LCH were grown on a diet supplemented with 1 mM FAC. There is a visible induction
of GFP-Fer1HCH and mCherry-Fer2LCH in the anterior midgut. In the majority of larvae observed
(n > 10) the cells posterior to the iron region no longer express mCherry-Fer2LCH when raised on an
iron-rich diet; (e) Closer view of the iron region—stars mark abnormally large vesicular compartments,
which may represent an autophagic response in some cells of the larvae grown on food supplemented
with 1 mM FAC; (f) Closer view of the anterior midgut region.

2.3. Subcellular Distribution of GFP-Fer1HCH and mCherry-Fer2LCH in Iron Region and
Anterior Midgut Enterocytes

The cells that had no signs of autophagosome formation were imaged at a higher magnification
(using a 63ˆ objective & 2ˆ optical zoom at the Confocal) to detect the subcellular localization of the
ferritin subunits in enterocytes of Fer2LCH-Gal4, UAS-mCherry-Fer2LCH/Fer1HCHG188 larval intestines,
raised in a diet supplemented with 1 mM FAC. Initial focus was on the iron region enterocytes
(Figure 3a), where a perfect co-localization between mCherry-Fer2LCH and GFP-Fer1HCH had
been expected [21]. In contrast to our expectations, only a limited number of vesicles containing
both tagged ferritin subunits were visible and these were almost exclusively in the perinuclear
region of cells. Further to the periphery, mCherry-Fer2LCH and GFP-Fer1HCH could be clearly
detected in distinct vesicular compartments. Judging by morphological criteria and relative abundance,
GFP-Fer1HCH was present in the Golgi-like vesicles that specialize in iron storage in these cells,
whereas mCherry-Fer2LCH accumulated in a less abundant type of vesicle, which is normally
devoid of ferritin (compare to Figure 6C in [21]). This distribution brought to question whether
the mCherry-Fer2LCH subunits were being properly incorporated into the ferritin complexes of
these cells.



Int. J. Mol. Sci. 2016, 17, 27 6 of 16

Int. J. Mol. Sci. 2016, 17, 27 6 of 16 

 

 
Figure 3. (a) Confocal image of iron region enterocyte (N—nucleus, DNA marked with DAPI in cyan, 
C—cytoplasm). Green fluorescence is from GFP-Fer1HCH; red fluorescence from mCherry-Fer2LCH; 
yellow color indicates overlap of signals. Larvae of the genotype Fer1HCHG188/Fer2LCHNP4763, 
UAS-mCherry-Fer2LCH were grown on a diet supplemented with 1 mM FAC. A close-up view on the 
right is provided for the viewer to note (i) that in a limited number of perinuclear Golgi vesicles 
(yellow arrow) GFP-Fer1HCH co-localizes with mCherry-Fer2LCH; and (ii) further in the periphery 
the vesicles containing GFP-Fer1HCH (green arrow) are clearly distinguishable from those 
containing mCherry-Fer2LCH (red arrow); (b) Single enterocyte of the anterior midgut region of the 
same larva—no co-localization observed between GFP-Fer1HCH and mCherry-Fer2LCH. 

Upon imaging the anterior midgut, co-localization within cells between GFP-Fer1HCH and 
mCherry-Fer2LCH was rare. A typical enterocyte in the anterior midgut is depicted (Figure 3b). 
Despite the ferritin induction as a response to iron, these cells accumulate mCherry-Fer2LCH and 
GFP-Fer1HCH in separate compartments. These results suggested that the mCherry-Fer2LCH 
subunits were not being incorporated into functional ferritin complexes. To directly observe the 
assembled ferritin complexes and the loading of iron into these, protein extracts from fly genotypes 
expressing GFP-Fer1HCH or mCherry-Fer2LCH under non-reducing SDS-PAGE were ran and the 
gels were stained for protein or iron, respectively. 

2.4. Iron Loading in Ferritins with GFP-Fer1HCH Subunits Only Occurs When They Are Expressed from 
Fer1HCHG188 But not from Fer2LCH-Gal4, UAS-GFP-Fer1HCH Flies 

Wild type ferritin and ferritin with a varying number of GFP-Fer1HCH subunits attached to the 
assembled complex (of 12 Fer2LCH:x Fer1HCH:y GFP-Fer1HCH subunits, where x + y = 12) have 
been previously analyzed by non-reducing SDS-PAGE and radioactive iron incorporation assays 
[21]. Ferritin iron is sufficiently concentrated as to be also readily observable with a simple 
incubation with potassium ferrocyanide in acid conditions (Prussian blue stain) and ferritin protein 
is the dominant abundant high molecular protein observed with Coomassie blue staining in extracts 
from adult flies analyzed in this manner [15,16,84]. Hence the first two lanes in Figure 4 represent the 
wild type control (with a prominent ferritin band representing the complex of 12 Fer1HCH and 12 
Fer2LCH subunits) and the GFP-tagged ferritin from Fer1HCHG188/+, where wild type ferritin 
complexes are absent and new higher molecular weight complexes appear (representing increasing 
numbers of GFP-Fer1HCH subunits incorporated). Iron is accumulated in these 
Fer1HCHG188/+-specific ferritins. 

Figure 3. (a) Confocal image of iron region enterocyte (N—nucleus, DNA marked with DAPI in cyan,
C—cytoplasm). Green fluorescence is from GFP-Fer1HCH; red fluorescence from mCherry-Fer2LCH;
yellow color indicates overlap of signals. Larvae of the genotype Fer1HCHG188/Fer2LCHNP4763,
UAS-mCherry-Fer2LCH were grown on a diet supplemented with 1 mM FAC. A close-up view on
the right is provided for the viewer to note (i) that in a limited number of perinuclear Golgi vesicles
(yellow arrow) GFP-Fer1HCH co-localizes with mCherry-Fer2LCH; and (ii) further in the periphery
the vesicles containing GFP-Fer1HCH (green arrow) are clearly distinguishable from those containing
mCherry-Fer2LCH (red arrow); (b) Single enterocyte of the anterior midgut region of the same
larva—no co-localization observed between GFP-Fer1HCH and mCherry-Fer2LCH.

Upon imaging the anterior midgut, co-localization within cells between GFP-Fer1HCH and
mCherry-Fer2LCH was rare. A typical enterocyte in the anterior midgut is depicted (Figure 3b).
Despite the ferritin induction as a response to iron, these cells accumulate mCherry-Fer2LCH and
GFP-Fer1HCH in separate compartments. These results suggested that the mCherry-Fer2LCH subunits
were not being incorporated into functional ferritin complexes. To directly observe the assembled
ferritin complexes and the loading of iron into these, protein extracts from fly genotypes expressing
GFP-Fer1HCH or mCherry-Fer2LCH under non-reducing SDS-PAGE were ran and the gels were
stained for protein or iron, respectively.

2.4. Iron Loading in Ferritins with GFP-Fer1HCH Subunits Only Occurs When They Are Expressed from
Fer1HCHG188 But not from Fer2LCH-Gal4, UAS-GFP-Fer1HCH Flies

Wild type ferritin and ferritin with a varying number of GFP-Fer1HCH subunits attached to the
assembled complex (of 12 Fer2LCH:x Fer1HCH:y GFP-Fer1HCH subunits, where x + y = 12) have
been previously analyzed by non-reducing SDS-PAGE and radioactive iron incorporation assays [21].
Ferritin iron is sufficiently concentrated as to be also readily observable with a simple incubation with
potassium ferrocyanide in acid conditions (Prussian blue stain) and ferritin protein is the dominant
abundant high molecular protein observed with Coomassie blue staining in extracts from adult flies
analyzed in this manner [15,16,84]. Hence the first two lanes in Figure 4 represent the wild type control
(with a prominent ferritin band representing the complex of 12 Fer1HCH and 12 Fer2LCH subunits)
and the GFP-tagged ferritin from Fer1HCHG188/+, where wild type ferritin complexes are absent and
new higher molecular weight complexes appear (representing increasing numbers of GFP-Fer1HCH
subunits incorporated). Iron is accumulated in these Fer1HCHG188/+-specific ferritins.
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Figure 4. (a) Coomassie blue staining following non-reducing SDS PAGE of whole-fly homogenates of
the indicated genotypes raised on 1 mM FAC supplemented food. The major high molecular weight
band in these extracts (indicated by the single asterisk) is the native ferritin [15]. Higher molecular
weight bands (indicated by three asterisks) represent assembled ferritin complexes with an increasing
number of fluorescent protein subunits attached [21]; (b) Prussian blue staining to reveal iron-loaded
ferritin molecules. Note that no native iron-loaded ferritin is detected in samples from Fer1HCHG188/+

fly homogenates, suggesting that in this genotype the ferritin assembly process efficiently combines
GFP-Fer1HCH subunits with its endogenous Fer1HCH and Fer2LCH counterparts. In contrast, when
mCherry-Fer2LCH subunit (lanes 3 and 5) or GFP-Fer1HCH subunit (lane 4) expression are driven by
Fer2LCH-Gal4, only ferritin comprised from wild type subunits is iron-loaded.

When the Fer2LCH-Gal4, UAS-mCherry-Fer2LCH chromosome was tested (over a balancer
chromosome, i.e., in conditions where one copy of Fer2LCH was unaffected and both copies of Fer1HCH
were present), higher molecular ferritin complexes appeared in the protein stains of gels, albeit in less
abundance compared to the Fer1HCHG188/+ genotype (Figure 4a), suggesting that assembled ferritin
complexes were present. However, the most abundant species was the wild type ferritin. Importantly,
it was only in wild type ferritin that iron could be detected in these flies (Figure 4b). These results were
consistent with some limited ferritin complex formation (i.e., see Figure 3a) and with a more general
conclusion that most functional (i.e., iron-loaded) ferritin in these animals had not incorporated the
mCherry-Fer2LCH subunit.

One remaining concern was whether the attachment of mCherry to Fer2LCH is the main reason
behind these phenomena, for example by affecting the process of iron loading into ferritin. To test
this idea, UAS-GFP-Fer1HCH transgenic flies were generated, whereby GFP was attached exactly
at the same position as it is found in the Fer1HCHG188 protein trap allele and crossed them to
Fer2LCH-Gal4. It was reasoned that the presence of a few GFP-Fer1HCH subunits in the assembled
ferritin complex should not inhibit iron loading, given the positive control (i.e., the Fer1HCHG188/+

genotype). Nevertheless, the Fer2LCH-Gal4, UAS-GFP-Fer1HCH flies were unable to produce detectable
quantities of iron-loaded ferritin complexes containing GFP-Fer1HCH subunits. This genotype
accumulated iron in ferritin complexes consisting exclusively of endogenous Fer1HCH and Fer2LCH
subunits (Figure 4). To explain these observations, a hypothesis that the timing of GFP-Fer1HCH
subunit expression determines whether ferritin iron loading occurs in GFP-Fer1HCH-containing
ferritin complexes was proposed and tested.
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2.5. A Model for Ferritin Biosynthesis in Anterior Midgut Enterocytes

The proposal is that cellular iron entry induces both ferritin subunits in a pulse, i.e., Fer1HCH and
Fer2LCH mRNAs are produced in a coordinated, non-continuous manner and that following their
translation they are first processed separately, but then assembled rapidly, first as heterodimers [28],
then into the complex that receives the excess iron (Figure 5a). Zip13 is required for the iron-loading
step [25]. In addition, the presence of a ferritin subunit in the absence of its partner is not sufficient
for complex formation. Indeed, previous studies have shown that heterozygous mutants (or RNA
interference [16]) in either Fer1HCH or Fer2LCH produce half the amount of ferritin [21]. Similarly,
overexpression experiments suggest that both ferritin subunits need to be induced to achieve a
demonstrable increase in ferritin accumulation [21,24]. The recent discovery in the dipteran fly
Bactrocera dorsalis of an alternatively spliced intron in Fer2LCH that leads to the insertion of a
premature codon revealed a further aspect of the co-regulation of the two ferritin subunits, connecting
transcriptional to post-transcriptional control [31].
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Figure 5. (a) Schematic representation of anterior midgut enterocyte from Fer1HCHG188/+ larvae at
one hour post-feeding on 1 mM FAC. Iron has been sensed by an unknown mechanism in the cytosol,
ferritin transcription has been induced (the transcription factors involved have not been experimentally
determined [13,29]) and two types of vesicles have formed: one containing Fer2LCH subunits only
and another containing Fer1HCH and GFP-Fer1HCH subunits. These vesicles will soon give rise to
assembled, iron-loaded ferritin in a single type of Golgi vesicle (see [21] for evidence). The ZIP13
transporter is implicated in iron transport to the vesicles [25]. Question marks above the red arrows
indicate that these processes are poorly understood; (b) Similar representation from Fer2LCH-Gal4,
UAS-mCherry-Fer2LCH larvae. Again, iron has been sensed in the cytosol, ferritin transcription has
been induced and two types of vesicles have formed: one containing Fer2LCH subunits only and
the other containing Fer1HCH subunits only. There has also been synthesis of the transcription
factor Gal4, which will move into the nucleus. When ferritin assembly and iron loading take place,
there is no mCherry-Fer2LCH present. This model implies that approximately one hour later when
mCherry-Fer2LCH will be synthesized from the action of the Gal4-UAS system (red dotted arrows),
there will either be no remaining Fer1HCH-containing vesicles with which to co-assemble or the iron
loading process on assembled ferritin has finished. The model further implies feedback inhibition of
ferritin synthesis, resulting in a coordinated pulse of expression of both genes encoding for the ferritin
subunits upon cellular iron entry.
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An interpretation of the experimental results is depicted in Figure 5. According to our hypothesis,
the reason for not seeing significant ferritin complex formation incorporating GFP-Fer1HCH or
mCherry-Fer2LCH subunits when driven with the Gal4-UAS system is that they are produced too
late in the timeframe of events that follow cellular iron entry. In other words, at the time endogenous
Fer1HCH and Fer2LCH are being produced and processed, Fer2LCH-Gal4 has induced the Gal4
transcription factor, but Gal4-induced transcription has not yet occurred (red dotted arrow in Figure 5b).
At a later stage, when UAS-mCherry-Fer2LCH is expressed and translated, there are few Fer1HCH
subunits available to form the ferritin complex; hence mCherry-Fer2LCH accumulates in a separate
vesicle. The time-delay described here is inherent in the mode of action of the Gal4-UAS system [85],
a drawback previously recognized and leading to the development of protein-trap systems [86–88].
Our model also accounts for the observation that Fer2LCH-Gal4, UAS-Fer2LCH flies are homozygous
viable (the homozygous Fer2LCH-Gal4 driver is lethal because the P-element insertion interrupts
endogenous Fer2LCH function). In homozygous Fer2LCH-Gal4, UAS-Fer2LCH flies there will be no
endogenous Fer2LCH subunits to complex with Fer1HCH at the time of cellular iron entry; therefore
recently made Fer1HCH will not be used up and the temporal delay is accommodated in this situation.

2.6. Evidence that mCherry-Fer2LCH Is Incorporated in Iron-Loaded Assembled Ferritin Complexes When
Co-Expressed Simultaneously with Fer2LCH

To test the proposed model, Fer2LCH-Gal4, UAS-Fer2LCH was crossed to Fer2LCH-Gal4,
UAS-mCherry-Fer2LCH, reasoning that in this way there would be no endogenous Fer2LCH expression
(due to the Gal4 insertions), but Fer2LCH expressed from the UAS transgene would rescue and
would be expressed at the same time with mCherry-Fer2LCH. Non-reducing SDS PAGE of whole-fly
homogenates (from flies raised on 1 mM FAC) was performed and the gels were treated with Coomassie
and Prussian blue stains (Figure 6). As predicted by the model, iron loading in ferritins assembled
with mCherry-Fer2LCH was observed in the new genotype.
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Figure 6. (a) Coomassie blue staining (b) and Prussian blue staining following non-reducing
SDS PAGE of whole-fly homogenates (flies raised on 1 mM FAC) of the genotypes: wild type
(wt); Fer1HCHG188/+; Fer2LCH21BGal4, UAS-Fer2LCH/+; Fer2LCHNP4763, UAS-mCherry-Fer2LCH/+;
Fer2LCH21BGal4, UAS-Fer2LCH/Fer2LCHNP4763, UAS-mCherry-Fer2LCH. Asterisks denote tagged
ferritins. Note the higher molecular weight, mCherry-tagged ferritins in samples from the
Fer2LCH21BGal4, UAS-Fer2LCH/Fer2LCH-Gal4NP4673, UAS-mCherry-Fer2LCH genotype (last lane),
suggesting that in this genotype mCherry-Fer2LCH subunits assemble with Fer2LCH and the
endogenous Fer1HCH counterparts and the resulting ferritins become iron loaded. Asterisks denote
ferritins assembled with fluorescent protein subunits.
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These results confirm that the mCherry-Fer2LCH subunit can in principle assemble with the
Fer1HCH and Fer2LCH subunits giving rise to functional ferritin molecules. For these mCherry-tagged
assembled ferritins to be iron-loaded, simultaneous timing of the expression of mCherry-Fer2LCH
and Fer2LCH subunits is required (Figure 7). Nevertheless, iron loading was clearly less compared
to the native ferritins. The same holds for GFP-Fer1HCH-containing ferritins [15,21]. Why this is the
case is not presently understood, but the bulky tags may affect the folding of the subunits, resulting in
diminished ferroxidase activity of the complex or interfering with iron delivery to ferritin.
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UAS-Fer2LCH/Fer2LCH-Gal4NP4673, UAS-mCherry-Fer2LCH flies, fed on iron. The simultaneous (albeit
delayed) expression of Fer2LCH and mCherry-Fer2LCH subunits in this genotype leads to the
assembly and iron loading of mCherry-tagged ferritin. Solid red arrows indicate events taking place
immediately after cytosolic iron sensing; dotted red arrows indicate subsequent Gal4/UAS dependent
gene expression; question marks indicate that the detailed mechanisms of cellular iron sensing, ferritin
assembly and iron loading remain unknown.

2.7. New Tools Are Required for the in Vivo Imaging of Ferritin Assembly in the Drosophila Intestine

Cellular iron sensing is not yet understood in Drosophila, beyond the post-transcriptional Iron
Regulatory Protein-Element paradigm [89]. A genetic screen designed to uncover the transcriptional
factors involved in iron-induced transcription failed to reveal any, possibly because it only screened
homozygous viable mutants [13]. Experiments presented here support the notion that the ferritin
assembly is a highly regulated process, however more investigations are required to unravel the full
sequence of events following cellular iron entry into the enterocytes of the anterior midgut. Generating
a Fer1HCHG188, Fer2LCH-Gal4 recombinant chromosome is an obvious yet challenging objective, as the
two genes are direct chromosomal neighbors [29]. It would be helpful to obtain a fly strain expressing
mCherry-Fer2LCH directly from the Fer2LCH promoter to support future studies. In this respect,
the GFP-protein trap line Fer2LCHCPTI100064 [87] does not accumulate GFP-Fer2LCH in the intestines
(data not shown). Our efforts to employ the P[acman] BAC libraries [90] to rescue ferritin deficiency
mutants [10,15] were stalled by inefficient transgenesis of the 154,003 base pairs of the R22M06
BAC clone that includes the Fer1HCH, Fer2LCH genomic locus. Genetic engineering techniques in
Drosophila are evolving at an incredible pace and a strategy for generating mCherry knock-in alleles in
Fer2LCH using the Clustered Regularly Interspaced Short Palindromic Repeat associated technology
can be considered [91–93]. Alternatively, the use of bisarsenic fluorescent probes, activated upon cage
assembly, might be adopted by site-directed mutagenesis of Fer1HCH and Fer2LCH to generate optimal
bisarsenic binding pockets and visualize the process in vivo [94,95]. This latter strategy, would come
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with the advantage of avoiding steric complications arising from the presence of the GFP and mCherry
protein tags on the outside of the ferritin cage.

3. Materials and Methods

Wild type flies used in this study were collected in Tannes, Italy [8]. The Fer1HCHG188 allele has
been characterized previously [10,15,21,22]. The Gal4 drivers Fer2LCHNP2602 and Fer2LCHNP4763 [70]
were obtained from the Kyoto Stock Center (#104255 and #113517, respectively). Fer2LCH21BGal4 was
generated by transposition [68] of the P{GawB} element [69] into Fer2LCHEP1059 and has been used
before [10]. Tagged ferritin constructs UAS-mCherry-Fer2LCH and UAS-GFP-Fer1HCH were generated
in the pCasper-UAST vector [69] by inserting, respectively, mCherry and GFP at the N-termini regions of
the open reading frames for Fer2LCH and Fer1HCH, respectively, immediately following the predicted
cleavage sites of the endoplasmic reticulum target sequences. GFP was inserted following aspartic
acid 22 of Fer1HCH and mCherry following cysteine 23 of Fer2LCH.

The diet used in all experiments was based on yeast and molasses [77]. The addition of 200 µM
BPS (final concentration) decreases ferritin and iron in the flies, whereas the addition of 1 mM FAC
accumulates total body iron content and induces ferritin [10,15,21,22]. 3rd instar crawling larvae were
selected immediately after the end of their feeding phase as they initiated foraging away from the
fly food to the sides of the plastic vials in which they were reared. The larval cuticle was broken
open, the internal organs were exposed but not dissected out; instead the samples were incubated in
freshly prepared 4% paraformaldehyde and kept at ´4 ˝C for 12 h. The next day, freshly prepared 4%
paraformaldehyde was replaced for 2 h at room temperature, followed by three washes with phosphate
saline buffer for 20 min each. Dissections were performed directly in PBS for Drosophila (Cold Spring
Harbor Protocols) and the intestines were removed and mounted on Vectashield mounting medium
containing DAPI. Imaging was performed at a Leica TCS SP8 confocal system coupled to a DMI6000
inverted microscope (Wetzlar, Germany).

Non-reducing SDS-PAGE was performed on 6% acrylamide gels, followed by Coomassie and
Prussian blue stains, as described previously [15,84]. It is noted that the ferritin complex runs at higher
apparent molecular weights in 8% and 10% acrylamide gels, but the resolution of the tagged ferritin
complexes is less evident there.

4. Conclusions

Here, we described Fer2LCH-Gal4 lines, which are iron-responsive in the anterior midgut
region. These were used to drive UAS-mCherry-Fer2LCH and UAS-GFP-Fer1HCH. Ferritin complexes
containing the mCherry-Fer2LCH or the GFP-Fer1HCH subunits induced in this way were, however,
iron poor and iron was stored instead in ferritin complexes composed exclusively from the endogenous
Fer1HCH and Fer2LCH subunits. This situation contrasts what is observed when GFP is directly
spliced into the endogenous Fer1HCH transcript, as is the case in the Fer1HCHG188/+ genotype, where
no ferritin complexes composed exclusively of Fer1HCH and Fer2LCH subunits were detected and
iron was loaded instead to ferritin complexes assembling with GFP-Fer1HCH, endogenous Fer1HCH
and endogenous Fer2LCH subunits.

From these findings, we conclude that the temporal delay inherent in the production of the
Gal4 transcription factor and its movement to the nucleus to activate upstream sequences and
produce tagged ferritin subunits impedes their incorporation into functional assembled ferritin
complexes. We support this conclusion by showing that flies co-assemble iron loaded mCherry-tagged
ferritin complexes when expression of mCherry-Fer2LCH is concurrent to that of Fer2LCH. Thus,
ferritin assembly is a highly organized, temporally regulated, cellular process in Drosophila. Further
experiments using alternative strategies are required to uncover the mechanistic details of insect
ferritin assembly as it occurs in vivo.
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