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Abstract: Non-alcoholic fatty liver disease (NAFLD) represents a wide spectrum of liver disease from
simple steatosis, to steatohepatitis, (both with and without liver fibrosis), cirrhosis and end-stage
liver failure. NAFLD also increases the risk of hepatocellular carcinoma (HCC) and both HCC and
end stage liver disease may markedly increase risk of liver-related mortality. NAFLD is increasing in
prevalence and is presently the second most frequent indication for liver transplantation. As NAFLD
is frequently associated with insulin resistance, central obesity, dyslipidaemia, hypertension and
hyperglycaemia, NAFLD is often considered the hepatic manifestation of the metabolic syndrome.
There is growing evidence that this relationship between NAFLD and metabolic syndrome is
bidirectional, in that NAFLD can predispose to metabolic syndrome features, which can in turn
exacerbate NAFLD or increase the risk of its development in those without a pre-existing diagnosis.
Although the relationship between NAFLD and metabolic syndrome is frequently bidirectional,
recently there has been much interest in genotype/phenotype relationships where there is a disconnect
between the liver disease and metabolic syndrome features. Such potential examples of genotypes
that are associated with a dissociation between liver disease and metabolic syndrome are patatin-like
phospholipase domain-containing protein-3 (PNPLA3) (I1148M) and transmembrane 6 superfamily
member 2 protein (TM6SF2) (E167K) genotypes. This review will explore the bidirectional relationship
between metabolic syndrome and NAFLD, and will also discuss recent insights from studies of
PNPLA3 and TM6SF2 genotypes that may give insight into how and why metabolic syndrome
features and liver disease are linked in NAFLD.
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is a considerable public health concern, and is the
commonest cause for chronic liver disease in the developed world [1,2]. Worldwide prevalence of
NAFLD is estimated to be in the region of 20% in the general population [3]. NAFLD represents a
disease spectrum ranging from hepatic steatosis, to non-alcoholic steatohepatitis, to cirrhosis, end-stage
liver failure and hepatocellular carcinoma. The accepted definition of NAFLD is a hepatic triglyceride
content of greater than 5.5%, as determined from analysis of the Dallas Heart Study cohort [4]. The
metabolic syndrome is a collection of underlying risk factors for cardiovascular disease with an
estimated prevalence in the USA of 34% [5].
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The relationship between NAFLD, obesity, insulin resistance and type 2 diabetes is a complex
one. NAFLD has traditionally been considered to be the hepatic manifestation of the metabolic
syndrome, due to the close association between NAFLD and the various component features of
the metabolic syndrome such as abdominal obesity, hypertension, elevated fasting plasma glucose,
raised serum triglycerides and low high-density lipoprotein cholesterol (HDL-C) concentrations.
Many epidemiological studies have demonstrated an association between NAFLD and the metabolic
syndrome [6-8].

There is now a growing body of evidence supporting the idea that there is a bidirectional
relationship between NAFLD and features of the metabolic syndrome, with insulin resistance being
the central pathophysiological process common to both conditions. As such there currently exists and
“chicken and egg” debate in the literature regarding the temporal relationship between NAFLD and
the metabolic syndrome, with no clear consensus about which is considered to generally occur first. A
recent study has demonstrated a reciprocal causality between NAFLD and metabolic syndrome in a
Chinese population, with metabolic syndrome being found to have a greater effect on incident NAFLD
in terms of causality than NAFLD does on incident metabolic syndrome [9].

In addition to this there are recognised situations whereby there is an apparent disconnect between
NAFLD and insulin resistance/metabolic syndrome features, and these generally arise as a result
of particular genetic polymorphisms such as in the patatin-like phospholipase domain-containing
protein-3 (PNPLA3) gene.

This review will attempt to review the available evidence regarding the bidirectional relationship
between NAFLD and components of the metabolic syndrome, as well as to explore the potential
disconnects that may exist between the two due to genetic variability and inherited metabolic disease.

2. Association between NAFLD and Components of the Metabolic Syndrome

There have been various diagnostic criteria available for the diagnosis of metabolic syndrome,
and these have changed subtly over recent years. The most commonly used criteria are those published
by the International Diabetes Federation in 2009. It should be noted that these most recent criteria
advocate using population- and country- specific definitions for abdominal obesity [10]. Table 1
outlines the various diagnostic criteria available.

NAFLD can occur in individuals who are not obese [11,12], however this is more unusual and
generally NAFLD is closely related to increased central adiposity. NAFLD is commonly associated
with all of the component features of the metabolic syndrome, and nearly two thirds of people with
obesity and type 2 diabetes demonstrate hepatic steatosis [13,14]. One study identified hepatic steatosis
via ultrasonography in 50% of patients with hyperlipidaemia [15]. NAFLD is also associated with
arterial hypertension and cross-sectional studies have demonstrated that approximately 50% of people
with essential hypertension also have NAFLD [16,17]. Importantly, in those people with NAFLD the
presence of multiple features of the metabolic syndrome is associated with more severe liver disease
and a higher likelihood of progression to NASH and cirrhosis [18,19].
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Table 1. Diagnostic criteria available for metabolic syndrome.

Criteria WHO (1999) NCEP (2001) IDF (2005) IDF (2009)
Required Insulin resistance Nil Waist c1rcumferer}ce =94 cm in Nil
men, >80 cm in women
Number of features >2 of: >3 of: =2 of: >3 of:
Obesit Waist/hip ratio of >0.9 in men, Waist circumference > 102 cm in Waist circumference—population
Y >0.85 in women or BMI > 30 men, =88 cm in women specific definitions
Triglycerides >150 mg/dL (1.7 mmol/L) >150 mg/dL (1.7 mmol/L) >150 mg/dL (1.7 mmol/L) >150 mg/dL (1.7 mmol/L)
HDIL-cholesterol <40 mg/dL (1 mmol/L) in men, <40 mg/dL (1 mmol/L) in men, <40 mg/dL (1 mmol/L) in men, <40 mg/dL (1 mmol/L) in men,
<50 mg/dL (1.3 mmol/L) in women <50 mg/dL (1.3 mmol/L) in women <50 mg/dL (1.3 mmol/L) in women <50 mg/dL (1.3 mmol/L) in women

Hypertension >140/90 mmHg >135/85 mmHg >135/85 mmHg >135/85 mmHg

Glucose 110 mg/dL (6.1 mmol/L) 100 mg/dL (5.6 mmol/L) 100 mg/dL (5.6 mmol/L)

Albumin/ creatinine ratio
Microalbuminuria > 30 mg/g; albumin excretion rate
> 20 mcg/min

WHO, World Health Organisation; NCEP, National Cholesterol Education Program; IDF, international diabetes federation.
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3. NAFLD as a Risk Factor for and Precursor to the Metabolic Syndrome

There is evidence to suggest that NAFLD, rather than being simply the hepatic manifestation of
the metabolic syndrome, may in fact be a necessary first step in its development.

When the link between NAFLD and insulin resistance was initially described by Day et al, it
was proposed as part of a “two hit hypothesis” [20]. Here, the “first hit” was increased triglyceride
accumulation as a result of insulin resistance and increased delivery of free fatty acids to the liver,
followed by a “second hit” of hepatic oxidative stress resulting in increased lipid peroxidation. This
was said to then lead inexorably to hepatocyte injury, inflammation and fibrosis, with the potential for
progressive liver damage. It has subsequently been suggested that pathogenesis of NAFLD may in fact
reflect “multiple parallel hits” which all contribute to an environment of hepatic inflammation with
the involvement of cytokines and adipokines from extrahepatic tissues such as the gut and adipose
tissue [21].

From a basic science perspective, there is reason to believe that hepatic lipid accumulation could
be a cause and a perpetuating factor for the development of insulin resistance. There is currently
much interest in fully elucidating the role that protein kinase C-¢ (PKC-¢) may play in this relationship.
An elegant study conducted by Samuel et al investigated PKC-¢ and how it may link NAFLD and
insulin resistance [22]. They observed that rats that were fed a 3 day high-fat diet developed marked
hepatic steatosis and hepatic insulin resistance as determined by hyperinsulinaemic-euglycaemic
clamp studies. Here, PKC-¢ was activated but other forms of PKC were not. Crucially, the authors then
went on to attenuate the expression of PKC-¢ using an anti-sense oligonucelotide directed at PKC-¢
and they noted that this protected the rats from steatosis-induced hepatic insulin resistance and also
reversed defects that they had observed in insulin receptor signalling function. It should be noted
that both hepatic diacylglycerol and triacylglycerol content were not affected by this intervention
suggesting that the hepatic lipid accumulation is a prerequisite for insulin resistance. This relationship
has also been investigated in humans, in a study of 37 obese non-diabetic individuals awaiting bariatric
surgery [23]. Here it was observed that hepatic diacylglycerol content from liver biopsy specimens
was the strongest predictor of insulin resistance and accounted for 64% of the variability in insulin
sensitivity. Hepatic diacylglycerol content was strongly correlated with activation of PKC-¢. Given this
evidence, a model has emerged whereby increases in liver diacylglycerol content result in activation of
PKC-¢, translocation of PKC-¢ in the cell membrane, inhibition of hepatic insulin signalling and the
resulting generation and maintenance of hepatocyte insulin resistance.

More recently there has been interest in the hepatokine, fetuin B. This compound has been shown
to be increased in obese rodents [24]. It has also been shown that overnutrition in experimental mice
results in hepatic steatosis, and this alters the hepatocyte protein secretion profile leading to increased
secretion of fetuin B [25]. The authors of this study went on to further study the effects of fetuin B in vivo
and observed that injecting recombinant fetuin B intraperitoneally into mice significantly impaired
glucose tolerance when compared with controls. In addition to this, silencing fetuin B gene expression
using short hairpin RNA was found to increase glucose tolerance. As such, fetuin B provides an
example of how hepatic steatosis can be linked to the development of insulin resistance and thus the
metabolic syndrome. Other hepatokines such as FGF21 and selenoprotein P are thought to be play a
role in the pathophysiology of insulin resistance with action on the liver and other tissues, however it
is less clear how they fit into the relationship between hepatic steatosis and the metabolic syndrome.
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It is known that most people with NAFLD also have insulin resistance, however most do not
exhibit all of the features of the metabolic syndrome [26]. This could indicate that hepatic steatosis is
required as a prerequisite for the development of further metabolic disease such as altered glucose
and lipid metabolism. There is now a significant body of clinical evidence for NAFLD preceding, and
being a strong risk factor for, development of the metabolic syndrome and its various components.
A large prospective cohort study looked at 17,920 individuals from a Han Chinese population and
followed them up over a 6 years period [27]. These individuals did not have metabolic syndrome at
baseline, and the authors identified NAFLD as an independent risk factor for its development with
an adjusted hazard ratio of 1.55 (95% confidence intervals 1.39-1.72). This observation of NAFLD
as an independent risk factor for the development of the metabolic syndrome has also been made
in a variety of other populations such as North American [28], western Australian [29], Korean [30],
Japanese [31] and south Indian [32].

A large prospective cohort study of over 22,000 Korean men demonstrated that NAFLD is
an independent risk factor for incident arterial hypertension, and that risk increases with severity
of NAFLD [33]. This study replicated the findings of an earlier, smaller prospective study which
demonstrated that NAFLD was an independent risk factor for the development of prehypertension [34].
Another prospective cohort study examined 1521 people and stratified them on the basis of their
fatty liver index score (a surrogate marker of hepatic steatosis) [35]. It was observed that NAFLD,
as diagnosed using fatty liver index score, was an independent risk factor for incident arterial
hypertension. Finally, a retrospective cohort study of 11,448 individuals without hypertension revealed
that the development of incident fatty liver disease over a five years period was associated with
increased risk of incident hypertension [36].

A retrospective study of a Korean occupational cohort of 13,218 individuals observed that
development of new fatty liver was associated with incident diabetes [37]. There are many prospective
studies in the literature that demonstrate that NAFLD, and the surrogate markers with which it is
associated, is a key risk factor and precursor for the development of type 2 diabetes [29,38-46]. Table 2
summarises the characteristics of these key studies.

Of particular interest is a longitudinal cohort study in which the authors followed up 358
individuals (109 with NAFLD, 249 without NAFLD) over an 11 years period [29]. After excluding those
who had type 2 diabetes at baseline, they observed that those with NAFLD were significantly more
likely to develop diabetes during the follow up period than those without. Similarly, they observed the
same regarding who would go on to develop the metabolic syndrome. Also, a retrospective study of a
Korean occupational cohort of 12,853 individuals demonstrated that the clustering of insulin resistance,
overweight/obesity and hepatic steatosis markedly increased risk of incident type 2 diabetes [47]. The
fully adjusted odds ratio for those with all 3 factors and risk of incident diabetes at 5 years follow-up
was 14.13 (95% confidence intervals 8.99-22.21).

In addition to this, a meta-analysis has been performed recently which concluded that the presence
of NAFLD doubles an individual’s risk of developing type 2 diabetes in later life [48]. It would seem
that there may be subsets of patients with NAFLD that have different levels of risk of type 2 diabetes,
with one small study suggesting that the presence of biopsy-proven NASH is a greater risk factor than
steatosis alone [41]. This is consistent with the accepted notion that individuals with nonalcoholic
steatohepatitis (NASH) will tend to have a greater burden of metabolic disease.
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Table 2. Characteristics of prospective studies linking hepatic steatosis to the development of type 2 diabetes.
NAFLD Diagnostic Duration of
Study Country/Population Sample Size Method/Surrogate Marker Key Findings Limitations of Study

Used Follow-Up

. . . . Only surrogate markers

Vozarova 2002 [38] Pima Indians aged 18-50 173 women, 278 men ALT, AST gr\d GGT 6.9 years average .ngh baseh'ne AL.T a.ssoc1ated with used, no control for
concentrations increased risk of incident DM
alcohol/hep C
Lee 2003 [39] Korean men aged 25-55 4088 men GGT concentration 4 years Strong relationship between baseline Only studied men, only

used surrogate marker

Hanley 2005 [40]

USA non-Hispanic whites
and African American adults

910 women, 715 men

ALT, AST and ALP
concentrations

5.2 years average

ALT and ALP in upper quartile at
baseline significantly increased risk of
metabolic syndrome

Only surrogate markers
used for NAFLD diagnosis

Ekstedt 2006 [41]

Swedish NAFLD patients

87 men, 42 women

Biopsy-proven NAFLD

13.7 years average

Marked increase in proportion of
patients with DM over period of study

No control group, no
baseline glycaemic data to
compare

Study population
Monami 2008 [42] Florence aged 40-75 3124 total ALT, AST e'md GGT 40 months average Baseline GGT near upper limit of participated in screeung
concentrations normal predicts incident DM programme for diabetes,
may not be representative
Increased ALT associated with higher Homogenous study
Goessling 2008 [43] New England adults, all white 1575 women, 1237 men ALT and A.ST 20 years FISk of DM and meta'bohc sy'nd'rorr}e, population, only surrogate
concentrations increased AST associated with incident
1 markers used
DM risk
. . Not an independent
NAFLD diagnosed with . 1 . . PN
Adams 2009 [29] Western Australian adults 115 women, 243 men ALT after exclusion of other 11 years NAFLD associated with higher risk of predictor if adjusted for

causes

incident diabetes

WC, hypertension or
insulin resistance

Ryu 2010 [44]

Korean men aged 30-65

9148 men

GGT concentrations

4.1 years average

Increase in GGT during study period
predicted incident metabolic syndrome

Did not use accepted
criteria for diagnosis of
metabolic syndrome

NAFLD diagnosed using Higher FLI score at baseline predicted Used FLI rather than formal
Balkau 2010 [45] Western France, aged 30-65 1950 women, 1861 men fatty liver index (FLI) score 9 years incident DM diagnostic methods
Sung 2011 [46] Korean adults 7236 men, 3855 women NAFLD diagnosed with 5years Presence of fatty liver on ultrasound Ultrasound relatively

ultrasound scan

strongly predicted incident DM

insensitive for diagnosis

ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, gamma-glutamyl transferase; DM, diabetes mellitus; ALP, alkaline Phosphatase; NAFLD, non-alcoholic fatty
liver disease; WC, waist circumference.
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4. Metabolic Syndrome as an Initiating or Aggravating Factor for Liver Disease

In addition to the evidence from the literature that NAFLD may predispose individuals to
developing or worsening insulin resistance and the metabolic syndrome, there is also growing evidence
that insulin resistance may contribute to progressive liver damage.

Of particular interest is the role played by plasminogen activator inhibitor 1 [49]. PAI-1 is a
member of the serine protease inhibitor family, and acts as a key mediator in the fibrinolytic system.
In tissues with a significant degree of fibrosis, concentrations of PAI-1 are elevated leading to an
inhibition of tissue proteolytic activities, a decreased rate of collagen degradation and increased tissue
fibrogenesis [49]. Increased PAI-1 levels are associated with obesity, insulin resistance, type 2 diabetes
and dyslipidaemia [50,51]. Specifically it has been shown that PAI-1 concentrations measured in
subcutaneous adipose tissue biopsy samples from individuals with nascent metabolic syndrome are
significantly higher than those in control samples [52]. It has also been observed in a human hepatocyte
cell line that tumour necrosis factor o« (TNF-«) is able to induce the expression of PAI-1, leading to
increased hepatic fibrosis and atherosclerosis in insulin-resistant individuals [53]. There is also a
wealth of evidence in the literature regarding the role of PAI-1 in initiating and perpetuating hepatic
fibrosis [49]. As such this provides evidence of a causative role for insulin resistance and obesity in the
generation of ongoing hepatic fibrosis.

In addition to this, there is evidence that other inflammatory cytokines originating from white
adipose tissue as a result of obesity and insulin resistance may play a significant role in hepatic fibrosis
and inflammation. It has been known for some time that white adipose tissue is not metabolically
inert but is a complex organ that can become active in the obese, insulin-resistant state leading to the
production of various pro-inflammatory cytokines [54,55]. These cytokines include interleukin-13
(IL-1B), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-18 (IL-18), complement component 3 (C3),
TNF-«, PAI-1, adiponectin, leptin, resistin, apelin, vaspin and visfatin. There is evidence that these
inflammatory mediators could play a role in the progression of liver disease from “simple” steatosis
to NASH [56,57], and also that they may stimulate the differentiation of stellate cells in the liver into
myofibroblast-like cells resulting in a more fibrogenic environment [58]. IL-1(3, IL-6 and TNF-« are
traditionally considered to be pro-inflammatory cytokines, and are all thought to play a role in the
pathogenesis of NASH and its associated fibrosis [59,60]. More recently it has been suggested that
the balance of pro- and anti-inflammatory mediators can lead to alterations in the gut microbiota and
that this may have a significant impact on the progression of hepatic steatosis to NASH [61]. It has
also been suggested that apoptosis of hepatocytes could be an important factor in liver damage and
specifically progression to NASH [62,63]. Recent findings indicate that patients with a higher degree
of insulin resistance exhibit greater evidence for apoptosis of hepatocytes in liver biopsy specimens of
morbidly obese individuals, and it has been speculated that this may be mediated by inflammatory
cytokines [64]. These studies all provide evidence for a causative link between insulin resistance and
hepatic damage mediated in part by inflamed, endocrinologically-active adipose tissue.

There is also clinical evidence that insulin resistance and the metabolic syndrome can cause
a worsening of liver disease. A retrospective study of 103 individuals with NAFLD examined
histological findings from paired liver biopsy specimens with an average interval of 3 years [65].
The authors observed marked variability in the progression of histological features of NAFLD between
the 2 time points, but noted that those individuals with diabetes were at higher risk than non-diabetic
people for progression of fibrosis. It is also established in the literature that metabolic syndrome and
type 2 diabetes are strongly associated with severe liver disease such as cirrhosis and hepatocellular
carcinoma [66-69]. It appears from the literature that individuals with type 2 diabetes and NAFLD
combined are at markedly greater risk of more severe liver disease than those with NAFLD alone, and
their liver-related mortality is greater.

There are a variety of cross-sectional studies available that demonstrate that metabolic syndrome
and its components are associated with an increased risk of NAFLD in a variety of populations
including North American [70], Mexican [71], Taiwanese [72] and Japanese [26]. However, given
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the cross-sectional nature of these studies they do not provide real evidence of a causative link. Of
interest is a recent longitudinal prospective cohort study of 15,791 Han Chinese individuals followed
up over a 6 years period [73]. They observed 3913 new cases of NAFLD in this population, and
risk of incident NAFLD was markedly higher in those with metabolic syndrome. After adjusting
for possible confounding factors such as age, diet, sex, smoking status and level of physical activity,
the hazard ratio for incident NAFLD was found to be 1.94 (95% confidence intervals 1.78-2.13). The
authors also observed that hazard ratios for incident NAFLD increased the more components of
the metabolic syndrome were present at baseline, reaching 3.51 (95% confidence intervals 3.15-3.91)
when 3 components were present as compared with individuals who exhibited no metabolic syndrome
components. Figure 1 summarises the bidirectional relationship between hepatic steatosis and the
metabolic syndrome with regards to the various aspects described above.

( Expanded and
inflamed adipose
tissue

Inflammatory
mediators

Hepatic steatosis

Crotun

Hepatocyte insulin
resistance

v

Uncontrolled

/ lipolysis

Insulin
receptor

Free fatty acids

Figure 1. Schematic demonstrating the bidirectional interactions between hepatic steatosis and
metabolic syndrome and aspects of how these are mediated. DAG: diacylglycerols; PKC-¢: protein
kinase C-¢; PAI-1: plasminogen activator inhibitor-1.

5. Evidence for a Disconnection between Hepatic Steatosis and Metabolic Syndrome

Despite the clear bidirectional causal links between NAFLD and the metabolic syndrome, there
are certain situations where this appears to not be the case. In such scenarios there is a clinical
disconnect between NAFLD and insulin resistance. Several groups have demonstrated that it is possible
experimentally to induce either insulin resistance or hepatic steatosis individually without the presence
of the other. The first evidence that hepatic steatosis could occur independently of insulin resistance
was published in 2007 [74]. Here mice were raised which over-expressed acyl-CoA:diacylglycerol
acyltransferase 2 (DGAT 2), an enzyme which acts to catalyze the final step of hepatic triglyceride
biosynthesis. These mice were observed to develop marked hepatic steatosis in the absence of
any abnormalities in plasma glucose and insulin levels, glucose and insulin tolerance, or infusion
rates during hyperinsulinaemic euglycaemic clamp experiments. A subsequent study investigated
variability in the DGAT2 gene to see if this relationship could also be found in humans. The authors
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investigated 187 individuals from south Germany, and observed 2 single nucleotide polymorphisms
(SNPs) in DGAT2 that were associated with smaller decreases in liver fat following an exercise
programme than wild type genotype [75]. There were no observed changes in insulin sensitivity
among the different genotypes and thus the authors concluded that DGAT2 may play a role in
mediating a disconnection between insulin resistance and hepatic steatosis. Additionally, it has been
observed that inhibiting secretion of very low density lipoprotein (VLDL) from the liver by a genetic
modification or diet-induced choline deficiency in a mouse model results in accumulation of hepatic
triglyceride without causing insulin resistance [76,77].

More recently, there has been much interest focused on the patatin-like phospholipase
domain-containing protein-3 (PNPLA3) gene, which encodes for a protein called adiponutrin. The exact
role of this adiponutrin is currently unclear, however it is recognised as being a membrane-associated
protein expressed in hepatic and adipose tissue that possesses lipogenic and lipolytic activities.
There is evidence to suggest that it is located in lipid droplets and may play a role in triglyceride
hydrolysis [78]. PNPLA3 gene expression is upregulated following the post-prandial insulin spike, and
downregulated following fasting. It was reported in 2008 that a particular allele in PNPLA3 (I148M
or rs738409) was strongly associated with increased hepatic steatosis and hepatic inflammation,
with individuals homozygous for 1148M exhibiting twice the level of hepatic fat content than
non-carriers [79]. Interestingly, it was also observed that 1148M carrier frequency was highest in
Hispanic populations who are thought to have highest susceptibility to NAFLD, and regression
analysis demonstrated that the presence or absence of this PNPLA3 variant along with another (4531)
accounted for 72% of the observed ethnic differences in levels of hepatic steatosis from the Dallas Heart
Study. It was subsequently reported that the I148M variant has a marked effect on enzyme activity
and results in a disruption to normal hydrolysis of triglycerides leading to impaired secretion of very
low density lipoproteins (VLDL) [80,81]. Interestingly, it has subsequently been demonstrated that the
association between the 1148M variant and NAFLD in independent of insulin sensitivity as measured
by hyperinsulinaemic euglycaemic clamp, as well as central obesity [82,83]. Therefore the PNPLA3
1148M variant provides an example of how hepatic steatosis can occur in humans independently of
insulin resistance and the metabolic syndrome.

A similar scenario has been identified more recently with the transmembrane 6 superfamily
member 2 (TM6SF2) gene. TM6SF2 is expressed largely in the liver and intestine and is thought to play
a key role in the regulation of hepatic fat metabolism and the secretion of triglyceride-rich lipoproteins.
As with PNPLAS3, it is thought to be located in lipid droplets and siRNA inhibition is associated with
increased hepatocellular triglyceride concentration and lipid droplet lipid content [84]. Variation in
this gene has been shown to be associated with susceptibility to NAFLD independently of variation
in PNPLA3, with the variant being identified as E167K or rs58542926 [85]. The allele frequency of
this variant was shown to be 7.2% in European populations. A subsequent study of 361 individuals,
including 226 patients with biopsy-proven NAFLD, has shown that this variant has a modest effect on
NAFLD susceptibility and is associated with a slightly higher risk of developing NASH [86]. A further
study of 1074 individuals demonstrated an association between this variant and advanced fibrosis
and cirrhosis that occurred independently of potential confounding factors such as age, BMI, presence
of type 2 diabetes and PNPLA3 genotype status [87]. However, it should be noted that 2 studies
looking at this variant in Japanese [88] and Chinese [89] populations of individuals with biopsy-proven
NAFLD failed to show an association between it and fibrosis stage or general histological severity. The
Japanese study had relatively small numbers with 211 individuals and just 2 who were homozygous
for E167K, and it should be noted that both of these studies focused on a single ethnic group that
may not be directly applicable to other populations. A meta-analysis of 10 published studies looked
at the relationship between the E167K variant and the presence of NAFLD in a total of 5537 study
participants [90]. This revealed a carrier frequency of up to 7%, and demonstrated a moderate effect on
the risk of developing NAFLD with an odds ratio of 2.13 (95% confidence interval 1.36-3.30). Crucially,
it has been shown in a recent Finnish study that this variant is associated with preserved insulin
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sensitivity and a lack of hypertriglyceridaemia suggesting that this represents a distinct subtype of
NAFLD similar to that associated with the PNPLA3 1148M variant [91]. Figure 2 demonstrates the
relationship between the 2 described genetic variants and the lipid droplet within the hepatocyte.

Mitochondrial fatty
acid oxidation

Plasma

TAG———> BH1E > ViDL

TM6SF2
- E167K
TAG
DGAT lTATGL
PNPLA3 DAG ﬁ MAG
148V - o \ Fatty acid

Glycerol

Lipid droplet

Figure 2. Interaction between PNPLA3 and TM6SF2 variants and lipid metabolism in the hepatic lipid
droplet. TAG; triacylglycerol; DAG; diacylglycerol; MAG; monoacylglycerol; VLDL; very low density
lipoprotein; DGAT; diglyceride acyltransferase; ATGL; adipose triglyceride lipase; HSL; hormone
sensitive lipase.

Further evidence for a dissociation between hepatic steatosis and insulin resistance may be found
in the case of familial hypobetalipoproteinaemia (FHBL). Patients with FHBL have very low or absent
levels of apolipoprotein B and this leads to an impairment of very low density lipoprotein export from
the liver and consequently intra-hepatic accumulation of triglyceride. Amaro et al. [92] investigated a
small number of overweight or obese patients with FHBL and observed that these individuals had
greater insulin sensitivity than BMI- and hepatic triglyceride content-matched subjects with NAFLD
alone. The authors speculate that this would support the assertion that hepatic steatosis is a marker
rather than a cause of the metabolic syndrome, however this was a very small study and it is not clear
how applicable these findings are to the wider population of people with NAFLD. It has also been
observed that lysosomal acid lipase deficiency (LAL-D), a rare autosomal recessive inherited condition,
can lead to hepatic steatosis in the absence of metabolic syndrome [93].

There is also evidence that adipose triacylglycerol lipase (ATGL) may play a role in a potential
dissociation between insulin resistance and hepatic steatosis [94]. ATGL acts to initiate hydrolysis of
stored lipid by selectively cleaving triacylglycerols and not diacylglycerols or monoacylglycerols.
Knock-out studies have demonstrated that ATGL-deficient mice experience a marked hepatic
steatosis [95] and similarly overexpression of the ATGL gene leads to a reduction in liver fat in
mice [96]. One study investigated the effects of ATGL gene manipulation on insulin sensitivity in
mice, and here the authors observed that while ATGL knock-out mice do develop marked hepatic
steatosis this does not result in any changes to their hepatocyte insulin sensitivity [97]. Hepatic ATGL
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overproduction in the same mice resulted in reduced hepatic steatosis, and interestingly the authors
did observe a mild increase in insulin sensitivity although this was not sufficiently large to result in
improvements in fasting glucose concentrations or insulinaemia.

Further insights into a possible disconnection between hepatic steatosis and insulin resistance can
be gained by looking at disorders of fatty acid oxidation. In health, fasting stimulates gluconeogenesis
in the liver fuelled by oxidation of fatty acids. If fatty acid oxidation is impaired this can lead
to fasting hypoglycaemia and accumulation of lipids resulting in hepatic steatosis [98]. In such
situations individuals will exhibit enhanced glucose tolerance, therefore exhibiting the disconnection.
This occurs in numerous inborn errors of fatty acid oxidation such as medium chain acyl-CoA
dehydrogenase deficiency (MCADD) and carnitine palmitoyl transferase II (CPT-2) deficiency [99].
Additionally, peroxisome proliferator-activated receptor alpha (PPAR«) stimulates the expression
of many genes involved in fatty acid oxidation. Experimental mice who have undergone PPARx
knock-out develop marked hepatic steatosis after being exposed to a high fat diet, and after fasting
demonstrate hypoglycaemia and increased insulin sensitivity [100].

6. Conclusions

It is clear from the literature that there is a complicated causal relationship between NAFLD and
the metabolic syndrome. NAFLD is considered by many to represent the hepatic manifestation of the
metabolic syndrome however rigidly sticking to this dogma does not appreciate the complexity of the
relationship. Clearly the two clinical entities share many aspects of their pathophysiology, and insulin
resistance is at the centre of both. There is sufficient evidence now for not only reciprocal causality
between these disease states, but also each acting as a perpetuating or exacerbating factor for the other.

There are, however, many aspects of the interactions between NAFLD and the metabolic syndrome
that are yet to be fully elucidated, and this is clearly demonstrated by the situations where there is
an apparent disconnect or dissociation between them. Arguably, the hepatic steatosis that occurs in
these situations due to genetic variation and inborn errors of metabolic can be considered a separate
clinical entity to that which is associated with insulin resistance and the metabolic syndrome. However,
focusing on the mechanisms that underlie these observations of dissociation could prove valuable for
identifying new therapeutic targets in metabolic disease.
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Abbreviations

The following abbreviations are used in this manuscript:

NAFLD Non-alcoholic fatty liver disease

PNPLA3 Patatin-like phospholipase domain-containing protein-3
TM6SE2 Transmembrane 6 superfamily member 2 protein
HDL-C High density lipoprotein cholesterol

NASH Non-alcoholic steatohepatitis

PKC-¢ Protein kinase C-¢

FLI Fatty liver index

PAI-1 Plasminogen activator inhibitor-1

TNF-« Tumour necrosis factor-o
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IL Interleukin
DAG Diacylglycerols
DGAT Diacylglycerol acyltransferase
SNP Single nucleotide polymorphism
VLDL Very low density lipoprotein
TAG Triacylglycerol
MAG Monoacylglycerol
ATGL Adipose triglyceride lipase
HSL Hormone sensitive lipase
FHBL Familial hypobetalipoproteinaemia
BMI Body mass index
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