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Abstract: Scrophularia kakudensis is an important medicinal plant with pharmaceutically valuable
secondary metabolites. To develop a sustainable source of naturaceuticals with vital therapeutic
importance, a cell suspension culture was established in S. kakudensis for the first time. Friable calli
were induced from the leaf explants cultured on a Murashige and Skoog (MS) medium containing
3.0 mg- L~! 6-benzyladenine (BA) in a combination with 2 mg- L~! 2,4-dichlorophenoxy acetic acid
(2,4-D). From the callus cultures, a cell suspension culture was initiated and the cellular differentiation
was investigated. In addition, the effect of biotic elicitors such as methyl jasmonate (MeJa), salicylic
acid (SA), and sodium nitroprusside (SNP) on the accumulation of secondary metabolites and
antioxidant properties was demonstrated. Among the elicitors, the Me]a elicited the accumulation of
total phenols, flavonoids, and acacetin, a flavonoid compound with multiple pharmaceutical values.
Similarly, the higher concentrations of the Me]a significantly modulated the activities of antioxidant
enzymes and enhanced the scavenging potentials of free radicals of cell suspension extracts. Overall,
the outcomes of this study can be utilized for the large scale production of pharmaceutically important
secondary metabolites from S. kakudensis through cell suspension cultures.

Keywords: acacetin; antioxidant enzymes activity; elicitation; free radicals; secondary metabolites;
cell culture

1. Introduction

Plant tissue culture based in vitro culture systems acts as an alternative method for the production
of secondary metabolites, thereby conserving the natural sources [1]. Plant cell cultures are considered
a promising source for the sustainable production of pharmaceutically valuable secondary metabolites
of industrial importance, but the commercialization of the cell-suspension-mediated synthesis of
secondary metabolites is limited by low yield and poor quality [2,3]. Thus, the accumulation of high
secondary metabolite contents is essential for the commercial exploitation of cell suspension cultures.
In order to address the productivity issues, incorporation of elicitors in suspension cultures is claimed
to be the efficient approach [4]. Although various elicitation strategies are available, the enhancement of
bioactive compounds using chemical elicitors is predominantly considered because of its high efficiency
and yield [4]. In general, the chemical elicitors employed predominantly belong to the plant signaling
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molecules such as methyl jasmonate (Me]a), salicylic acid (SA), and nitric oxide (NO) generating
molecules like sodium nitroprusside (SNP). MeJa is a ubiquitous plant signaling messenger involved
in diverse regulatory functions such as defense response against wounding, pathogens, temperature
and salinity stress [5]. Moreover, the MeJa is a well-known elicitor of secondary metabolism in
plants. Similarly, SA acts as a vital stress signaling component widely studied for its involvement
in systemic acquired resistance (SAR) against diseases and pathogens [5]. In addition, NO is a free
radical with multiple physiological implications in plants. According to previous studies, NO is
believed to play important roles in signal transduction and plant defense by enhancing the secondary
metabolism [6]. Thus these chemical elicitor molecules have been previously employed to stimulate
the production of various secondary metabolites, such as isoflavonoid [7], terpenes [8], phytosterols [9],
and phenylpropanoids [10]. Although the effects of MeJa, SA, and NO on the accumulation of
secondary metabolites have been studied extensively, their influences are species-specific. Therefore,
it is important to select the appropriate elicitor for large-scale production of secondary metabolites.
Hence, in this study the effect of MeJa, SA, and NO were investigated in the cell suspension culture of
Scrophularia kakudensis.

Scrophularia kakudensis Franch is a pharmaceutically important plant species distributed around the
mountains of Korea, Japan, and China. Previous reports suggested the occurrence of vital secondary
metabolites such as acacetin [11] and scrophulasaponins [12]. Besides the therapeutic properties,
conventional propagation of the plant has been hindered by seed dormancy and narrow environmental
adaptations which obstructs the utilization of the plant material. Recently, we have established an
efficient micropropagation protocol for S. kakudensis and also investigated the content of acacetin on
different tissues in the micropropagated plants [13]. Among the Scrophularia species, generation of
callus has been described in S. nodosa [14] and a recent report by Khanpour-Ardestani et al. [15] has
dealt with the cell suspension culture of S. straiata; however, there is no information available with
respect to S. kakudensis. Owing to the medicinal importance of S. kakudensis, the present endeavor has
established cell suspension cultures and investigated the effects of different chemical elicitors on the
accumulation of bioactive compounds and elucidated the free radical scavenging properties of the
extracts derived from cell cultures.

2. Results

2.1. Establishment of Cell Suspension Culture and Morphological Observation of Cells

After two weeks, the friable calli started to emerge on the cut ends of the leaf explants
cultured on the MS medium containing 3.0 mg-L~! 6-benzyladenine (BA) along with 0.5 mg-L~!
2,4-dichlorophenoxy aceticacid (2,4-D) (Figure 1A,B) and no callus formation was noticed in the leaf
explants cultured on the medium devoid of plant growth regulators (PGRs). The callus formed was
repeatedly subcultured to maintain the stock cultures. After six subcultures (each at a 25 days interval),
the friable calli were transferred to the liquid MS medium containing PGRs (Figure 1C). In the initial
stages the suspended calli produced clumps of cells within 10 days of inoculation and attained a
homogenous granular stage after three weeks (Figure 1D). The aggregates of cells were separated by
continuous shaking and the suspension of loose cell aggregates was obtained.

The initial stages of suspension culture consisted of a matrix of cells, and upon repeated passaging
steps, the distinct single cells were visualized under a light microscope (Figure 2A). The microscopic
observation of the suspension culture illustrated the structural characteristics of the cells is shown
in Figure 2B. The morphological appearances of the cells were small, round, or oval shaped with
a distinct cell wall. The concentrated nuclei of the cells were found to be bounded by the cell wall
(Figure 2C).
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Figure 1. Induction of friable callus after two weeks (A) and four weeks (B); friable callus cultured in
liquid medium with cells deposited on the walls of the flask (C); cell suspension cultures derived from
callus cultures (D).

B

Figure 2. Microscopic observation of matrix of cells in cell suspension cultures (A); cluster of cells
stained using toluidine blue (B); ovoid shaped cells with distinct nucleus represented with the
arrows (C).

2.2. Effect of Chemical Elicitors on the Contents of Endogenous Free Radicals

The elicitor treatments significantly influenced the production of free radicals such as super
oxide and hydrogen peroxide in the cell cultures. On the other hand, the un-elicited control cultures
displayed the least amount of endogenous O,- and H,O, contents (Figure 3). Cells treated with Me]a,
especially in 150 or 200 M concentrations, displayed the maximum amount of O,- accumulation
(Figure 3A). However, the HyO, content was significantly increased in both SA (150 or 200 uM) and
MeJa (150 or 200 uM) treatments (Figure 3B). Both the levels of O,- and H,O, were less affected by
different concentrations of SNP.
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Figure 3. Effect of chemical elicitor treatments on the reactive oxygen species. Levels of superoxide (A)
and endogenous hydrogen peroxide content (B) in cell suspension cultures. Data are the mean + SE
from three replicates. Different letters (a, b, c) in one measurement indicate statistically significant
difference at p < 0.05 by Duncan multiple range test.

2.3. Effect of Chemical Elicitors on the Antioxidant Enzyme Activities of the Cells

The analysis of antioxidant enzyme activities revealed that the cell cultures elicited with MeJa,
SA, and SNP consisted of higher amounts of antioxidant enzymes activities in comparison with the
control cultures (Figure 4). In accordance with the endogenous free radicals, the supplementation of
Me]Ja particularly in a 200 pM concentration greatly increased the activities of superoxide dismutase
(SOD), guaiacol peroxidase (GPX), and ascorbate peroxidase (APX) compare to the other elicitors. In
detail, the greatest activity of SOD was observed in the MeJa at 200 uM concentration, whereas the
application of SA and SNP elicitors increased the SOD activity without any significant differences
(Figure 4A). In addition, activities of peroxidases (APX and GPX) were significantly enhanced by the
MeJa treatments, especially in the 200 uM MeJa elicited cells (Figure 4B,C). However, the activity of
catalase (CAT) was increased in the cells treated with increasing concentration of SNP treatments
followed by the Me]a treatments (Figure 4D).
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Figure 4. Effect of chemical elicitor treatments on antioxidant enzymes activities of cell suspension
cultures. The activity of superoxide dismutase (A); ascorbate peroxidase (B); guaiacol peroxidase (C);
and catalase (D) estimated in the cell suspension culture. Data are the mean + SE from three replicates.
Different letters (a, b, ¢) in one measurement indicate statistically significant difference at p < 0.05 by
Duncan multiple range test.
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2.4. Effect of Chemical Elicitors on the Accumulation of Bioactive Compounds

The synthesis of bioactive compounds such as total phenols, total flavonoids, and acacetin
were significantly influenced by the elicitor treatments (Figure 5). However, in contrast to the
antioxidant enzyme activities, the highest concentration (200 tM) of MeJa and SNP slightly decreased
the production of the total phenols. The greatest content of total phenols was noted in the cell extracts
treated with the 150 uM MeJa (Figure 5A). On the contrary, the synthesis of total flavonoids was
enhanced by the 200 uM Me]Ja treatment (Figure 5B). Similarly, the accumulation of the acacetin was
elicited by the increasing concentrations of elicitors. Among the elicitors, MeJa significantly increased
the acacetin content in the cell suspensions. The greatest content of acacetin was obtained in the cell
suspension cultures elicited with the 200 pM MeJa more than the other elicitor treatments (Figure 5C).
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Figure 5. Effect of chemical elicitor treatments on the secondary metabolites. Total phenol content (A);
total flavonoid content (B); and acacetin content (C) of cell suspension cultures. Data are the mean + SE
from three replicates. Different letters (a, b, ¢) in one measurement indicate statistically significant
difference at p < 0.05 by Duncan multiple range test.

2.5. Effect of Chemical Elicitors on the Free Radical Scavenging Potential of the Cell Extracts

The chemical elicitation treatments significantly enhanced the free radical scavenging potential
of the extracts of cell suspension culture in comparison with the control (Figure 6). The greatest NO
scavenging potential of the cell extract (28.7%) was noted in the 200 uM MeJa treatment followed by SA
in a concentration-dependent manner (Figure 6A). Similarly, the MeJa application in 200 uM increased
the H,O, scavenging potential of the cell extract to 48.1% than the other treatments (Figure 6B).
However, the application of the SA and SNP elicitors displayed non-significant difference in the HyO,
scavenging potential. In accordance with the H,O, scavenging, the extracts of cells elicited with the
MeJa in 200 uM concentration resulted in the maximum *OH scavenging potential of 32.6% followed
by the 200 uM SA treatment (Figure 6C). Moreover, the greatest DPPH scavenging percent (23.6%) of
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the cell extracts was obtained in the 200 tM MeJa treatment followed by the 200 uM SNP treatment
(Figure 6D).
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Figure 6. Effect of chemical elicitor treatments on free radical scavenging potentials of the extracts
of cell suspension cultures. Nitric oxide scavenging potential (A); Hydrogen peroxide scavenging
percentage (B); Hydroxyl radical scavenging capacity (C); DPPH radical scavenging potential (D) of
cell extracts. Data are the mean + SE from three replicates. Different letters (a, b, c) in one measurement
indicate statistically significant difference at p < 0.05 by Duncan multiple range test.

Overall, the results suggest that the MeJa mediated-elicitation increases the accumulation of the
bioactive compounds and the antioxidant potential than the SA and SNP in the cell suspension cultures
of S. kakudensis.

3. Discussion

Plant-derived secondary metabolites are vital resources for naturaceuticals. However, the direct
isolation of secondary metabolites from plants, and chemical synthesis of these compounds are
cumbersome [16]. In order to overcome these difficulties cell suspension culture has been established
in notable medicinal plants [17]. The extract of S. kakudensis is reported to encompass important
secondary metabolites with pharmaceutical importance [12,13]. However, the lack of potential plant
materials for the large-scale production of secondary metabolites hinders the utilization of S. kakudensis.
Therefore, in the present study the cell suspension culture of S. kakudensis has been established.
Callogenesis was achieved using leaf explants by the combination of BA and 2,4-D. According to a
recent report, the addition of BA enhances the induction of callus in S. kakudensis particularly, at a
3.0 mg- L~! concentration [13]. In the present experiment, the synthetic auxin 2,4-D was employed to
induce the friable calli. However, no callus induction was observed in the PGR free medium.

The friable calli produced in the PGR medium were cultured in the liquid medium with
continuous rotation to obtain the cell suspension. Remarkably, the proliferation of cells was
accelerated in the liquid medium and the aggregation of granular cells was visible. Similarly, the
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friable calli displayed high frequency of cell proliferation upon transferring to the liquid medium
in Halodule pinifolia [18]. Our results are in accordance with the previous studies reported on
Withinia somnifera [19], Psychotria carthogenensis [20], and Vetiveria zizanioides [21]. Subsequent passage
of the cells to new medium resulted in the formation of suspension with distinct single cells. The
microscopic analysis of the cell suspension culture of S. kakudensis revealed the presence of single as
well as clumps of cells. The morphological appearances of S. kaudensis cells were similar to the cell
structures observed in S. striata [15] and Halodule pinifolia [18].

In order to investigate the effects of chemical elicitors, the cell suspension culture of S. kakudensis
was elicited with MeJa, SA, and SNP. According to previous findings, the exogenous application
of chemical elicitors mimics the response of a pathogen attack or wound signal, which triggers a
defense response in plants by inducing the oxidative burst [15,22]. Correspondingly, the oxidative
perturbation in the cells resulted in the accumulation of endogenous reactive oxygen species (O,- and
H;,0;) in a concentration-dependent manner [23]. Among the elicitors, MeJa enhanced the production
of O,- and HyO; in the cell suspension culture. In general, the MeJa is considered a potent plant
signaling molecule which can modulate vital developmental processes and stress-related metabolism
in plants [24-26]. The induction of ROS production upon exogenous application of MeJA has been
evidenced in cell suspension culture of Petroselinum crispum [25]. According to Zhang and Xing [27],
the induction of ROS increased in long-term Me]Ja treated protoplasts than the control cells. Moreover,
the report illustrated that the H,O, is vital for the Me]a signaling pathway, particularly with respect to
programmed cell death (apoptosis) [27]. Moreover, the elicitor compounds MeJa and SA synergistically
co-potentiated the production of ROS especially H,O; in Arabidopsis and Tobacco [28]. In addition,
the MeJa-treated plants displayed the occurrence of an oxidative burst leading to the activation of
cascade of antioxidant metabolism in plants [28-30]. Moreover, the stimulation of H,O, content by
MeJa treatment resulted in the activation of defense signaling in tomato [31]. Thus, the oxidative
stress induced by the elicitors triggered the antioxidant enzymes in order to detoxify the ROS in cell
suspension cultures. In response to stress conditions, plants activate the antioxidant enzymes such as
SOD, CAT, APX, and GPX. During the ROS detoxification process, the primary reaction was catalyzed
by the SOD. This enzyme provides the first line of defense against the toxic effects of elevated levels of
ROS [29]. The SOD enzyme catalyzes the dismutation of O,- into HyO, and O,. Subsequently the
H,0, is scavenged by CAT and/or peroxidases such as GPX and APX into H,O and O, [29].

The elicitors increased the accumulation of major antioxidant compounds such as total phenols
and total flavonoids in the cell suspension cultures of S. kakudensis. In general, the elicitor compounds
positively influence the transcriptional regulation of genes of the vital enzymes involved in the
phenylpropanoid pathway. For instance, the up-regulation of phenylalanine ammonia lyase (PAL)
m-RNA transcripts by MeJa, SA, and SNP have been reported previously [6,24,31-34]. Hence,
the predominant antioxidant compounds such as phenols and flavonoids are synthesized via the
phenylpropanoid pathway, the stimulation of the important enzymes in the pathway result in the
accumulation of secondary metabolites. Although the elicitor molecules increase the activity of
thenphenylpropanoid pathway, the effect of the elicitor molecules varies between plant species.
However, in S. kakudensis, Me]a significantly enhanced the production of total phenols and total
flavonoids. Likewise, the Me]Ja elicited the synthesis of polyphenolic compounds and the flavonol
content in the Vitis vinifera cell cultures [3].

Moreover, the higher production of endogenous ROS significantly correlated with the secondary
metabolite content. Similarly, the higher-concentration elicitors significantly elicited the synthesis of
acacetin in the cell culture. Acacetin is a therapeutically important flavonoid compound present in
the S. kakudensis. The present investigation is the first report that deals with the effect of chemical
elicitors on the accumulation of acacetin. The induction of genes related to the flavonoid biosynthesis
by the elicitors could be the possible rationale behind the elicitation of acacetin in cell suspension
culture [33]. Similarly, the activation of genes responsible for the synthesis of flavonoids was observed
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in Glycine max [34], Taxus cuspidata [35], and Petunia [36]. In Panax ginseng, the root cultures treated
with MeJa and SA increased the production of ginsenosides [29].

Antioxidants such as phenols and flavonoids prevent from the excess production of free radicals
in the cells. Among the free radicals, HyO,, *OH, and NO, are the most harmful radicals to the
cells [37]. Eventually, the increases in the levels of free radicals result in cell death by oxidation of the
bio-macromolecules such as protein, DNA, and unsaturated fatty acids in humans and animals [38].
Therefore, it is necessary to evaluate the ability of the S. kakudensis cell extracts to combat free radicals.
According to the present results, both the elicited and the control cell extracts possessed free radical
scavenging potential. However, the cell extracts obtained from the elicitor-treated cells displayed higher
free radical scavenging activities. Taken together, the elicitation of bioactive secondary metabolites by
the chemical elicitors improved the free radical scavenging potentials of the cell extracts.

4. Experimental Section

4.1. Plant Materials and Culture Conditions

Leaf explants were excised from the in vitro shoots of S. kakudensis and inoculated on the
Murashige and Skoog (MS) [39] basal medium with 3% (w/v) sucrose and 0.8% (w/v) agar containing
plant growth regulators. For friable callus induction, 3.0 mg- L~! 6-benzyladenine (BA) was employed
based on the previous report [13] in combination with 0.5 mg- L~! 2,4-dichlorophenoxyacetic acid
(2,4-D). The pH of all the media used in this experiment was adjusted to 5.8 before autoclaving at
121 °C for 15 min. All cultures were maintained at 25 °C and 80% RH under a 16 h photoperiod
with 50 umol- m~—2.s~1 PPFD provided by cool white fluorescent light (40 W tubes, Philips,
The Netherlands).

4.2. Establishment of Cell Suspension and Elicitor Treatments

The friable callus induced from the leaf explant was transferred to liquid MS medium (100 mL)
containing 3.0 mg- L~! BA along with 0.5 mg-L~! 2,4-D in 200 mL Erlenmeyer flask. The cultures were
maintained under continuous shaking with 120 rpm under 16 h photoperiod with 50 pmol- m=2. s~
PPFD provided by cool white fluorescent light (40 W tubes, Philips, The Netherlands) in a rotary
shaking incubator (KSI-200L, Koencon, Hanam, Korea). The cell suspension cultures were subcultured
for every three week for 12 weeks, until the desired amount of suspensions were acquired for elicitation.
For elicitation treatments, elicitors such as methyl jasmonate (Me]Ja), salicylic acid (SA), and sodium
nitroprusside (SNP) in 50-200 uM concentrations were added to the medium. The cell cultures were
maintained in the elicitor treatment for two weeks before harvesting. The cell cultures without elicitor
treatment were considered controls. All treatments were conducted with three biological replicates
and the experiment was conducted in the randomized block design.

4.3. Microscopic Observation of Cells

For microscopic observation, cells were stained with 0.01% toluidine blue and observed under
10x and 40x magnifications using a light microscope (Y-TV55, Nikon, Tokyo, Japan).

4.4. Estimation of Superoxide (O,-) and Hydrogen Peroxide (H,O;)

For superoxide estimation, samples (0.1 g) were lyophilized and mixed with 0.5 mL of 65 mM
phosphate buffer (pH 7.8). The homogenate was centrifuged at 5000x g for 10 min at 4 °C. The
supernatant (0.1 mL) was mixed with 10 mM hydroxylamine chlorohydrate (0.02 mL) and 65 mM
phosphate buffer (pH 7.8) and incubated at room temperature for 20 min. After the incubation, the
mixture was combined with 17 mM sulfanilamide (0.02 mL) and 7 mM o-napthylamine and again
incubated in room temperature for 20 min. To prevent the chlorophyll interference, ether (0.6 mL) was
added to the mixture and centrifuge at 10,000x g for 15 min at 4 °C. The absorbance of the supernatant
was measure at 530 nm and the superoxide content was estimated using the standard sodium nitrite
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calibration curve. The endogenous H,O, level was measured at 390 nm using the standard H,O,
calibration curve [40].

4.5. Estimation of Antioxidant Enzyme Activities

To determine the antioxidant enzymes activity, 0.1 g of vaccum-dried cells were homogenized
in 50 mM phosphate buffer (pH 7.0) containing 1 mM EDTA, 0.05% triton X, and 1 mM
polyvinylpyrolidone (PVP). Then the homogenate was centrifuged at 10,000 g for 20 min at 4 °C and
the supernatant was used for determination of antioxidant enzymes activity. Superoxide dismutase
(SOD), catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase (GPX) enzyme activities
were estimated by following the protocols of Manivannan et al. [40]. The total protein content was
estimated at 595 nm according to Bradford method [41] using bovine serum albumin as standard.

4.6. Extract Preparation for Phytochemical Analysis

The cells were harvested using 0.45 uM sieve filters and the excess medium was vacuum dried.
For phytochemical and free radical scavenging assessment, control and elicitor treated suspensions
were extracted with methanol. Briefly, the cells (0.1 g) were lyophilized and extracted with 1 mL of
80% (v/v) methanol for overnight under 150 rpm in a rotating shaker. The resulting homogenates were
centrifuged at 10,000 g for 10 min and the supernatant was employed for the in vitro assays [13].

4.7. Estimation of Bioactive Compounds

4.7.1. Estimation of Total Phenols and Flavonoids

For total phenol estimation, aliquot of the extracts (0.1 mL) made up to 1 mL with distilled water
was mixed with 0.5 mL of Folin-Ciocalteu reagent (1:1 with water) and 2.5 mL of sodium carbonate
solution (7.5%). The reaction mixture was vortexed vigorously and incubated in dark for 40 min. After
incubation the absorbance was recorded at 725 nm and the total phenol content was expressed as gallic
acid equivalents (GAE) [11]. The total flavonoid composition was determined based on the aluminum
chloride calorimetric method. Samples (0.1 mL) were made up to 1 mL with 80% methanol and used
for the analysis by adding 1 mL of 2% aluminum chloride solution. The absorbance of the reaction
mixture was measured at 415 nm after 30 min incubation and the total flavonoids were calculated from
the standard quercetin calibration curve [13].

4.7.2. Quantification of Acacetin Using High Performance Liquid Chromatography (HPLC)

The plant extract preparation and estimation of acacetin was carried out according to the
procedure outlined by Yang et al. [42]. Briefly, the samples (1.0 g) were lyophilized and refluxed
in 50 mL methanol for 24 h in a rotatory shaker at 150 rpm and concentrated under reduced pressure.
The concentrated extracts were filtered in a 0.45 um syringe filter prior to chromatographic analysis in
a 1200 series HPLC instrument with diode array detector (DAD) (Waters, MA, USA). The mobile phase
consisted of 100% acetonitrile (solvent A) and 1.0% glacial acetic acid (solvent B). The chromatographic
separation was performed with solvent proportion of 37:63 using an Hypersil ODS column (Thermo
Fischer Scientific, MA, USA) (4.6 x 250 mm, 5 uM) with 1.25 mL- min~! flow rate with 10 uL sample
injection volume. The absorbance of the standards and samples were recorded at 326 nm. The
quantity of acacetin content was elucidated from the standard calibration curve. The limit of detection
(LOD) and limit of quantitation (LOQ) values were determined from the standard curve. An HPLC
chromatogram of the acacetin in reference and the cell extract along with LOD and LOQ values have
been provided in the supplementary material Figure S1.
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4.8. Assessment of Free Radicals Scavenging Potential of Cell Extracts

4.8.1. Superoxide (O,-) Radical Scavenging Assay

Superoxide scavenging activity of the extracts was determined based on the ability of the extracts
to inhibit formazan production by bleaching the superoxide radicals generated by nitroblue tetrazolium
salt with riboflavin and light. The extracts (0.1 mL) were added to the reaction mixture (0.1 mg NBT,
12 mM EDTA, and 20 pg riboflavin in 50 mM sodium phosphate buffer (pH 7.6)) and illuminated by
light. After 90 s the absorbance was measured at 590 nm [37].

4.8.2. Nitric Oxide (NO) Radical Scavenging Assay

In this assay the inhibition of NO production by the extracts was determined using sodium
nitroprusside (SNP) mediated generation of nitric oxide. The nitric oxide spontaneously produced
by SNP reacts with the oxygen to form nitrite ions that can be measured using a Griess reagent. The
reaction was initiated by the addition of 10 mM SNP in phosphate-buffered saline to the extracts
(0.1 mL) and allowed to stand for 150 min in room temperature. After incubation, 0.5 mL of
freshly prepared Griess reagent (2% phosphoric acid, 1% sulfanilamide, and 0.1% N-(1-napthyl)
ethylenediamine dihydrochloride) was added and the absorbance was determined at 546 nm [37].

4.8.3. Hydrogen Peroxide (H,O,) Radical Scavenging Assay

For H,O; scavenging assay, 0.6 mL of H,O, (2 mM) was mixed with the extracts and incubated
for 10 min. The absorbance was noted at 230 nm against a blank solution devoid of H,O; according to
the method described by Kumaran and Karunakaran [37].

4.8.4. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Assay

The stable DPPH radical scavenging ability of the extracts was analyzed by mixing sample extracts
(40 uL) to 1960 pL of 0.1 mM methanolic solution of DPPH and allowed to stand for 25 min under dark
conditions. The absorbance of the sample was measured at 517 nm [13].

For all the free radical scavenging assay ascorbic acid was employed as the standard. The radical
scavenging % was calculated using the formula [(Ac — As)/Ac] x 100 where A is the absorbance value
of the control (reaction mixture without extract) and A is the OD value of the extract or ascorbic acid.

All the chemicals used for the elicitation treatments, phytochemical analysis, and antioxidant
potential assessment were of analytical grade purchased from Sigma Aldrich (St. Louis, MO, USA).

4.9. Statistical Analysis

The treatments were set up in a completely randomized design with three replications per
treatment. Significant differences among the treatments were determined by analysis of variance
(ANOVA) followed by Duncan’s multiple range tests at a significant level of p < 0.05 (n = 3) using
Statistical Analysis System (SAS, V.6.12) computer package (SAS Institute Inc., Cary, NC, USA). The
Pearson correlation co-efficients of the endogenous ROS and secondary metabolites were provided in
the supplementary material Table S1.

5. Conclusions

In conclusion, the cell suspension culture system has been successfully established for S. kakudensis.
The elicitor treatments significantly modulated the accumulation of endogenous O,- and H,O,,
which in turn activated the antioxidant metabolism in cells. Eventually, the perturbation in the
antioxidant mechanism increased the synthesis of bioactive phytochemicals such as total phenols
and total flavonoids. In addition, the MeJa treatment significantly elicited the acacetin content in the
cell suspension culture. The improvement in the levels of phytochemicals enhanced the free radical
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scavenging ability of the cell suspension extracts. Therefore, the outcomes of the present study can be
utilized for the large-scale production of bioactive compounds in S. kakudensis.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067 /17 /
3/399/s1.
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