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Abstract: The electronic absorption spectra, ground-state geometries and electronic structures of
symmetric and asymmetric squaraine dyes (SQD1–SQD4) were investigated using density functional
theory (DFT) and time-dependent (TD-DFT) density functional theory at the B3LYP/6-311++G** level.
The calculated ground-state geometries reveal pronounced conjugation in these dyes. Long-range
corrected time dependent density functionals Perdew, Burke and Ernzerhof (PBE, PBE1PBE (PBE0)),
and the exchange functional of Tao, Perdew, Staroverov, and Scuseria (TPSSh) with 6-311++G** basis
set were employed to examine optical absorption properties. In an extensive comparison between
the optical data and DFT benchmark calculations, the BEP functional with 6-311++G** basis set was
found to be the most appropriate in describing the electronic absorption spectra. The calculated
energy values of lowest unoccupied molecular orbitals (LUMO) were 3.41, 3.19, 3.38 and 3.23 eV for
SQD1, SQD2, SQD3, and SQD4, respectively. These values lie above the LUMO energy (´4.26 eV)
of the conduction band of TiO2 nanoparticles indicating possible electron injection from the excited
dyes to the conduction band of the TiO2 in dye-sensitized solar cells (DSSCs). Also, aromaticity
computation for these dyes are in good agreement with the data obtained optically and geometrically
with SQD4 as the highest aromatic structure. Based on the optimized molecular geometries, relative
positions of the frontier orbitals, and the absorption maxima, we propose that these dyes are suitable
components of photovoltaic DSSC devices.

Keywords: squaraine dyes; TD-DFT; electron transfer; optical properties; HOMO-LUMO gap

1. Introduction

Dye-sensitized solar cells (DSSCs) represent one of the most promising approaches for the direct
conversion of sun light to electricity at high efficiency with low cost [1–5]. DSSCs utilize sensitizing
dyes adsorbed on the surface of TiO2 nanoparticles. The dye plays a vital role during absorption of
light by which the excited electrons are injected into the TiO2 conduction band and travel to reach
the counter-electrode. Squaraines are very attractive for such applications because they possess high
extinction coefficients, inherent stability, and intense absorption in the far-red/near-Infrared (NIR)
region. Several researchers have investigated squaraines as sensitizers for large-band gap oxide
semiconductors [6–13]. The performance of DSSCs depends upon many factors such as the absorption
efficiency of the sensitizing dye for the solar light spectrum. The electron transfer and separation of
charge play important roles in the performance of DSSC. The electron transfer occurs between the
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highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of dyes
and conduction band of TiO2. In view of these factors, which are related to ground and excited states,
it is important to explore the electronic structures of both ground and excited states of the sensitizing
dye molecules. Their electronic structures have been investigated using density functional theory
(DFT), which has emerged as a reliable standard tool for theoretical treatment of organic dyes. In this
regard, time-dependent (TD-DFT) calculations have been employed for studying the structures and
absorption spectra of dye sensitizers for DSSCs [14–23]. In the present work, it was hypothesized that
a good sensitizer molecule for DSSC which has one and/or two carboxyl anchoring groups needs to
absorb in the NIR for a better light harvesting. Also, the presence of bulky alkyl groups in the sensitizer
would be beneficial to prevent dye aggregation. To test the impact of these three parameters on the
electronic properties the four dyes SQD1–SQD4 were designed. Furthermore, TD-DFT calculations
were used to investigate the electronic absorption spectra, both, in the gas phase and in solvents of
different polarity. Also, the energies of frontier molecular orbitals (FMO) of the studied dyes were
evaluated to understand the electron transfer and charge separation mechanism.

2. Results and Discussion

SQD1–SQD4 share a squaric-indoline-carboxylic moiety as acceptor and differ in donors. Only
SQD1 is a symmetric molecule and this structural difference was monitored via their optical,
geometrical and electronic properties. Further, we have added different alkyl groups in different
positions to reduce dye aggregation (Scheme 1).
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2.1. Molecular Geometries

The optimized molecular geometries of SQD1–SQD4 in the ground state are shown in Figure 1.
The squaric rings of all dyes appear almost planar, in contrast to the fact that squaric acid itself has a
bent structure. For example, in the dye SQD1, the dihedral angel of the squaric ring with one indoline
moiety is about 28 and 0.38˝ with the other indoline. These planar structures enhanced the aromatic
character of the heterocyclic ring, and thus increasing the degree of electronic resonance between donor
and acceptor moieties. On the other hand, pentyl groups present in all molecules result in a dihedral
angels of 79˝–91˝ as shown in Figure 1. In previous studies dyes with non-planar conformation were
found to suppress molecular aggregation and reduce the rate of internal charge recombination, thus
improving cell efficiency [9]. Therefore, it is anticipated that this large dihedral angles caused by the
presence of pentyl groups in SQD1–SQD4 would lower the aggregation of dye molecules. The C–C
bond lengths in squaric rings, heterocyclic moieties in both sides and the connecting bonds between
them range from 1.37–1.48 Å, which are shorter than a C–C single bond (1.54 Å), but longer than a
C=C double bond (1.34 Å, indicating pronounced resonance structures for all dyes). The replacement
of indoline moieties shown in SQD1 and SQD2 with quinoline present in SQD3 and SQD4 increased
the C–C bond lengths that connect them with squaric ring from 1.39 to 1.41 Å, respectively. This result
is nicely correlated with the fact that the indoline moiety is non-aromatic, whereas quinoline one
is aromatic.

Int. J. Mol. Sci. 2016, 17, 487 3 of 12 

2.1. Molecular Geometries 

The optimized molecular geometries of SQD1–SQD4 in the ground state are shown in Figure 1. 
The squaric rings of all dyes appear almost planar, in contrast to the fact that squaric acid itself has a 
bent structure. For example, in the dye SQD1, the dihedral angel of the squaric ring with one indoline 
moiety is about 28 and 0.38° with the other indoline. These planar structures enhanced the aromatic 
character of the heterocyclic ring, and thus increasing the degree of electronic resonance between 
donor and acceptor moieties. On the other hand, pentyl groups present in all molecules result in  
a dihedral angels of 79°–91° as shown in Figure 1. In previous studies dyes with non-planar 
conformation were found to suppress molecular aggregation and reduce the rate of internal charge 
recombination, thus improving cell efficiency [9]. Therefore, it is anticipated that this large dihedral 
angles caused by the presence of pentyl groups in SQD1–SQD4 would lower the aggregation of dye 
molecules. The C–C bond lengths in squaric rings, heterocyclic moieties in both sides and the 
connecting bonds between them range from 1.37–1.48 Å, which are shorter than a C–C single bond 
(1.54 Å), but longer than a C=C double bond (1.34 Å, indicating pronounced resonance structures for 
all dyes). The replacement of indoline moieties shown in SQD1 and SQD2 with quinoline present in 
SQD3 and SQD4 increased the C–C bond lengths that connect them with squaric ring from 1.39 to 
1.41 Å, respectively. This result is nicely correlated with the fact that the indoline moiety is  
non-aromatic, whereas quinoline one is aromatic. 

SQD1 

 
SQD2 

 

Figure 1. Cont. 

  

Figure 1. Cont.



Int. J. Mol. Sci. 2016, 17, 487 4 of 12
Int. J. Mol. Sci. 2016, 17, 487 4 of 12 

SQD3 

 
SQD4 

 

Figure 1. Optimized geometries and selected bond lengths (Å) and dihedral angles (°) of dyes  
SQD1-SQD4 using B3LYP/6-311++G** level of theory. Green color and rings indicate dihedral angles. 
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The simulated absorption spectra for SQD2 and SQD4 as examples using different TD-DFT 
functionals in the gas phase and for SQD4 using PBE/6-311++G** in different solvents are displayed 
in Figures S1 and S2, respectively. The PBE/6-311++G** was found to have produced spectra in good 
agreement with experimental data. Applying this method in calculating the spectra of SQD1–SQD4 
in the gas phase and methanol resulted comparable data shown in Figures 2 and 3, respectively. The 
computed UV-visible absorption data of SQD1–SQD4 in the gas phase and those in solutions are 
collected in Tables 1 and 2. In general, the experimental values of λmax of these dyes show the same 
trend as the calculated ones. For example, the absorptions in methanol solution were deviated by  
13–58 nm. A similar deviation between calculated and observed wavelengths for other squaraine 
dyes has also been observed and attributed to the approximations inherent to the TD-DFT calculation 
and together with the diradical nature of such molecules [24–26]. A recent study has revealed that 
the absorptions of squaraine dyes are red-shifted to NIR by virtue of a large contribution of a diradical 
character [24]. Thus, a resonance contribution to SQD1, for example, can be represented in Scheme 2. 
Therefore, it is anticipated that the blue shift observed for SQD2 compared with SQD1 can be 
rationalized based on the extent of diradical character in SQD1 but not to the strength of the electron 
donating group. Expectedly, SQD3 and SQD4 have λmax values more red-shifted in theoretical and 
experimental than those of SQD1 and SQD2 owing to the extended conjugation caused by the 
quinoline moiety in both SQD3 and SQD4. 
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2.2. Electronic Absorption Spectra

The simulated absorption spectra for SQD2 and SQD4 as examples using different TD-DFT
functionals in the gas phase and for SQD4 using PBE/6-311++G** in different solvents are displayed
in Figures S1 and S2, respectively. The PBE/6-311++G** was found to have produced spectra in good
agreement with experimental data. Applying this method in calculating the spectra of SQD1–SQD4
in the gas phase and methanol resulted comparable data shown in Figures 2 and 3 respectively.
The computed UV-visible absorption data of SQD1–SQD4 in the gas phase and those in solutions
are collected in Tables 1 and 2. In general, the experimental values of λmax of these dyes show
the same trend as the calculated ones. For example, the absorptions in methanol solution were
deviated by 13–58 nm. A similar deviation between calculated and observed wavelengths for other
squaraine dyes has also been observed and attributed to the approximations inherent to the TD-DFT
calculation and together with the diradical nature of such molecules [24–26]. A recent study has
revealed that the absorptions of squaraine dyes are red-shifted to NIR by virtue of a large contribution
of a diradical character [24]. Thus, a resonance contribution to SQD1, for example, can be represented
in Scheme 2. Therefore, it is anticipated that the blue shift observed for SQD2 compared with SQD1
can be rationalized based on the extent of diradical character in SQD1 but not to the strength of the
electron donating group. Expectedly, SQD3 and SQD4 have λmax values more red-shifted in theoretical
and experimental than those of SQD1 and SQD2 owing to the extended conjugation caused by the
quinoline moiety in both SQD3 and SQD4.
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Figure 3. The UV-visible absorption spectra of SQD1–SQD4 dyes calculated using PBE/6-311++G**
level of theory in methanol.

Table 1. Absorption wavelength (nm), molecular orbital contribution, energy level of HOMO, LUMO
and gap energy and oscillator strength calculated by using PBE/6-311++G** for squaraine studied dyes
in the gas phase.

Compounds Wave Length
(nm)

Oscillator
Strength (f)

MO
Contribution

MO
Coeff. EHOMO eV ELUMO eV Gap Energy =

ELUMO´EHOMO eV

SQD1
624.86 1.416 HOMO-LUMO 70%

´4.68 ´3.41 1.27512.53 0.012 HOMO-1-LUMO 68%

SQD2
807.79 0.0005 HOMO-1-LUMO 70%

´4.50 ´3.19 1.31600.35 1.2269 HOMO-LUMO 69%
504.43 0.0001 HOMO-2-LUMO 68%

SQD3
864.25 0.002 HOMO-1-LUMO 70%

´4.47 ´3.38 1.09692.73 0.924 HOMO-LUMO 68%
554.05 0.324 HOMO-LUMO+1 66%

SQD4
687 1.06 HOMO-LUMO 70%

´4.29 ´3.23 1.06545.92 0.00 HOMO-1.LUMO 71%

MO: Molecular Orbital.
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Table 2. Experimental and theoretical absorption wavelength (nm) by using PBE/6-311++G** for
squaraine studied dyes in different solvents.

Compounds Tetrahydrofuran Dichloromethane Methanol

Cal. f Exp. Dev.EXP Cal. f Exp. Dev.EXP Cal. f Exp. Dev.EXP

SQD1 652 1.81 691 ´39 642 1.74 685 ´43 655 1.77 677 ´22
SQD2 627 1.56 679 ´52 620 1.58 677 ´57 629 1.61 668 ´58
SQD3 702 1.42 729 ´27 688 1.41 717 ´29 711 1.39 698 ´13
SQD4 705 1.23 817 ´112 695 1.06 785 ´90 705 0.92 747 ´42

Cal.: Calculated; Exp.: Experimental; f: Oscillator Strength.
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For all dyes, the λmax is assigned to be mainly due to a HOMOÑLUMO transition, whereas
the second weak absorption corresponds to HOMO-LUMO + 1 or HOMO-1ÑLUMO transitions.
These results in Table 2 show that all studied dyes share an intense πÑπ* absorption, where the
electron density is mainly transferred from the HOMO to the LUMO (> 65%). Table 1 presents the
electronic energy levels and gap energy using PBE/6-311++G** level of theory. The HOMO and
LUMO energies of SQD1, SQD2, SQD3 and SQD4 are ´4.68, ´4.50, ´4.47, ´4.29 and ´3.41, ´3.19,
´3.38, ´3.22 eV, respectively. These values indicate that the HOMO energy in dye SQD4 is highest
one due to the presence of the para-quinoline group. The ELUMO values for all dyes are located
above the conduction band edge of TiO2 (´4.26 eV) [27]. The relative matching of electronic levels of
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sensitizers would lead to energetically favorable electron injection as well as regeneration of oxidized
dye during DSSC operation. Figure 4 shows the calculated electronic energies of frontier orbitals and
corresponding surface density plots. The natural transition orbitals (NTO) of the studied dyes are
presented in Figure 4. As demonstrated in Figure 4, the electron distributions of the HOMO orbitals of
the dyes were mostly localized over the squaric ring, whereas those of the LUMO orbitals were mainly
localized in the indoline and its attached carboxylic group. Furthermore, the results indicated that the
HOMO–LUMO excitation induced by light irradiation can effectively move the electron distribution
from the squaric-indoline moiety to the carboxylic anchoring group leading to an electron injection
if the carboxyl group is attached to TiO2 semiconductor. The decrease in the HOMO–LUMO gap
could be attributed to the increase in π-electron density of the molecule, which leads to an increase in
diradical character and bathochromic shift.
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2.3. Aromaticcity Computation

Further insight into the chemical reactivity analysis of SQD1–SQD4 in relation to their
electronegativity, chemical hardness and their aromaticity difference would assess the suitability
of these dyes for use in DSSC solar cells.

The electronegativity based on atoms before being bonded to form a molecule is calculated by the
following equation [28–31]:

χAIM “
nAIM

ř

A
nA
χA

(1)

where AIM refers to atoms in a molecule, nAIM is the number of atoms in a molecule,
ř

A
nA
χA

is

the summation of ratios of number of atoms for each a-species divided by its corresponding atomic
electronegativity. The molecular electronegativity in the post-bonding stage of a molecule is calculated
by the following equation:

χMOL – ´
EHOMOp1q ` ELUMUp1q

2
(2)

Combining both Equations (1) and (2) gives the aromaticity index-based electronegativity (AEL):

AEL “
ηAIM

χMOL
(3)

Similarly, the chemical hardness (ηAIMq per-ponding and after bonding (χMOLq in a molecule are
given by Equations (4) and (5), respectively:

ηAIM “
nAIM

ř

A
nA
ηA

(4)

where AIM refers to atoms in a molecule, nAIM is the number of atoms in a molecule,
ř

A
nA
ηA

is the summation of ratios of number of atoms for each A-species divided by its corresponding
atomic hardness.

ηMOL – ELUMU ´ EHOMO (5)

Combining both Equations (4) and (5) gives the aromaticity index-based chemical
hardness (AHard):

AHard “
ηAIM

ηMOL
(6)

The data in Table 3 indicates that the aromaticity indices based on electronegativity and chemical
hardness are in good agreement with those obtained optically and geometrically presented above.

Table 3. The molecular electronegativity and chemical hardness, along the quantum compactness
aromaticity AEL and AHard indices for studied dyes at PBE/6-311++G** level of theory. all energetic
values in electronvolts (eV).

Compounds χAIM ηAIM ηMOL ηMOL AEL AHard

SQD1 6.769 5.741 0.635 8.10 10.660 0.709
SQD2 6.750 5.727 0.655 7.690 10.306 0.745
SQD3 6.735 5.703 0.545 7.850 12.359 0.726
SQD4 6.735 5.703 0.53 7.520 12.708 0.758
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3. Materials and Methods

3.1. UV–Visible Absorption Spectra of Squaraine Dyes (SQD1–SQD4)

UV-visible absorption spectra of SQD1–SQ4 were measured in three different solvents
(tetrahydrofuran, dichloromethane and methanol) so as to determine the maximum wavelength
of absorption. UV-visible absorption spectra were recorded with a Jasco V560 spectrophotometer
(Jasco international Co., Ltd., Tokyo, Japan).

3.2. Computational Methods

All calculations were performed using the Gaussian 09W [32] program package.
B3LYP/6-311++G** level of theory was employed using Becke’s three parameter hybrids function
combined with the Lee–Yang–Parr correlation function (B3LYP) [33–36] to predict the molecular
geometry and electronic transition for moderately large molecules. B3LYP/6-311+G** frequency
analysis calculations were performed to characterize the stationary points as the minima.
HOMO–LUMO energies, absorption wavelengths (λmax) and oscillator strengths (f) were calculated
using TD-DFT with B3LYP/6-311++G** [37,38] level based on optimized structures in the gas phase.
Moreover, three density functionals, namely, the TPSSh [39–42], PBE, and PBE1PBE (PBE0) [43] with the
6-311++G** basis set have been evaluated. Long-range correction has solved the underestimations of
charge transfer excitation energies and oscillator strengths in time-dependent Kohn–Sham calculations
and has clearly improved poor optical response properties [44]. The UV-vis spectra of dyes in different
solvents were calculated by TD-PBE/6-311++G** level. Solvation effects were introduced by the SCRF
method, via the conductor polarizable continuum model (CPCM) [45,46].

4. Conclusions

Electronic structures and geometries of the ground-state of symmetric and asymmetric squaraine
dyes SQ1–SQ4 in the gas phase were investigated by B3LYP/6-311++G** level of theory. The calculated
geometric data indicate strong conjugation effects in these dyes, which is beneficial for the optical
properties. UV-visible spectra and frontier molecular orbitals were studied by different TD-DFT
functionals, namely: PBE, PBE1PBE (PBE0), and TSSPh with 6-311++G** basis sets in the gas
phase and different polar solvents. The first optically allowed electronic transitions of SQ1–SQ4
at PBE/6-311++G** level of theory is predicted the contribution of the HOMO-LUMO transition at
625, 600, 693, and 687 nm, respectively. The quinoline moiety may be a better unit for red-shifting the
absorption of squaraine dye as shown in SQD4 spectra.

The red shift of absorptions of SQD2 compared with SQD1 might be attributed to the large
contribution of a diradical character in SQD2. From frontier molecular orbital calculations, the ELUMO

are ´3.41, ´3.19, ´3.38, and ´3.23 eV for SQ1–SQ4, respectively. These values lie above the LUMO
energy (´4.26 eV) of the conduction band of TiO2 nanoparticles indicating possible electron injection
from the LUMO of the dyes to the conduction band of the TiO2 in DSSCs. Absorption bands of
SQD1–SQD4 could be easily extended into NIR region by straightforward structural modification,
which closely match the spectral response of sun light.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/17/
4/487/s1.
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