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Abstract: Predicting the effect of amino acid substitutions on protein–protein affinity (typically
evaluated via the change of protein binding free energy) is important for both understanding the
disease-causing mechanism of missense mutations and guiding protein engineering. In addition,
researchers are also interested in understanding which energy components are mostly affected by the
mutation and how the mutation affects the overall structure of the corresponding protein. Here we
report a webserver, the Single Amino Acid Mutation based change in Binding free Energy (SAAMBE)
webserver, which addresses the demand for tools for predicting the change of protein binding
free energy. SAAMBE is an easy to use webserver, which only requires that a coordinate file be
inputted and the user is provided with various, but easy to navigate, options. The user specifies
the mutation position, wild type residue and type of mutation to be made. The server predicts the
binding free energy change, the changes of the corresponding energy components and provides the
energy minimized 3D structure of the wild type and mutant proteins for download. The SAAMBE
protocol performance was tested by benchmarking the predictions against over 1300 experimentally
determined changes of binding free energy and a Pearson correlation coefficient of 0.62 was obtained.
How the predictions can be used for discriminating disease-causing from harmless mutations is
discussed. The webserver can be accessed via http://compbio.clemson.edu/saambe_webserver/.
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1. Introduction

Practically every protein is involved in various binding processes [1], frequently with another
proteins [2,3]. Altering such interactions via amino acid substitutions, naturally occurring or
engineered, is expected to have significant impact on the wild type characteristics of the cell [4,5].
While such changes can, in principle, be experimentally measured, the cost and the required time
are prohibitory for large-scale investigations. Because of that, the development of computational
approaches is needed for large-scale modeling of the effects of amino acid substitutions on
protein–protein binding [6–13] (for comparison of popular approaches see Reference [14]). The existing
computational methods are typically clustered into two main groups: approaches utilizing sequence
information and approaches considering structural features [7,8,15,16]. The main advantage of the
approaches using sequence data is that they are fast, but the performance of such predictors strongly
hinge on the training set of data. The structure-based approaches represent the other part of the
spectrum. Among them the most rigorous, but computationally demanding, are the thermodynamic
integration (IT) and the free energy perturbation (FEP) methods [17]. At the same time, the Molecular
Mechanical Poisson-Boltzmann (Generalized Born)/Surface Accessible (MM/PB(GB)SA) approach
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is a method that provides the details of the modeling while requiring reasonable computational
time [18,19]. In the MM/PBSA method, the binding free energy change (∆∆∆G) is modeled as a linear
combination of several potential energies, including molecular mechanics energy, and polar and
non-polar components of solvation energy.

Many disease-causing mutations affect protein–protein and protein–DNA interactions [4,9,20–25].
Thus, predicting binding free energy changes caused by amino acid mutations has implications
for discriminating disease-causing mutations from harmless mutations [8,16,26]. Recently, it was
demonstrated that the changes of the binding free energy are correlated with the propensity of a given
mutation to be disease-causing [27], especially if the predicted energy changes are normalized to the
wild type binding free energy [28]. Therefore, accurate predictions of the changes of the binding free
energy are needed for detecting disease-causing mutations occurring in the human genome.

In this work we report a webserver, which utilizes a previously developed methodology termed
Single Amino Acid Mutation based change in Binding free Energy (SAAMBE). SSAMBE combines
two approaches: sequence- and structure-based methods [18]. It utilizes the MM/PBSA method
along with an additional set of statistically delivered terms from numerical investigation of the
physico-chemical properties of protein complexes (the corresponding entries are provided in Tables S1
and S2). The performance was tested against more than 1300 mutations with experimentally available
changes of the binding free energy taken from 43 proteins [29] and resulted in a good agreement with
experimental data (Pearson correlation coefficient 0.62). It should be pointed out that SAAMBE is fast
enough to allow for large-scale calculations, since the average time for modeling a mutation is less
than a minute.

2. Results

The SAAMBE webserver is based on the SAAMBE algorithm [18], which predicts the changes of
binding free energy caused by amino acid substitutions. The SAAMBE algorithm performance was
previous reported [18] and it is shown that the algorithm achieves a Pearson correlation coefficient
of 0.62 in a benchmark against more than 1300 experimentally-determined changes of binding free
energy. The results of benchmarking are summarized in Table 1, where the correlation coefficient for
specific cases is provided: (a) case 1, when a bulky residue is changed to a small one; (b) case 2, when
the mutant (MT) residue is Ala, which is typically used for predicting protein “hot-spot”; and (c) case 3,
the accuracy of predictions for mutations being in a particular structural region.

Table 1. Pearson correlation coefficient (R), the y-intercept and the slope of linear fit between
experimental and predicted binding free energy changes. The number of cases is provided in
parentheses. The results are shown for different types of mutations and summarized at the bottom for
all mutations. The results of 5-fold cross validation test are shown as well.

Type of Mutaton and
Mutation Site Location

Pearson Correlation
Coefficient (R) y-Intercept Slope

Large-to-Small (173) 0.489 0.328 0.692
ALA-scanning (577) 0.488 0.268 0.695

COR, SUP (807) 0.461 0.351 0.813
RIM, SUR, INT (518) 0.478 ´0.024 1.023

ALL (1326) 0.624 (0.716 ˘2SD, 0.603 CV) 1 ´2.31 ˆ 10´5

˘2SD: within two standard deviations; CV: 5-fold cross validation test. ALA: Alanine residue; COR: core; SUP:
support; RIM: rim; SUR: surface; and INT: interior type of mutation site.

It can be seen that SAAMBE does not perform very well on particular types of substitutions,
but overall performance is very good, achieving R = 0.716 if cases within two standard deviations
are considered. It was demonstrated in the original work [18] that such performance is much better
than the performance of existing solutions, including BeAtMuSiC [30] and FoldX [31]. However, it
should be mentioned that a recent paper [14] showed that these two approaches are not among the
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best predictors. Instead, newly developed methods, such as mCSM-PPI [12] and those outlined in
Reference [13], perform better.

One of the most important characteristics of any server performance is how fast the user receives
the results. The SAAMBE method produces results in 0.22 min on average when employing 16 nodes
on Clemson University Palmetto Supercomputer. The time of calculations depends on the number of
residues in the protein complex; Figure 1 illustrates this, and shows that, even for very large complexes
of more than 800 residues, the execution time is less than a minute.

Int. J. Mol. Sci. 2016, 17, 547 3 of 11 

 

the performance of existing solutions, including BeAtMuSiC [30] and FoldX [31]. However, it should 
be mentioned that a recent paper [14] showed that these two approaches are not among the best 
predictors. Instead, newly developed methods, such as mCSM-PPI [12] and those outlined in 
Reference [13], perform better. 

One of the most important characteristics of any server performance is how fast the user 
receives the results. The SAAMBE method produces results in 0.22 min on average when employing 
16 nodes on Clemson University Palmetto Supercomputer. The time of calculations depends on the 
number of residues in the protein complex; Figure 1 illustrates this, and shows that, even for very 
large complexes of more than 800 residues, the execution time is less than a minute. 

 
Figure 1. The computational time (mean value) of the Single Amino Acid Mutation based change in 
Binding free Energy (SAAMBE) algorithm as a function of the number of residues in the protein 
complex. Both axes are in log scale. WT: wild type complexes. 

As mentioned above, the predicted binding free energy changes can be used to infer if 
mutations are disease-causing or harmless. Typically, this is done by setting up a particular 
threshold of the energy change and it is assumed that any mutation-causing effect larger than the 
threshold is disease-causing. Since, in this work, we do not introduce metrics for disease-association, 
the goal is to benchmark the performance of the SAAMBE method by setting up various thresholds 
for the calculated and experimental binding free energy change and to see how SAAMBE performs 
on matching experimentally observed large (large—above the specific cut-off) binding free energy 
changes. The performance is investigated using the procedure detailed in the Materials and Methods 
section. Several scenarios will be investigated. Below, we refer to experimentally-measured changes 
of the binding free energy and those calculated with SAAMBE. Further, we will apply one of the 
scenarios to test SAAMBE’s ability to discriminate disease-causing and polymorphic mutations. 

2.1. Scenario 1 

The cut-off for experimental and calculated ΔΔΔG is identical. In this case, the cut-off above 
which ΔΔΔG is considered to be large is the same for the experimental and calculated ΔΔΔG. We 
systematically varied the cut-off from 0.5 kcal/mol up to 2 kcal/mol in steps of 0.5 kcal/mol. The 
results are presented in Figure 2, scenario 1. It can be seen that the coverage is very good, reaching 
almost 100%, but the Matthew Correlation Coefficient (MCC) and F1 score are not impressive. At the 
same time, true positive ratio (TPR) and true negative ratio (TNR) are very good. 

Figure 1. The computational time (mean value) of the Single Amino Acid Mutation based change
in Binding free Energy (SAAMBE) algorithm as a function of the number of residues in the protein
complex. Both axes are in log scale. WT: wild type complexes.

As mentioned above, the predicted binding free energy changes can be used to infer if mutations
are disease-causing or harmless. Typically, this is done by setting up a particular threshold of
the energy change and it is assumed that any mutation-causing effect larger than the threshold
is disease-causing. Since, in this work, we do not introduce metrics for disease-association, the
goal is to benchmark the performance of the SAAMBE method by setting up various thresholds
for the calculated and experimental binding free energy change and to see how SAAMBE performs
on matching experimentally observed large (large—above the specific cut-off) binding free energy
changes. The performance is investigated using the procedure detailed in the Materials and Methods
section. Several scenarios will be investigated. Below, we refer to experimentally-measured changes of
the binding free energy and those calculated with SAAMBE. Further, we will apply one of the scenarios
to test SAAMBE’s ability to discriminate disease-causing and polymorphic mutations.

2.1. Scenario 1

The cut-off for experimental and calculated ∆∆∆G is identical. In this case, the cut-off above
which ∆∆∆G is considered to be large is the same for the experimental and calculated ∆∆∆G.
We systematically varied the cut-off from 0.5 kcal/mol up to 2 kcal/mol in steps of 0.5 kcal/mol.
The results are presented in Figure 2, scenario 1. It can be seen that the coverage is very good, reaching
almost 100%, but the Matthew Correlation Coefficient (MCC) and F1 score are not impressive. At the
same time, true positive ratio (TPR) and true negative ratio (TNR) are very good.
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2.2. Scenario 2

The cut-off for experimental and calculated ∆∆∆G is identical, but there is a gap between the
threshold for large and small ∆∆∆G. In terms of disease-causing and harmless mutations, this will
correspond to the case for which there will be a “gray” zone of energy changes that cannot be associated,
neither with disease, nor to be called harmless (similar approach was described in Reference [32] for
evaluating protein stability changes). It can be seen that coverage is significantly lower as compared to
scenario 1, but the MCC and F1 score are better (Figure 2, scenario 2).

2.3. Scenario 3

The cut-offs for experimental and calculated ∆∆∆G are different. This scenario is applicable in
the case when the method over- or under-predicts the experimentally observed ∆∆∆G. The results
are shown in Figure 2, scenario 3. It can be seen that this scenario achieves the best performance.
The coverage reaches 0.8, without compromising MCC (MCC = 0.75) and F1 score (F1 score = 0.85) at
cut-offs of 1 and 2 kcal/mol.

2.4. Scenario 4

The cut-offs for experimental and calculated ∆∆∆G are different, but there is a difference in
defining the bottom limit (see Materials and Methods section for details). In this testing, Figure 2,
scenario 4, the coverage increases, but the MCC is low.

2.5. Scenario 5

The cut-offs for experimental and calculated ∆∆∆G are different, but there is a difference in
defining the bottom limit (see Materials and Methods section for details). As above, the coverage
increases, but the MCC is low (Figure 2, scenario 5).
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The above investigation indicates that, with proper definition of the cut-offs, the SAAMBE method
can distinguish amino acid substitutions causing a large change of the binding free energy and to
discriminate them from the substitutions causing minimal change. This paves the way for detecting
disease-causing mutations, and which disease-causing effects are associated with protein–protein
interactions, which will be demonstrated in the following paragraph.

2.6. Case Studies

To illustrate the applicability of the SAAMBE webserver to detect disease-causing mutations,
and to distinguish them from polymorphic mutations, we will investigate two proteins with
available clinical data. These two cases were taken from the ClinVar database [33,34] to represent
proteins with available 3D structures of hetero- and homo-complexes. It should be reiterated
that disease-causing mechanisms may involve altering various biophysical characteristics of the
corresponding macromolecule, including stability, interactions, and dynamics [8,16,26–28]. Thus, if one
attempts to predict disease-causing mutation based on the effect of mutation on the binding free energy,
while mutation affects mostly protein stability, then the prediction will not be correct. However, here,
we emphasize the ability of predicting disease-causing mutations altering macromolecular interactions.

We begin the analysis with human ribonuclease inhibitor-angiogenin complex (EC 3.1.27.-),
PDB ID 1a4y [35]. Missense mutations in angiogenin are associated with amyotrophic lateral
sclerosis [36–38]. Currently, the ClinVar database provides sixteen amino acid changes, out of which
fourteen can be mapped on the available experimental structure (1a4y) of ribonuclease-angiogenin.
These fourteen mutations were subjected to the SAAMBE webserver to predict their effects on the
binding free energy. Chains A and B in the original Protein Data Bank (PDB) file were used. The results
are shown in Table 2.

Table 2. List of mutations and their positions, the effect provided by ClinVar, calculated ∆∆∆G and
the location of mutation site within protein interface (for interfacial regions definition, see Methods).
WT: wild type; MT: mutant type complexes.

WT Residue Position MT Residue Effect ∆∆∆G Location

Q 36 L Disease 0.00 SUP
Y 38 H Disease ´0.42 INT
K 41 E Disease 1.04 SUR
K 41 I Disease 0.29 SUR
D 46 G Disease ´1.25 SUR
S 52 N Disease 0.00 RIM-COR
R 55 K Disease 1.29 COR
C 63 W Disease 0.07 INT-SUP
K 64 I Disease 4.50 COR
I 70 V Unclassified 0.42 INT
K 84 E Polymorphism 0.81 SUR
P 136 L Disease ´0.06 INT
V 137 I Disease 0.79 SUP
H 138 R Disease ´1.32 COR

This case has a polymorphic, an unclassified, and twelve disease-causing mutations. If one
considers scenario 1, described above, and selects a cut-off of 1 kcal/mol (absolute value), then SAAMBE
correctly predicts five disease-causing mutations and discriminates them from the polymorphic and
unclassified mutations. The disease-causing effect of the remaining ten disease-causing mutations can
be associated with altering other (different from protein affinity) characteristics of native proteins.

The second case study was done to assess SAABME’s performance for mutations that are not
located at a protein interface. For this purpose, we selected fructose 1,6-bisphosphate aldolase from
human liver, PDB ID 1qo5 [39]. Mutations in this protein are associated with hereditary fructose
intolerance [40–42]. The list contains eighteen mutations, out of which three are polymorphic and one
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is unclassified. The molecule is a homo-dimer and a mutation should be introduced on both chains.
However, currently, SAAMBE is only designed to predict single mutations. This made us introduce
mutations separately on chain A and B and then to sum up the effects. Independently, using the
in-house SAAMBE version, we tested this approach by introducing both mutations at the same time and
compared the results obtained via simple summation of the effects. Indeed, a vast majority of the cases
studied here resulted in a simple cumulative effect, justifying the simple summation approach (the
root mean standard deviation (RMSD) between calculated binding free energies via simple summation
and introducing both mutations was 0.3 kcal/mol). The results are shown in Table 3. Thus, adopting
scenario 1 and selecting a cut-off of 1 kcal/mol, allows SAABME to correctly predict harmless and
unclassified mutations. In addition, SAAMBE correctly predicts five of the disease-causing mutations,
despite the fact that they are not located at the protein interface. It is speculated that the remaining ten
disease-causing mutations affect protein stability or another important biophysical characteristics of
the monomeric protein, rather than altering protein interactions.

Table 3. List of mutations and their positions, the effect provided by ClinVar, calculated ∆∆∆G.
∆∆∆G(A) and ∆∆∆G(B) indicate calculations made with mutation introduced in chain A and B,
respectively. ∆∆∆G(A + B) is the sum of both predictions.

WT Residue Position MT Residue Effect ∆∆∆G(A) ∆∆∆G(B) ∆∆∆G(A + B)

I 74 T Disease 0.50 0.29 0.79
R 134 S Polymorphism 0.32 0.64 0.96
C 135 R Disease 0.48 0.01 0.48
W 148 R Unclassified 0.13 0.74 0.88
A 150 P Disease 0.52 0.74 1.27
A 175 D Disease 0.56 0.52 1.08
C 178 R Disease 0.46 0.00 0.46
P 185 R Disease 0.03 ´0.01 0.03
E 207 Q Polymorphism 0.35 0.15 0.49
V 222 F Disease 0.32 0.61 0.93
L 229 P Disease 0.86 0.85 1.72
L 257 P Disease 0.80 0.69 1.49
I 268 N Polymorphism 0.42 0.54 0.96
L 284 P Disease 0.85 0.85 1.69
R 304 Q Disease 0.39 0.22 0.61
R 304 W Disease 0.27 0.24 0.52
N 335 K Disease -0.12 0.00 ´0.12
A 338 V Disease 0.20 0.07 0.27

3. Discussion

The SAAMBE webserver is a simple to use tool that utilizes new algorithms for the prediction of
the change of the binding free energy caused by amino acid mutations. SAAMBE predicts, not only
the binding free energy changes, but reports the changes of the corresponding energy components
and provides energy-minimized structures of both the wild type (WT) and the mutant type (MT).
This allows the users to carry out further structural analysis of the effects of the mutations.

To assess SAAMBE’s ability to predict disease-causing mutations and to discriminate them
from polymorphic mutations, we carried out analyses of two cases involving protein complexes.
It was shown that SAAMBE can distinguish disease-causing and polymorphic mutations that affect
protein interactions. However, since mutations may affect various biophysical characteristics of the
corresponding protein, one should complement SAAMBE’s predictions with investigations of protein
stability, dynamics, hydrogen bonds, and other biologically important protein features.
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4. Materials and Methods

Definitions of mutation site locations: Here, we assign the location of mutated residues in the
protein–protein complex using five distinctive categories (core (COR), support (SUP), rim (RIM),
interior (INT) and surface (SUR)), as previously described [18]. This is done by calculating the relative
solvent accessible surface area (SASA), which is the ratio between SASA of a residue in a protein
and in water (rSASA). For example, rSASA = 1 corresponds to totally exposed residue in the protein.
Thus, we calculate the SASA of the residue in the monomeric protein and term it rSASAm, and also in
the complex and term it rSASAc. Finally, the term ∆rSASA refers to their mutual difference. Based on
this classification, a residue is considered to be at the interface if it is assigned to COR, SUP and RIM
regions; and a residue is considered to be away from the interface if it is in SUR and INT regions.
The last two locations, the RIM and SUR locations, refer to residue that is exposed to the water phase
in the complex. The parameters of each of the above-mentioned definitions are provided in Table 4.

Table 4. Parameters of the residues location types in protein-protein complex.

Location Interface Solvent Exposure rSASAm rSASAc ∆rSASA

COR Yes No >25% <25% >0
SUP Yes No <25% <25% >0
RIM Yes Yes any >25% >0
INT No No any <25% =0
SUR No Yes any >25% =0

Typically, the accuracy of prediction of disease-causing mutations is evaluated via the ROC
parameters, adopting particular cut-offs for true and false positives. Several quantities are evaluated
with Equations (1)–(9), using the relationship between four quantities: true positive (tp), true negative
(tn), false positive (fp), and false negative (fn).

True Positive Rate pTPR, sensitivityq “
tp

tp` fn
(1)

False Negative Rate pFNRq “
fp

tfn` tp
(2)

True Negative Rate pTNR, specificityq “
tn

tn` fp
(3)

Positive Predictive Value pPPV, precisionq “
tp

tp` fp
(4)

Negative Predictive Value pNPVq “
tn

tn` fn
(5)

Accuracy pACCq “
tp` tn

tp` fp` tn` fn
(6)

F1 score “
2tp

2tp` fp` fn
(7)

Matthews Correlation Coefficient pMCCq “
tp¨ tn´ fp¨ fn

a

ptp` fpq ptp` fnq ptn` fpq ptn` fnq
(8)

Coverage “
tp` tn` fp` fn

Number of Cases in Database
(9)

Several scenarios are investigated and their definitions are provided in Table 5.
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Table 5. Conditions used for calculating the number of tp, tn, fp, and fn cases for five scenarios.
Here, A corresponds to the value of calculated change of the binding free energy (∆∆∆Gcalc), while B
for experimentally determined change of the binding free energy (∆∆∆Gexp).

ROC Parameters Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

tp A ě x, B ě x,
sign(A) = sign(B)

A ě y, B ě y,
sign(A) = sign(B)

A ě x, B ě y,
sign(A) = sign(B)

A ě x, B ě y, sign(A)
= sign(B)

A ě y, B ě x, sign(A)
= sign(B)

tn A < x, B < x A < x, B < x A < y, B < x A < z, B < y A < y, B < z
fp A ě x, B < x A ě y, B < x A ě y, B < x A ě x, B < y A ě y, B < z
fn A < x, B ě x A < x, B ě y A < x, B ě y A < z, B ě y A < y, B ě x

example 0.5 0.5–1 0.5/1.5 0.5/1/1.5 (ef) 0.5/1/1.5 (cf)
parameter values x = 0.5 x = 0.5, y = 1 x = 0.5, y = 1 x = 0.5, y = 1, z = 1.5 x = 0.5, y = 1, z = 1.5

5. Webserver Architecture

5.1. Overview of SAAMBE Webserver

The design of the SAAMBE server can be described by three basic components, the client or
user interface, the server and the job backend. The client interface is implemented using HTML and
JavaScript). It provides the user a form to fill out various parameters for a job to be submitted to the
server, as well as a button to upload the PDB file. Once the job submitted, the user will be redirected
to the result page. The result page will refresh itself every 30s to get the latest results of the backend
running job. The server part analyzes the parameters and writes the job and parameter files to job
backend, assembles the Protein Data Bank (PDB) [43] files and starts the job remotely. The server
is implemented using PHP and hosted by the Apache webserver. The job backend executes the job
within a Palmetto cluster. The job handling is implemented using Python Below we describe each
component of the processes in detail.

5.2. Client Interface

This is a web page where the user inputs all necessary information to complete a server job.
The user must supply a PDB file by uploading a PDB file from their local file system. The job
parameters include a partner selection part: partner 1 and 2; a mutation part: position, chain, original
amino acid and mutated amino acid. Partner 1, partner 2, position, and chain are provided by the
user, along with the original and mutated amino acid. A help file is provided as well, along with
a particular example.

5.3. Server

The server acts as a middle man, it gets the PBD file and parameters from the user, puts it to the
job backend, and starts the job execution in the job backend. It checks and gets the job results from the
job backend upon the user’s query for the results.

5.4. Job Backend

Once the user has submitted a request, a job is submitted with a PBS command and executed
by the Palmetto cluster. The Palmetto cluster is a supercomputer and it can give results to a user in
a short time.

5.5. Results

If all user inputs are correct, then the computed results of their request are returned to them.
The basic output for a successful job includes three files, the output txt file, the energy minimized
mutant and wild type structures: MT_min PBD file and WT_min PBD file. If the job failed, then the
output includes an error txt file and the user is expected to find the reason for the failure from this file.
If the job is still running, the result page will also inform the user that the job is running.
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Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/17/
4/547/s1.
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