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Abstract: It is known that aquaporin 9 (AQP9) in the prostate was strictly upregulated by androgen
and may represent a novel therapeutic target for several cancers, but whether AQP9 plays a role in
the regulation of androgen-independent prostate cancer still remains unclear. In the present study,
AQP9 was determined in prostate cancer and adjacent cancer tissues; AQP9-siRNA was applied to
silencing AQP9 in androgen-independent prostate cancer cell PC3 cell line. Western blot and flow
cytometry analysis were employed to detect changes in related-function of control and AQP9-siRNA
groups. The results showed that AQP9 is significantly induced in cancer tissues than that in adjacent
cancer tissues. Moreover, knockdown of AQP9 in PC3 androgen-independent prostate cancer cell
prostate cancer cells increased inhibition rates of proliferation. In addition, knockdown of AQP9
resulted in a significant decrease in the expression of the Bcl-2 and with a notable increase in the
expression of Bax and cleaved caspase 3, indicated that AQP9 knockdown promoted apoptosis in
prostate cancer cells. From wound healing assay and matrigel invasion, we suggested that AQP9
expression affects the motility and invasiveness of prostate cancer cells. Moreover, In order to explore
the pathway may be involved in AQP9-mediated motility and invasion of prostate cancer cells, the
phosphorylation of ERK1/2 was significant suppressed in AQP9 siRNA-transfected cells compared
with that in control cells, suggesting that AQP9 is involved in the activation of the ERK pathway in
androgen-independent prostate cancer cells.

Keywords: prostate cancer; aquaporin 9; RNA interference; proliferation; apoptosis; invasion;
ERK signaling pathway

1. Introduction

Prostate cancer (PCa) is a leading cause of cancer-related death in Western countries [1]. Localized
prostate tumors can be treated and are not a main cause for patient death. However, progression to
androgen-independent or metastatic states is remains a clinical challenge [2].

The aquaporin (AQP) family is a membrane protein involved in the selective transport of water
across cell membranes. Several subsets of AQPs also transport small molecules such as glycerol and
urea [3]. AQPs are critical in mammalian physiology and sometimes involve in other functions, for
instance, neural signal transduction and fat metabolism [4,5].

Only recently, the role of AQP in tumor pathogenesis has been identified [6,7]. Tumor cells types
express AQPs and a positive correlation exists between histological tumor grade and the AQP expression as
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compared to normal tissues [8,9]. We previously revealed that AQP9 expression significantly decreased
after castration and recovered to the level of the control by androgen replacement from two weeks after
castration in vivo and in vitro [10], therefore, we indicated that AQP9 expression in the prostate was
strictly upregulated by androgen. However, when cancer cells developed to androgen-independent,
the role of AQP9 in cancer cells remains unclear. In this report, we addressed the functional role of
AQP9 in androgen-independent prostate cancer cells invasion, tumor growth and metastasis, and
providing an underlying mechanisms of the role of AQP9 in PCa progression.

2. Result

2.1. Aquaporin 9 (AQP9) Expression in Prostate Cancer Cells

We first evaluated the expression level of AQP9 in two prostate cancer cells PC-3, LNCap
by immunofluorescence, and Western blot. AQP9 immunoreactivity was identified mainly in the
cytoplasm of cells (Figure 1A). Moreover, in Western blot analysis we treat normal liver tissue as
positive control which was reported before [11], and results revealed that two cell lines, PC-3 and
LNCap, showed AQP9 protein expression (Figure 1B). We then analyzed data of prostate cancer
patients from GEO (Gene Expression Omnibus) dataset (Access ID: GSE55945) and found that AQP9
expression significantly increased in prostate cancer tissues compared with the adjacent tissues of
patients (Figure 2).
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AQP9/β-actin expression in liver set as 1.0. Data were based on three independent experiments, and
shown as mean ˘ SD (standard deviation).
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Figure 2. AQP9 expression was significantly increased in prostate cancer tissues when compared 
with the adjacent tissues of patients from GEO dataset GSE55945 (p < 0.05 as compared with control). 
Bars represent means, * p < 0.05 

2.2. Knockdown of AQP9 Suppressed the Proliferation of Prostate Cancer Cells 

To investigate the functions of AQP9 on prostate cancer, we knockdown its expression by RNA 
interference (RNAi) [12]. PC-3 cell line was androgen-independent prostate cancer cell, therefore, we 
selected PC-3 initially transfected with AQP9 siRNA, and the knockdown efficiency was observed 
using RT-qPCR and western blot analysis (Figure 3A,B). Knockdown of AQP9 resulted in decreased 
cell growth rate compared with corresponding control (Figure 4). Thus, we suggested that AQP9 
had proliferation-promoting properties in prostate cancer cells.  

 
Figure 3. Expression of AQP9 in PC3 cells, AQP9-siRNA and Mock were analyzed by real-time-PCR 
(A) and Western blot (B) (p < 0.05 as compared with control). △CT AQP9/β-actin (control PC3) was 
6.348. Control: wild-type cells; AQP9-siRNA: cells transfected with AQP9 specific small interfering 
RNA; Mock: cells only treated with Lipofectamine 2000. The mean of AQP9/β-actin expression in 
PC-3 cells set as 1.0. Data were based on three independent experiments, and shown as mean ± SD.  
* p < 0.05 as compared with control. 

Figure 2. AQP9 expression was significantly increased in prostate cancer tissues when compared
with the adjacent tissues of patients from GEO dataset GSE55945 (p < 0.05 as compared with control).
Bars represent means, * p < 0.05.

2.2. Knockdown of AQP9 Suppressed the Proliferation of Prostate Cancer Cells

To investigate the functions of AQP9 on prostate cancer, we knockdown its expression by RNA
interference (RNAi) [12]. PC-3 cell line was androgen-independent prostate cancer cell, therefore,
we selected PC-3 initially transfected with AQP9 siRNA, and the knockdown efficiency was observed
using RT-qPCR and western blot analysis (Figure 3A,B). Knockdown of AQP9 resulted in decreased
cell growth rate compared with corresponding control (Figure 4). Thus, we suggested that AQP9 had
proliferation-promoting properties in prostate cancer cells.

Int. J. Mol. Sci. 2016, 17, 738 3 of 10 

 

 
Figure 2. AQP9 expression was significantly increased in prostate cancer tissues when compared 
with the adjacent tissues of patients from GEO dataset GSE55945 (p < 0.05 as compared with control). 
Bars represent means, * p < 0.05 

2.2. Knockdown of AQP9 Suppressed the Proliferation of Prostate Cancer Cells 

To investigate the functions of AQP9 on prostate cancer, we knockdown its expression by RNA 
interference (RNAi) [12]. PC-3 cell line was androgen-independent prostate cancer cell, therefore, we 
selected PC-3 initially transfected with AQP9 siRNA, and the knockdown efficiency was observed 
using RT-qPCR and western blot analysis (Figure 3A,B). Knockdown of AQP9 resulted in decreased 
cell growth rate compared with corresponding control (Figure 4). Thus, we suggested that AQP9 
had proliferation-promoting properties in prostate cancer cells.  

 
Figure 3. Expression of AQP9 in PC3 cells, AQP9-siRNA and Mock were analyzed by real-time-PCR 
(A) and Western blot (B) (p < 0.05 as compared with control). △CT AQP9/β-actin (control PC3) was 
6.348. Control: wild-type cells; AQP9-siRNA: cells transfected with AQP9 specific small interfering 
RNA; Mock: cells only treated with Lipofectamine 2000. The mean of AQP9/β-actin expression in 
PC-3 cells set as 1.0. Data were based on three independent experiments, and shown as mean ± SD.  
* p < 0.05 as compared with control. 

Figure 3. Expression of AQP9 in PC3 cells, AQP9-siRNA and Mock were analyzed by real-time-PCR (A)
and Western blot (B) (p < 0.05 as compared with control). 4CT AQP9/β-actin (control PC3) was 6.348.
Control: wild-type cells; AQP9-siRNA: cells transfected with AQP9 specific small interfering RNA;
Mock: cells only treated with Lipofectamine 2000. The mean of AQP9/β-actin expression in PC-3 cells
set as 1.0. Data were based on three independent experiments, and shown as mean ˘ SD. * p < 0.05 as
compared with control.
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Figure 4. Cell proliferation was detected 24 h after specific small interfering RNA in cells (p < 0.05 as
compared with control). Control: wild-type cells; AQP9-siRNA: cells transfected with AQP9 specific
small interfering RNA; Mock: cells only treated with Lipofectamine 2000. Data were based on three
independent experiments, and shown as mean ˘ SD, * p < 0.05.

2.3. Knockdown of AQP9 Induced Apoptosis in Prostate Cancer Cells

We then determined the possible effect of AQP9 knockdown on apoptotic function. As shown in
Figure 5A. Flow cytometry analysis revealed that knockdown of AQP9 in PC-3 cells significantly induced
cell apoptosis compared with control and mock (4.63% ˘ 0.09% vs. 1.60% ˘ 0.15% vs. 1.61% ˘ 0.05%).
Western blot was then performed to detect apoptosis-related proteins. As shown in Figure 5B,
knockdown of AQP9 resulted in a significant reduction in the level of the anti-apoptotic protein Bcl-2
with a notable increase in the level of pro-apoptotic protein Bax and cleaved caspase 3. These results
indicated that AQP9 knockdown promoted apoptosis in prostate cancer cells.
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Figure 5. (A) Cells were double-stained with Annexin V-FITC/PI and apoptosis rates was analyzed
using flow cytometry (p < 0.05 as compared with control); (B) protein levels of cleaved caspase 3, Bax,
and Bcl2 were detected by Western blot. Data were shown as mean ˘ SD (p < 0.05 as compared with
control). The mean of targeted protein/β-actin expression in PC-3 cells set as 1.0.Control: wild-type
cells; AQP9-siRNA: cells transfected with AQP9 specific small interfering RNA; Mock: cells only
treated with Lipofectamine 2000. * p < 0.05; ** p < 0.01.
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2.4. Silencing of AQP9 Inhibited the Migration and Invasion of Prostate Cancer Cells

A wound healing assay and matrigel invasion were then conducted with control cells, AQP9
siRNA-transfected cells, and mock cells. The results showed that silencing of AQP9 inhibited
the motility of PC-3 cells (Figure 6A). The effect of AQP9 on invasion of prostate cancer cell was
further investigated. The results demonstrated that AQP9 siRNA-transfected cells had lower invasion
capabilities compared with the control cells (Figure 6B). MMP (matrix metalloprotein) family play an
important role in invasion and metastasis of cancer cells; therefore, the expression of MMP9 between
control and AQP9-siRNA were conducted. Western blot analysis showed that silencing of AQP9
downregulated the expression of MMP9 (Figure 6C). These results suggested that AQP9 expression
affects the motility and invasiveness of prostate cancer cells.
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Figure 6. (A) Confluent cell monolayers were wounded with a pipette tip. Representative images were
captured at 0 h, 24 h, and 36 h. The wound closure was quantified and normalized to that of control cells
(p < 0.05); Cell invasion was analyzed in Matrigel-coated transwell chambers. Representative images
were shown in (B); invaded cells were counted in four selected fields (total space is 2 mm2) (p < 0.05
as compared with control); the total number of invaded cells from the control group set as 100%;
(C) MMP9 protein expression was examined by Western blot. The mean of MMP9 protein/β-actin
expression in PC-3 cells set as 1.0. Control: wild-type cells; AQP9-siRNA: cells transfected with AQP9
specific small interfering RNA; Mock: cells only treated with Lipofectamine 2000. Data were based on
three independent experiments, and shown as mean ˘ SD. * p < 0.05; ** p < 0.01, Bars, 100 µm.

2.5. ERK Pathway Is Required for AQP9-Mediated Motility and Invasion

In order to explore which pathways may be involved in AQP9-mediated motility and invasion
of prostate cancer cells, the activation of ERK1/2 in PC-3 cells was examined. [13,14]. As shown in
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Figure 7A, the phosphorylation of ERK1/2 was significant suppressed in AQP9 siRNA-transfected
cells compared with that in control cells, Moreover, U0126 was used to suppress the activation of the
ERK, in accordance with the result, U0126 treatment inhibited the invasion of PC-3 cells (Figure 7B),
suggesting that AQP9 is involved in the activation of the ERK pathway in prostate cancer cells.
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Data were based on three independent experiments, and shown as mean ˘ SD, ** p < 0.01.

3. Discussion

AQP9 is a typical aquaglyceroporin transporting water, glycerol, and urea that plays a major role
in fluid homeostasis in normal tissues [15], Recently, some studies reported that AQP9 expression
might be involved in the development of several cancers, including epithelial ovarian tumors [16]
and glioblastoma [17]. In addition, recent reports have shown that AQP9, a broadly-selective neutral
solute and water channel, is abundant in the male reproductive tract and that the expression is
regulated by androgens [18,19]. Moreover, our previous work have revealed that AQP9 expression
in the prostate was strictly upregulated by androgen both in vivo and in vitro [10]. However, little
is currently known regarding the function of AQP9 in androgen-independent prostate cancer cells.
In this work, AQP9 was shown to be expressed in human prostate cancer cells, and AQP9 was
silenced in androgen-independent prostate cancer cell line PC-3. After treatment, tumor proliferation
was inhibited, as indicated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)
assay. Moreover, we provided evidence that silencing of AQP9 in PC3 cells significantly induced cell
apoptosis compared with control cells and mock. Meanwhile, AQP9 knockdown downregulated bcl-2
expression and induced activation of bax and caspase-3, suggesting that AQP9 knockdown reduced
proliferation and increased apoptosis which contributed to its suppressive effect on tumor growth.

The present study demonstrated that AQP9 knockdown in PC3 cells significantly decreased their
invasion and motility capability; however, the exact pathway that AQP9 may regulate in prostate cancer
remains unclear. Therefore, we analyzed the possible pathway with Western blot, the ERK signaling
pathway has been considered as a promoter of tumor progression, EMT (Epithelial to Mesenchymal
Transition) and invasion [7,20–22], AQP9 was shown to promote the activation of ERK1/2 in PC-3
prostate cancer cells, indicating that a possible role for the ERK pathway in AQP9-mediated motility
and invasion. Moreover, we addressed the important role of AQP9 in prostate cancer progression to
androgen-independent.

MMP family enhance tumor invasion and metastasis via degradation of the extracellular
matrix [23]. Moreover, MMP9 appears to play a key role in promotion of invasion and metastasis in
prostate cancer [24,25]. Our present study demonstrated that AQP9 regulates the expression of MMP9
in prostate cancer cells. Moreover, the results showed that inhibition of the ERK pathway decreased
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the expression of MMP9 in prostate cancer cells, suggesting that the ERK pathway is involved in
AQP9-mediated MMP9 expression in prostate cancer cells.

It should be noted that few kinds of androgen-independent prostate cancer cells was the limitation
of our study. Some clinical trials are required. In addition, AQP9 is expressed in various organs with
important physiological functions. Aquaporin 9 inhibition therapy might lead to some potential
damage to other organs and induce serious adverse reactions, which should be considered in
future investigations.

4. Materials and Methods

4.1. Cell Culture and Reagents

PC3, LNCap cells were purchased from American Type Culture Collection (Rockville, MD,
USA). PC3 cells were grown in F12 Medium (Life Technology, Carlsbad, CA, USA) with 10% fetal
bovine serum (FBS, Life Technology) and 1% antibiotic (penicillin/streptomycin, Life Technology).
LNCap cells were grown in RPMI-1640 (Life Technology) with 10% fetal bovine serum (FBS, Life
Technology) and 1% antibiotic (penicillin/streptomycin, Life Technology). All cell lines were cultured
in an incubator with 5% CO2 at 37 ˝C. Antibodies were AQP9 (Santa Cruz Biotech sc-14988, CA, USA),
Bcl-2 (Cell Signaling, Danvers, MA, USA), Bax (Cell Signaling), Cleaved Caspase-3 (Cell Signaling),
GAPDH (Santa Cruz Biotech, Santa Cruz, CA, USA), extracellular signal-regulated kinase 1/2 (ERK1/2)
(Cell Signaling), phospho-ERK1/2 (Cell Signaling), MMP9 (Proteintech, Chicago, IL, USA). U0126, a
specific inhibitor of MEK1/2 was obtained from Beyotime (Shanghai, China). For immunofluorescence
labelling, the secondary antibody was rhodamine from Invitrogen (Carlsbad, CA, USA).

4.2. Quantitative Real-Time PCR and Western Blot

Cells were harvested and total RNA was isolated using TRIzol® reagent (Invitrogen Life
Technologies). qPCRs were carried out as follows: 95 ˝C for 5 min; 95 ˝C for 15 s; and 60 ˝C for 1 min, for
40 cycles. For quantitative reverse transcription PCR (qPCR) of total RNA were used with the Maxima
SYBR Green qPCR (Thermo, Carlsbad, CA, USA) and the LightCycler (Roche, Basel, Switzerland).
The sequences of the primers are as follows: forward: TTGCCCAAGCTATTCTCAGTCGA and reverse:
CAGAGACACCGCCAGCCACAT for AQP9; and forward: GTGGGGCGCCCCAGGCACCA and
reverse GTCCTTAATGTCACGCACGATTTC for β-actin. The ratio of each level to control represented
the relative quantity of AQP9 mRNA expression. For Western blot analysis, briefly, total protein was
separated on a precast 6% to 12% polyacrylamide gel and blotted with antibodies for AQP9, Bcl-2, Bax,
Caspase 3, ERK1/2, p-ERK1/2 and GAPDH. Densitometric analysis of protein bands was performed
via Image J software (NIH, Bethesda, MD, USA).

4.3. Small Interfering (Si) RNA Treatment

Small interfering RNA (siRNA) against AQP-9 was generated using the silencer siRNA
(Santa Cruz sc-42371) according to the manufacturer’s recommendations. PC-3 cells were seeded
(1.0 ˆ 105 cells/mL) onto a six-well plates, and incubated at 37 ˝C with 5% CO2 overnight. Cells were
then transfected with siRNA using Lipofectamine 2000 (Invitrogen Life Technologies), according to the
manufacturer’s instructions. The knockdown efficiency was tested 48 h later.

4.4. Cell Proliferation Assay, Wounding Healing Assay and Invasion Assay

For proliferation assay, different treatment cells were seeded onto 96-well plates (5000 per well)
in F12 with 5% FBS and allowed to attach overnight. MTT was added at the following day.
Cell proliferation assays were performed using a MTT cell proliferation and Cytotoxicty Detection Kit
(Keygentec, Taoshan, China) according to the manufacturer’s instructions. Absorbance was measured
at 550 nm using Mikrotek Laborsysteme (Mikrotek, Overath, Germany).
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Invasion assays were performed with three groups. These cells were prepared in suspensions
in culture medium containing 1 ˆ 104 cells for 24-well chambers. The BD BioCoat TM Matrigel
Invasion Chambers (BD Biosciences, San Jose, CA, USA) were incubated for 24 h at 37 ˝C in a 5% CO2.
After incubation, non-invading cells were removed from the upper side of the membrane by scrubbing.

After staining by 0.2% crystal violet, the invading cells were observed under the microscope at
200ˆ magnification and counted in the four fields per experiments, and results were expressed in the
form of a bar graph.

Wound healing assay was used as follows: a scratch was made using a micropipette tip and cells
were washed with PBS (phosphate buffer saline) to remove detached cells and debris. Photographs of
the same area of the wound were taken at 0, 24, and 36 h for measuring the closure of the wound after
the treatment of the transfection.

4.5. Immunofluorescence Microscopy

The cells grown in chamber slides, then cells were fixed in 4% paraformaldehyde, and
permeabilized using 0.2% Triton-X100 in PBS and blocked with 5% BSA/PBS, samples were stained
with primary antibodies AQP9 (1:300, Santa Cruz Biotech) and then followed by rhodamine-conjugated
secondary antibodies. Nuclei were counterstained with DAPI (41,6-diamidino-2-phenylindole).
Images were captured on a Leica TCS-SP8 fluorescence microscope (Leica, Wetzlar, Germany).

4.6. Statistical Analysis and Gene Set Enrichment Analysis (GSEA)

All experiments were repeated three times and data are expressed as the mean ˘ SD. Statistical
analysis and graphs was performed with SPSS 17.0 (IBM, Armonk, NY, USA) and OriginPro 8.0
(Originlab, Northampton, MA, USA) using Student’s t-test (data on two groups) or analysis of variance
and (LSD) post hoc test (data on three groups) analysis of variance p < 0.05 was considered to indicate
a statistically significant difference. Prostate cancer dataset was downloaded from the NCBI Gene
Expression Omnibus database, Access ID: GSE55945).

5. Conclusions

In conclusion, we found that AQP9 was expressed in prostate cancer and provided for the first time
that AQP9 played a key role in the proliferation, apoptosis and metastasis of androgen-independent
prostate cancer cells, and AQP9 might regulate these biological progress through ERK signal pathways
and, thus, may provide useful information for further targeted therapy.
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