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Abstract: Paclitaxel is an anti-tumor agent with remarkable anti-tumor activity and wide clinical
uses. However, it is also faced with various challenges especially for its poor water solubility and
low selectivity for the target. To overcome these disadvantages of paclitaxel, approaches using small
molecule modifications and macromolecule modifications have been developed by many research
groups from all over the world. In this review, we discuss the different strategies especially prodrug
strategies that are currently used to make paclitaxel more effective.
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1. Introduction

Paclitaxel (Figure 1) was isolated from Taxus brevifolia and its anticancer activity first reported
in 1971 [1]. Additionally, it was approved as a kind of microtubule stabilizing agent in 1992. As an
anticancer drug, paclitaxel can promote tubulin polymerization and stabilize microtubules from
depolymerizing [2]. These procedures are relevant to special regions on tubulin including H6–H7 and
the M-loop [3]. Paclitaxel is also able to interact with tubulin assemblages at low temperatures, as
well as without GTP or microtubule-associated proteins [4]. The binding affinity of paclitaxel and
tubulin depends on the nucleotide content of tubulin [5]. Due to this unique anticancer mechanism,
paclitaxel has aroused much interest for further development. Besides its anticancer activity, paclitaxel
can exert a variety of positive influences on the immune system [6], and play a potential role in treating
neurodegenerative diseases as well as inhibiting botulinum neurotoxin [7,8].

Although paclitaxel is effective for various human diseases, it is also faced with limitations: first,
paclitaxel has extremely poor water solubility and it needs a relatively higher dose to take effect
compared to other anticancer drugs. For these reasons, it is always administered with ethanol and
Cremophor EL as vehicles to increase its water solubility, which may cause severe hypersensitivity in
patients. Hence, to avoid this hypersensitivity and obtain better clinical use of paclitaxel, developing
a new co-solvent [9–11] and improving the formulation for paclitaxel delivery systems has become
important [12]. In recent years, outstanding drug delivery systems for paclitaxel have been developed,
and different carriers have been employed, such as cubosomes [13], β-cyclodextrins [14,15], gold
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microplate [16], gold nanorod [17], lipid vesicles [18], microparticles [19], nanoparticles [20,21],
micelles [22–26], and liposomes [27].
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Figure 1. The structure of paclitaxel. Figure 1. The structure of paclitaxel.

Other than its low water solubility, paclitaxel is also faced with multiple drug resistance like other
anti-cancer agents. Specific excipients or administered in combination with other drugs were used to
solve this limitation [28]. Also many formulations have been under clinical trials or investigation [29].
One research showed that better efficacy of paclitaxel could be obtained by prescribing with carboplatin
which could produce a synergistic effect [30]. In the same strain, with the development of anticancer
agents for paclitaxel resistant cancer cells, new chances for paclitaxel’s combination have been
provided [31]. In recent years, paclitaxel has also been delivered with microRNA, shRNA and siRNA
to get better therapeutic effects [32–34]. Furthermore, it also shows dose limiting side effects, which
are common to other cytotoxic agents [35].

In addition to developing better formulation for paclitaxel, there were mainly two ways to achieve
more efficient modified paclitaxel. One was to synthesize various paclitaxel analogs. These strategies
included hybridizing paclitaxel with other chemicals, blocking paclitaxel’s metabolic sites, locking the
binding conformation by bridging converts or directly modifying its structure [36–40]. These paclitaxel
analogs were more efficient with regard to water solubility and anticancer activity [41]. The other way
was to transfer paclitaxel into a prodrug which can release free paclitaxel after administration. Through
this way, the shortcomings of paclitaxel as described above could be largely overcome. These prodrugs
included small molecule prodrugs and macro molecule prodrugs. Most of the small molecule prodrugs
were designed to overcome paclitaxel’s low water solubility. For the macro molecule prodrugs,
paclitaxel was conjugated to polymers or protein. This strategy could commonly increase the targeting
ability of paclitaxel by enhanced permeability and retention effects (EPR) as for other macro molecule
prodrugs [42]. Herein, various prodrug strategies that have been currently used to make paclitaxel
more effective are presented.

2. Structure and Activity Relationships

As for prodrug strategy, understanding the structure and activity relationship is the first step.
Pioneer work showed that the central part of paclitaxel is rigid to a change in structure, while its
side chain tail can be flexible [43]. In the central part of paclitaxel, the 1-OH and 2-benzoyloxy are
important to paclitaxel’s anti-cancer activity [44]. Additionally in the flexible side chain, the activity of
paclitaxel can be influenced by the stereochemistry of C21 and C31 [45]. Furthermore, another work
postulated C21–OH to be the bonding site of paclitaxel to tubulin [46]. Therefore, it was proposed to be
the most important functional group in the region of the C-13 side chain which is a basic component
for paclitaxel [47,48]. Thus, early development mainly focused on the C21-position and C31-position.
Although C-7 to C-10 of paclitaxel does not interact with tubulin directly, it had been postulated that
changes of this region might affect its bonding affinity to P-glycoprotein which is responsible for the
MDR phenotype [49].
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Due to its complicated structure, paclitaxel can be modified at different positions to obtain
paclitaxel analogs, such as 21-OH [50,51], 31-position [49,52], C-2 position [53], C-4 position [54–56], C-7
position [49], C-10 position [57], C-13 position [58] or D-ring [59]. The macrocyclic paclitaxel analog
had also been synthesized according to the structure activity relationship [60]. However, for prodrug
strategy, C21–OH has been the most commonly adopted, as it may be the binding site of paclitaxel to
tubulin. At the same time C7–OH has also been adopted by some other groups.

3. Small Molecule Paclitaxel Prodrug

In this part, approaches to build up of small molecule paclitaxel prodrugs are introduced,
including non-targeting prodrugs and targeting prodrugs.

3.1. Non-Targeting Modification

3.1.1. Hydrophilic Modification

As paclitaxel’s anticancer mechanism became unfolded, making it more water soluble or bio-active
was crucial before its clinical use. Two opposite approaches were adopted by different groups. One was
to make paclitaxel prodrug more water soluble directly in order to get better bio-compatibility. The
other way was to make paclitaxel more hydrophobic which was suitable for long half-life hydrophobic
formulation. The hydrophobic modification will be introduced in the next section. Both ways were
feasible for developing paclitaxel prodrugs.

Skeletal Migration

Hayashi and co-workers developed the ammonium salt of isopaclitaxel with good water solubility
(Figure 2). After administrating, the isopaclitaxel could pH dependently form paclitaxel via O–N acyl
migration without auxiliary and byproduct. The isopaclitaxel has great advantages with respect to
toxicology and medical economics [61]. However, the results of in vivo study are still missing, thus
experiments need to be performed to confirm its efficacy.
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Phosphate Esters

In drug design, forming phosphate esters is a common strategy making the drug more soluble
in water. In addition to good water solubility, the phosphate ester can also be a site of the substrate
for alkaline phosphatases, this property enables the paclitaxel prodrug to have a fast release of the
parent drug. Some simple phosphonooxymethyl ethers of paclitaxel were synthesized by introducing
phosphate moieties to 21-OH and 7-OH. The resulting prodrug had greatly improved water solubility
and could release the free paclitaxel upon incubation with plasma and alkaline phosphatase [62]. In
order to release free paclitaxel easier, Ueda and co-workers [63] introduced phosphate groups to 7-OH
of 21-ethoxycarbonypaclitaxel. In their design, the “trimethyl lock” was used to accelerate the release of
the parent drug as a substrate of alkaline phosphatases (Figure 3). The water solubility is 2.5–5 mg/mL,
and some of the compounds exhibit comparable in vivo cytotoxicity in the M109 murine tumor model.
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Others

Besides phosphate esters, there were other methods to improve the water solubility of paclitaxel.
Such as, Damen et al. [64] synthesized two paclitaxel esters of malic acid at 21-OH and 7-OH respectively.
The resulting prodrugs were stable in plasma, and exhibited improved water solubility, antitumor
activity, and less cytoxicity. Niethammer et al. [65] found when 7-OH was blocked by a pH-dependent
cleavable dihydroxypropyl side chain, the afforded prodrug could achieve equal anti-tumor activity
but was 50-fold more water soluble compared to free paclitaxel (Figure 4).
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3.1.2. Hydrophobic Modification

The other way for the small molecule non-targeting paclitaxel prodrug was to make paclitaxel
more hydrophobic by linking a hydrophobic moiety at the 21-OH position. These hydrophobic
paclitaxel prodrugs were more suitable for a nanoparticle delivery system with a longer half life in
circulation [66].

Silicate Esters

In order to achieve a wider water solubility range of the paclitaxel prodrug, 21-OH was silicated
with different alkyl groups. By changing the alkyl group, the water solubility could shift to a proper
range for formulation [67]. Han and co-workers synthesized silicate derivatives of paclitaxel as
prodrugs. In their study, the alkyl group in the silicate derivatives was chosen to generate prodrugs
with greater hydrophobicity for preparing nanoparticles, and then a formulation with maximum
loading capacity of 75 wt % of prodrug and greater in vitro efficacy was prescribed. Table 1 shows
cLogP and t1/2 of silicated paclitaxel prodrugs with different alkyl groups [68].

Table 1. cLogP and t1/2 of silicated paclitaxel prodrugs with different alkyl groups.

21-O 7-O cLogP T1/2 (min)

H H 3.2 N/A
Si(OEt)3 H 5.0 3.7

Si(On-Oct)3 H 7.7 12
Si(Oi-Pr) H 5.6 120

Si(Ot-Bu)2(OEt) H 5.8 12,000
Si(Omenthyl)3 H 7.4 69,000

H Si(OEt)3 5.1 30
H Si(On-Oct)3 7.8 150

Si(OEt)3 Si(OEt)3 6.3 4.6 (21-O)
33 (7-O)
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Squalenoylation Technology

Other than silicate esters, squalenoylation technology has also been developed for delivering
poorly water soluble therapeutic agents. When a hydrophilic polyethylene glycol (PEG) linker is
introduced between hydrophobic paclitaxel and squalene, the water solubility can be adjusted by
selecting the most suitable length of the PEG linker and squalene moiety. A series of paclitaxel prodrugs
was synthesized by Dosio and co-workers [69]. All the prodrugs can self-assemble into nanoparticles
in low concentration and are stable in water for several weeks. Preliminary biological studies showed
these squalenoyl-paclitaxel nanoassemblies can induce the HT-29 and KB-31 cells’ microtubule bundles
from forming, and it also exhibited notable antitumor activity on a lung tumor cell line. Overall this
technology has potential for delivering a poorly soluble drug.

3.1.3. Mutual Drugs

Mutual prodrug strategy can contribute a lot to obtain paclitaxel prodrugs with higher anti-cancer
efficiency and increased water solubility. Wittman et al. [70] reported that the combination of paclitaxel
with other antitumor agents could afford improved cytotoxicity to MDR cell lines. In the study, a
series of chlorambucil–paclitaxel prodrugs were synthesized, and the compound exhibited in Figure 5
was demonstrated to have vigorous antitumor activity in vivo, based on M109 murine models and
paclitaxel resistant M109/taxlR models.
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Figure 5. Chlorambucil-paclitaxel prodrug.

Muramyl dipeptide (MDP) which can elicit human immunological responses is the minimal
structure of Gram-positive and the Gram-negative bacteria’s cell walls. Paclitaxel prodrugs containing
MDP or its analog motifs can elicit human immunological responses, and thus achieve a synergistic
anticancer effect. This strategy can combine immunotherapy and chemotherapy together in curing
cancer. The dipeptide-paclitaxel prodrugs in which the dipeptide was conjugated to the 31-amino
group, 21- and 7-hydroxyl group of the paclitaxel were synthesized respectively (Figure 6). Among
them, the 21-OH prodrug was around 200 times more water-soluble than paclitaxel [71]. However,
further researches showed that it was not powerful in antitumor activity. Thus, further chemical
modification of this prodrug was conducted by the group for better efficacy [72].

Caron and co-workers linked paclitaxel and gemcitabine together via a short polyisoprenoyl
spacer. This series of bolaform polyisoprenoyl paclitaxel and gemcitabine prodrug can form
nanoassemblies with a diameter of 100–200 nm due to the property of the spacer. These nanodevices
with high drug loading rate showed improved in vitro activities on several human and murine cancer
cell lines compared to those nanoassemblies of the squalenoyl drugs solely or in combination. Thus,
this preparation method is potent for nanoparticle mediated combination therapy [73].

Besides enhancing antitumor activity, the antistenotic profile of paclitaxel can also be increased via
mutual drug strategy. An early attempt was conducted by Vrudhula and co-workers [74]. They
synthesized the captopril-paclitaxel mutual prodrug, and the antistenotic profile was obviously
increased. Recently paclitaxel was conjugated to polyisobutylene for controlled release from vascular
stent coating, the results showed that this coated stent was potent for clinical use [75]. In order to
achieve better therapeutic effects of paclitaxel coated stents, adamantine nitrosothiol was introduced
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at the 7-position as a nitric oxide donor (Figure 7). Stents coated with this modified paclitaxel were
34% better than paclitaxel coated stents, and 41% better than polymer coated stents [76].
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3.1.4. Dipeptide Prodrugs

As mentioned above, paclitaxel shows dose limiting side effects [35]. In order to reduce such
side effects, Dubowchik et al. [77] conjugated a cathepsin-B sensitive dipeptide (Phe–Lys) to both the
21-OH and 7-OH of the paclitaxel and a self-immolative PABC (p-aminobenzyloxycarbonyl) linker was
employed to avoid steric interference between the dipeptide and paclitaxel. They found the resulting
prodrugs were stable in plasma and could release the paclitaxel when internalized by tumor cells.
In addition, the prodrug in which the modified group was the 7-OH showed a longer half-life of 66 min
in rat liver lysosome than the 21-OH of 19 min. Although the 7-OH showed a shorter half-life of 40 min
in cathepsin B solution, the 21-OH modification was 9 h.

3.1.5. Others

Paclitaxel could bind not only to tubulin but also to P-glycoprotein [78]. A paclitaxel prodrug with
succinate at the C10 position showed low affinity to P-glycoprotein which could enable the paclitaxel
analog to pass through the blood-brain-barrier. In this way, the paclitaxel concentration is enhanced in
the brain about 3-fold. Meanwhile cytotoxic research showed the prodrug could retain comparable
efficacy towards the breast cancer line MCF7 with an IC50 of 35.7 nm compared to paclitaxel’s IC50 on
this cell line which is 1.8 nm [79].
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Photodynamic therapy (PDT) is a type of method for treating cancer. After a sensitizer is
administered, the pathological area is exposed to visible light. The beam of light can activate a
sensitizer to release a cytotoxic free radical or singlet oxygen. Skwarczynski and co-workers [80]
first synthesized photo responsive paclitaxel by introducing 7-N,N-diethylamino-4-hydroxymethyl
coumarin (DECM) as a photolabile group to 21-benzoyl-paclitaxel which could increase paclitaxel’s
water solubility by transforming it into chloride and be activated at 430.6 nm without decomposition
(Figure 8). After activation by light, the cleavage of the carbamate induces O–N acyl migration to
end up with paclitaxel. Noguchi and co-workers [81] also synthesized a coumarin-based high water
soluble paclitaxel prodrug, which could release the parent drug at 365 nm UV light.Int. J. Mol. Sci. 2016, 17, 796 7 of 22 
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Besides the above, the DHA-Paclitaxel prodrug is a very important compound. This prodrug
strategy is realized by the conjugate DHA molecule to 21-OH and is tested in the M109 mouse tumor
model. Results show tumor AUCs for DHA-paclitaxel are 61-fold higher at equitoxic doses and 8-fold
higher at equimolar doses than palitaxel [82].

3.2. Targeting Modification

3.2.1. Targeting Tumor Overexpressed Enzymes

Tumor tissues are different from normal tissues in various aspects. One difference is that
some enzymes are over expressed in tumor tissues. By employing a tumor overexpressed enzymes
recognition motif paclitaxel prodrugs can show selective cytotoxicity towards tumor tissues.

Targeting β-D-Glucuronidase

β-D-Glucuronidase is a kind of extracellular enzyme in necrotic tumors. Prodrugs in which
the paclitaxel is modified with β-glucuronide can increase the selectivity and the water solubility of
paclitaxel. By attaching β-glucuronide and a self-immolative spacer to the 21-position of the paclitaxel,
Alaoui et al. [83] successfully developed a strategy to obtain a plasma stable and enzyme cleavable
prodrug which could be used for prodrug monotherapy (PMT) and antibody directed enzyme prodrug
therapy (ADEPT) (Figure 9). The IC50 of this compound is 11.3 nm compared to free paclitaxel 0.16 nm
on HT-29, but further in vivo study needs to be carried out.
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Targeting Prostate-Specific Antigen (PSA)

Different peptide moieties can be recognized and decomposed by the different corresponding
enzymes. When attached to peptide moieties, paclitaxel can obtain target ability. Elsadek and
co-workers [84] designed and prepared EMC–Arg–Ser–Ser–Tyr–Tyr–Ser–Leu–PABC–paclitaxel (EMC:
ε-maleimidocaproyl; PABC: p-aminobenzyloxycarbonyl) which contained a prostate-specific antigen
(PSA) cleavable peptide site. EMC in the compound was an active moiety which enabled the
conjugate to bind to albumin, and be retained by the vessels in the prostate. These properties
made the conjugate promising for future development in curing prostate cancer. Kumar and
co-workers [85] also synthesized paclitaxel prodrug targeting PSA by taking advantages of HSSKLQ
(His–Ser–Ser–Lys–Leu–Gln) or SSKYQ (Ser–Ser–Lys–Tyr–Gln) peptides which could be cleaved by
PSA. The peptides and the paclitaxel were linked with para-aminobenzyl alcohol (PABS) or ethylene
diamine (EDA). Inducing these linkers resulted in an increased hydrolysis rate of the prodrug by PSA.
The anti-cancer activities of these prodrugs were conducted on various cell lines, including CWR22Rv1
prostate cancer cell line. Among these prodrugs, the compound in which the peptide and the paclitaxel
were linked with ethylene diamine was stable and could be efficiently converted into free paclitaxel
that kills cancer cells in the presence of PSA (Figure 10).
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Besides targeting β-D-glucuronidase and targeting PSA paclitaxel prodrugs, targeting the plasmin
prodrug of paclitaxel has also potential for future use [86].
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3.2.2. Targeting Transporters

Facilitative glucose transporters (GLUTs) are a kinds of transporters which are responsible for
uptaking glucose into cells. By attaching 21-glucopyranose to the 21-OH of the paclitaxel via succinic
acid, Liu et al. [87] obtained a good paclitaxel analogue with high selectivity towards GLUTs. To
further improve the water solubility of paclitaxel, Lin and co-workers [88] prepared a series of
21-paclitaxel conjugates by employing the 21-glucose or glucuronic acid motif. These prodrugs showed
enhanced water solubility and great selectivity towards GLUTs which were overexpressed in tumor
cells (Figure 11).
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3.2.3. Targeting Hypoxia

Hypoxia is a phenomenon of low oxygen concentration in tissues. In solid tumor, mild oxygen
deficiency (hypoxia) or severe oxygen deficiency (anoxia) regions can be usually observed. In
these parts, due to inefficient blood supply, drugs cannot reach their targets easily. In addition,
hypoxic cells may also be resistant to both radiotherapy and conventional chemotherapy [89].
Hence, developing bioreductive (pro)drugs targeting hypoxia with low side effects is necessary.
Damen et al. [35] first prepared a bioreductive paclitaxel prodrug by attaching the aromatic nitro
and azido groups bioreductive trigger to C21–OH. For blocking C21–OH, lower side effects could be
achieved. When reaching hypoxia regions, free paclitaxel was released after reduction of the nitro
group and 1,6-elimination of a 4-amino or 4-hydroxylamino benzyloxycarbonyl moiety (Figure 12).

Int. J. Mol. Sci. 2016, 17, 796 9 of 22 

 

cells may also be resistant to both radiotherapy and conventional chemotherapy [89]. Hence, 
developing bioreductive (pro)drugs targeting hypoxia with low side effects is necessary.  
Damen et al. [35] first prepared a bioreductive paclitaxel prodrug by attaching the aromatic nitro and 
azido groups bioreductive trigger to C2′–OH. For blocking C2′–OH, lower side effects could be 
achieved. When reaching hypoxia regions, free paclitaxel was released after reduction of the nitro 
group and 1,6-elimination of a 4-amino or 4-hydroxylamino benzyloxycarbonyl moiety (Figure 12). 

 
Figure 12. Targeting hypoxia prodrug. 

3.2.4. Targeting Integrin 

Integrin is an important protein in promoting cell attachment and migration for tumor cells. 
Pilkinton and co-workers [90] synthesized a series of conjugates by linking paclitaxel to either cyclic 
AbaRGD (Azabicycloalkane-RGD) or AmproRGD (Aminoproline-RGD) integrin recognizing 
matrices with various linkers. The results showed these conjugates had satisfactory binding affinity 
towards the integrin, excellent cell sensitivity, and remarkable antitumor activity (Figure 13).  
Zhang et al. [91] also conjugated paclitaxel to cyclo-(Arg–Gly-Asp-D-Phe-Lys) (c[RGDfK]) for treating 
glioma tumor. In addition, the cyclo [DKP-RGD] peptidomimetics-paclitaxel conjugate and dimeric 
RGD peptide-paclitaxel conjugate also achieved a superior antitumor effect against the IGROV-1/Pt1 
human ovarian carcinoma xenotransplanted in nude mice compared to paclitaxel [92,93]. 

 
Figure 13. Targeting integrin prodrug. 

3.2.5. Targeting Receptors 

Folic receptor-α (FA-α) expresses little in normal cells and even not be detectable. Nevertheless, 
it is upregulated and can be detected in some kinds of cancer cells. Folic acid is the ligand of FA-α 
and therefore can target drugs to such kind of cancer cells with high expression of FA-α.  
Shan et al. [94] synthesized multi-small molecule conjugations in which folic acid was conjugated to 
paclitaxel at the 2′-position via single amino acids (Arg or Glu). This resulting prodrug showed 
improved water solubility. Besides, this prodrug showed increased uptake by FR-α over expressing 
tumor cells (i.e., MCF-7, MDA-MB-231, and A549) when compared to normal HEK293 cells. This 
suggests the prodrugs have good anticancer activity and targeting ability. 

Taking advantages of receptor bonding peptide is an efficient way for targeting delivery, 
Ndungu et al. [95] synthesized the conjugate in which the tissue factor binding peptide fVIIa was 
attached to paclitaxel at the C2′ or C7 position via a succinic acid linker. The conjugate showed better 
anti-cancer activity towards human head and neck squamous KB3-1 cells. 

Figure 12. Targeting hypoxia prodrug.

3.2.4. Targeting Integrin

Integrin is an important protein in promoting cell attachment and migration for tumor cells.
Pilkinton and co-workers [90] synthesized a series of conjugates by linking paclitaxel to either
cyclic AbaRGD (Azabicycloalkane-RGD) or AmproRGD (Aminoproline-RGD) integrin recognizing
matrices with various linkers. The results showed these conjugates had satisfactory binding
affinity towards the integrin, excellent cell sensitivity, and remarkable antitumor activity (Figure 13).
Zhang et al. [91] also conjugated paclitaxel to cyclo-(Arg–Gly–Asp-D-Phe–Lys) (c[RGDfK]) for treating
glioma tumor. In addition, the cyclo [DKP-RGD] peptidomimetics-paclitaxel conjugate and dimeric
RGD peptide-paclitaxel conjugate also achieved a superior antitumor effect against the IGROV-1/Pt1
human ovarian carcinoma xenotransplanted in nude mice compared to paclitaxel [92,93].
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3.2.5. Targeting Receptors

Folic receptor-α (FA-α) expresses little in normal cells and even not be detectable. Nevertheless,
it is upregulated and can be detected in some kinds of cancer cells. Folic acid is the ligand of FA-α and
therefore can target drugs to such kind of cancer cells with high expression of FA-α. Shan et al. [94]
synthesized multi-small molecule conjugations in which folic acid was conjugated to paclitaxel at
the 21-position via single amino acids (Arg or Glu). This resulting prodrug showed improved water
solubility. Besides, this prodrug showed increased uptake by FR-α over expressing tumor cells
(i.e., MCF-7, MDA-MB-231, and A549) when compared to normal HEK293 cells. This suggests the
prodrugs have good anticancer activity and targeting ability.

Taking advantages of receptor bonding peptide is an efficient way for targeting delivery,
Ndungu et al. [95] synthesized the conjugate in which the tissue factor binding peptide fVIIa was
attached to paclitaxel at the C21 or C7 position via a succinic acid linker. The conjugate showed better
anti-cancer activity towards human head and neck squamous KB3-1 cells.

3.2.6. Targeting Glutathione

Many tumor cells contain a high concentration of glutathione which can be used to targeting
delivery of the drug to tumor cells. Taking advantages of intracellular sulfhydryl-containing spices
such as glutathione (GSH) or its thiolate anion GS´ at a biological pH attacking the disulfide bond,
Gund et al. [96] designed various prodrugs containing disulfide linker which showed better water
solubility and anticancer activity than free paclitaxel (Figure 14).
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3.2.7. Prodrugs for Antibody Directed Enzyme Prodrug Therapy (ADEPT)

ADEPT is the strategy aiming to achieve selective toxicity to tumor cells meanwhile keeping
normal cells undamaged from stand by effects. The monoclonal antibody enzyme fusion protein is
administered before cytotoxic prodrug in this strategy. For high affinity of monoclonal antibody,
monoclonal antibody enzyme fusion protein can concentrate in tumor tissues. The subsequent
prodrug is activated by the enzyme part in the antibody enzyme fusion protein and thus cytotoxicity
appears. Using this strategy, Vrudhula and co-workers [97] synthesized the cephalosporin prodrug
of paclitaxel with self-immolative linkers which could be activated by L-49-sFv-β-Lactamase fusion
protein (Figure 15). Another example of prodrug for ADEPT was designed by Bont et al. [98]. In their
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study, paclitaxel was connected to β-glucuronic acid via a carbamate linkage which could release the
free drug under the presence of β-glucuronidase which demonstrated desirable anti-tumor efficacy.
Also, this design is potent for ADEPT.
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3.2.8. Prodrugs for Gene-Directed Enzyme Prodrug Therapy (GDEPT)

Ishida and co-workers [99] designed a paclitaxel-21-ethylcarbonate prodrug, this prodrug
converted into free paclitaxel with the help of an HSV amplicon expressing rabbit-carboxylesterase
(CES) with HF10, an attenuated replication-competent virus, as a helper virus which could be used
in cancer virotherapy. This approach can produce CES at the tumor sites with a high level, thus free
paclitaxel can be released from the prodrug, and enhance the efficacy of HF10.

4. Macromolecular Prodrugs

As mentioned above, formulation of paclitaxel is of vital importance in order to avoid complicated
formulations. Macromolecular paclitaxel strategies have been developed by some research groups.
Macromolecular paclitaxel can not only avoid complicated formulations but also enhance the targeting
ability of paclitaxel by improved permeability and retention effects (EPR). In this section, several
representative macromolecules which were used to prepare the paclitaxel prodrug are discussed.

4.1. Polyethylene Glycol (PEG)

4.1.1. PEG as Drug Carriers

Initially, PEG was used as a dissolution aid for paclitaxel [100]. In order to get a more stable
prodrug, a series of PEG-paclitaxel conjugates were prepared by different groups. When paclitaxel was
conjugated to PEG via an amino acid spacer, the water solubility would be remarkably enhanced [101].
Greenwald et al. [102] prepared the conjugate in which the paclitaxel was attached to ~40 kDa PEG
via an ester bond. The water soluble conjugate was shown to be relatively nontoxic compared to
paclitaxel. However, increased toxicity was observed in the living expectancy in P388-treated mouse.
Liang and co-workers [103] synthesized PEG paclitaxel conjugate via a cathepsin B cleavable linker
(valine-citrulline) and a PABC spacer. The afforded conjugate showed significant advantages in terms
of high water solubility, without toxic excipients, and tumor environment sensitive drug release.

4.1.2. PEG Copolymer Prodrugs

Although PEG is potent for paclitaxel conjugates, it is also challenged by its intrinsic property
that it has only two drug loading sites at each end of the polymer. This limitation prompted the
development of PEG copolymers.

Gu and co-workers [104] established a versatile platform for using prodrug micellar nanoparticles
to deliver paclitaxel. Unlike other noncovalently bonding nanosystems, paclitaxel was acetal-linked to
water soluble poly(ethylene glycol)-b-poly(acrylic acid) (PEG–PAA) block copolymer. The prodrug
was pH dependent degradable and thus, paclitaxel could be released rapidly. These paclitaxel prodrug
nanoparticles showed high antitumor activity to KB and HeLa cells (IC50 = 0.18 and 0.9 µg PTX
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equivalent (equiv.)/mL, respectively) as well as A549 cells, a PTX-resistant. The system showed
superior anticancer activity to both drug sensitive and resistant cancer cells with remarkable efficient
drug content (up to 42.8 wt % paclitaxel). Using this strategy, the drug loading ability of the polymer
could be improved by a large amount.

Besides the drug loading ability, the co-polymer is more functional than the original PEG.
Yu et al. [105] synthesized a functional polylactide-g-paclitaxel-poly(ethylene glycol) drug conjugate.
In this conjugate, paclitaxel was used as a divalent agent bridging degradable azide-functionalized
polylactide (PLA)-based backbone and PEG side chain. In vitro study showed the azide motif could be
hydrolyzed faster at pH 5.5 than pH 7.4 while the ester bond is more stable at pH 5.5 which proved the
conjugate was potent to release paclitaxel faster in tumor tissues.

Lv et al. [106] synthesized the 3,31-dithiodipropionic acid functionalized poly(ethylene
glycol)-b-poly(L-lysine) (mPEG-b-P(LL-DTPA)) and paclitaxel was conjugated to this polymer. Not
surprisingly, it was a redox dependent drug release conjugate. Besides, the prodrug was pH dependent
release and exhibited high cytotoxic towards tumor cells compared to non-sensitive micelles.

Furthermore, PEG copolymer can form self-assembly micelles, which can simplify the preparation
process. Chen et al. [107] prepared co-polymers with PEG side chains, and paclitaxel was covalently
conjugated to the polymer via disulfide linkers. These self-assembly micelles showed apparent
cytotoxicity to OS-RC-2 kidney tumor cells and low cytotoxic to normal cells (macrophage cells).

Besides mono drug therapy, paclitaxel can also combine other drugs with the aid of PEG to
formulate a drug delivery system. Zhu and co-workers [108] developed a nanopreparation which was
composed of matrix metalloproteinase 2 (MMP2)-sensitive self-assembly PEG2000-paclitaxel conjugate,
transactivating transcriptional activator peptide-PEG1000-phosphoethanolamine (PE) which could
enhance cell-penetration, and PEG1000-PE as a nanocarrier building block. This system exhibited
enhanced anticancer activity, and could deliver the drug into cancer cells.

4.1.3. PEG Linker Prodrugs

In addition to employing PEG as a drug carrier directly or forming PEG co-polymers, PEG
can also be used as a linker between carrier and paclitaxel. Bao and co-workers [109] synthesized
D-α-tocopherol polyethylene glycol succinate-based paclitaxel prodrug which was self-assembly
aggregate in micelles with high drug loading. The prodrug was designed by introducing P-glycoprotein
(P-gp) inhibitor and a disulfide linker to realize redox-sensitive property in tumor tissues. The prodrug
was not only 91% more efficient than paclitaxel but also had increased AUC and half-life.

The paclitaxel conjugates with PEG linker could achieve targeting ability by conjugating targeting
moieties. Safavy and co-workers [110,111] linked paclitaxel-PEG conjugate with BBN peptide which
could bind to the cell surface bombesin/gastrin-releasing peptide receptor. The resulting prodrug
retained binding affinity as the original BBN, its IC50 was lower than free paclitaxel when tested on
NCIH1299 human non-small dell lung cancer cell. In order to enhance the endocytosis of the prodrug,
Yin and co-workers [112] synthesized octreotide-PEG-disulfide bond-paclitaxel conjugates. This design
could realize not only targeting ability by EPR effects but also OCT-receptor mediated endocytosis.
The results showed the design could be used for superior targeting redox-sensitive polymers.

4.2. Hyaluronic Acid (HA)

Hyaluronic acid has synergism effects with paclitaxel in inhibiting cancer migration [113]. Lee and
co-workers [114] synthesized paclitaxel-hyaluronic acid conjugate via an ester bond. This conjugate
could form self-assembly nanosized micellar aggregates in aqueous solution and exhibited more
pronounced cytotoxicity for cancer cells overexpressing HA receptors. Yin et al. used cross linker
containing disulfide bonds which is sensitive to glutathione to link paclitaxel and hyaluronic acid (HA)
together. This system was also able to enhance the therapeutic efficacy of paclitaxel and provide a
redox-responsive, controlled releasing, targeting platform for paclitaxel delivery [115].
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4.3. N-(2-Hydroxypropyl)methacrylamide (HPMA)

N-(2-hydroxypropyl)methacrylamide (HPMA) is also a popular macromolecule used to prepare
the paclitaxel prodrug. Miller and co-workers [116] conjugated alendronate and paclitaxel to HMPA via
cathepsin B cleavable peptide in which alendronate was used to target bones. The resulting conjugate
exhibited improved efficacy, and could be better tolerated and administered than when formulated in
Cremophor and ethanol. Erez and co-workers [117] introduced cathepsin B cleavable linker and AB3
self-immolative space to form paclitaxel HPMA conjugates. The resulting conjugate exhibited higher
drug loading and enhanced cytotoxicity on murine prostate adenocarcinoma cells when compared to a
classic monomeric drug-polymer conjugate. In addition to peptide linker, other linker strategies were
also developed. Etrych et al. [118] synthesized HMPA copolymer-paclitaxel conjugates by inducing
hydrolytic cleavable linkage which was formed by the reaction of the hydrazide group-terminated side
chain of the polymer with the carbonyl group of a drug derivative. In vitro study showed this conjugate
could release paclitaxel faster at pH 5 compared to pH 7. Furthermore, this conjugate showed better
anti-tumor activity in the 4T1 model of mammary carcinoma than the parent paclitaxel.

4.4. Dendrimers

Dendrimer is a kind of highly branched polymer. Although dendrimers are less popular than
other polymers in delivering paclitaxel, a dendrimer delivery system has some advantages over
other polymer delivery systems. It can form a monodispersed drug delivery system. Reproducible
pharmacokinetics and pharmacodynamics could be observed from batch to batch. Some specific
dendrimer paclitaxel carrier could also influence tubulin stability including polyamidoamine
(PAMAM) [119].

PEGylated triazine dendrimers containing 12 paclitaxel binding sites were synthesized with
different ester or disulfide linkers between the core and the 21-OH in paclitaxel [120]. This group also
carried out in vivo experiments of these polymers. Just as they hypothesized, introducing a labile
disulfide linker formed a more cytotoxic prodrug [121]. After this, PEGylated triazine dendrimers for
paclitaxel delivery received further development [122]. Dendrimers of this kind with approximately 16
paclitaxel binding sites and eight PEG group (Figure 16) binding sites were built up in different ways.
The best construction is shown in Figure 16 [123]. Apart from this, highly branched dendrimer can also
protect siRNA from RNase digestion which makes dendrimer an ideal carrier for combining paclitaxel
to siRNA. Kala and coworkers [124] reported that co-delivering paclitaxel and Akt siRNA by a
triethanolamine-core poly(amidoamine) dendrimer showed great potential for treating ovarian cancer.
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Satsangi and co-workers [125] synthesized paclitaxel poly(amidoamine) dendrimer conjugates
with capthesin B cleavable peptide linker (Gly–Phe–Leu–Gly). This design enabled the conjugates to
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release paclitaxel in tumor tissues where capthesin B activity is relatively high compared to normal
tissues. In this way the conjugates achieved markedly higher tumor reduction compared to paclitaxel
in the MDA-MB-231 model.

For PEG drug conjugates, their intrinsic limitation is owing to PEG’s chemical structure where
only the end can form conjugates. In order to get a higher amount of payload, Clementi et al. [126]
developed a strategy giving PEG a dendrimer at each end. By using this method, paclitaxel and
alendronate were conjugated to the H2N–PEG–dendrimer–(COOH)4, this conjugate exhibited an
increased half-life, and could be resolved in the physical environment without Cremophor EL.

4.5. Other Polymers

In order to avoid complicated formulation, paclitaxel was conjugated to low molecular weight
chitosan with a cleavable ester bond. As a result, water solubility was enhanced to >1 mg/mL with
comparable IC50, and the prodrug could be administered orally [127].

There is another property of paclitaxel which has directed the development of macromolecular
paclitaxel prodrugs. It had been shown that paclitaxel’s efficacy is more dependent on exposure time
rather than on its concentration [128]. Therefore, a slow release system is more efficient in delivering
paclitaxel. Cavallaro et al. [129] first used α,β-Poly(N-2-hydroxyethyl)-DL-aspartamide (PHEA) whose
properties were similar to plasma as paclitaxel succinic anhydride derivative carriers linked by an
ester bond whichcould be cleaved by an enzyme. This system showed high drug loading, stable in
plasma, and prolonged drug release. By using polylactide, Yu and co-workers [130] designed brush
polymer for azide-functionalized paclitaxel sustained delivering.

Delela [131] synthesized the conjugate in which paclitaxel was attached to poly (styrene-co-maleic
acid), this self-assembly formed nanoparticles exhibiting pH dependent release, increasing in Cmax and
half-life, and could be detained in the tumor via an enhanced permeability and retention effect (EPR).

Wang and co-workers [132] synthesized heparin-paclitaxel conjugates via a single amino acid
linker, in which heparin could inhibit tumor development. Results showed the anticoagulant activity
of the prodrug was decreased sharply compared to heparin. This meant the prodrug strategy was
safe to be administered systemically. This prodrug did not only have a self-assembly property in
preparation, but also exhibited better cell inhibition for MCF-7 cells than free paclitaxel. The targeting
capacity to solid tumor was also enhanced in this design.

4.6. Proteins

Aiming to avoid using Cremophor EL, choosing proper drug formulation or carrier is vitally
important. Dosio and co-workers [133] conjugated paclitaxel to human serum albumin. The afforded
conjugate became biocompatible and could be internalized into cells followed by drug release inside
the cell. This conjugate could also release parent drug continuously to provide a depot effect.

Conjugating to antibody is an efficient approach for getting better target ability. Using this method,
drugs can be specifically delivered to tumor sites and fewer side effects could be observed. Safavy
and co-workers [134] conjugated paclitaxel to anti-epidermal growth factor receptor (anti-EGFR)
momoclonal antibody Erbitux (C225) via a succinic acid linker. With regard to the conjugate, the 24 h
tumor uptake was not significantly different from the original Mab, which meant paclitaxel bonding
did not affect the antigen-binding and original inhibiting properties of C225, an early cleavage of
the drug was observed. After this, glutaric acid linker was employed for avoiding early cleavage in
circulation. This linker based antibody drug conjugate (ADC) exhibited better antitumor activity.

5. Nanodevices

As mentioned above, there have been many varieties of polymers, dendrimers, and proteins used
to conjugate with paclitaxel as carriers. Besides these carriers, nanodevices have also been employed in
developing paclitaxel prodrugs. Yuan and co-workers [135] developed an approach to bond paclitaxel
to fluorescent mesoporous silica nanoparticles (FMSN) covalently via disulfide linker which was
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sensitive to glutathione concentration. This conjugate could load up to 13% by weight. In vitro study
showed this conjugate could be effectively taken up by Hela cells with reduced toxicity and side effects.
Fluorescent silicon oxide based paclitaxel conjugate also showed great potential for clinical use [136].

In order to get better water solubility, Ding and co-workers [137] added PEG spacer to gold
nanoparticles to form thiol terminated PEG-paclitaxel-conjugates. Water solubility was enhanced
by 4.6 ˆ 105 times compared to free paclitaxel. The conjugate also exhibited improved cytotoxicity
and prolonged circulation. Gibson and co-workers [138] first synthesized 2 nm gold nanoparticles
conjugated with paclitaxel. In the study, paclitaxel was attached to a hexaethylene glycol linker at
the 7-OH and then the linker was linked to phenol-terminated gold nanocrystals. This offered an
opportunity to develop gold based conjugates.

Xu and co-workers [139] used PEGylated graphene oxide as drug carrier, paclitaxel was linked
to PEG via a succinic liner. The resulting conjugate showed high water solubility and bioavailability,
and could be quickly absorbed by lung cancer cell A549 and breast cancer MCF7. Besides graphene,
fullerene could also be employed as drug carrier. Zakharian and co-workers [140] developed a
fullerene-paclitaxel conjugate to realize slow-release property and also made a single dose “drug
cocktail” for paclitaxel possible.

6. Conclusions

Paclitaxel is a promising antitumor agent which was originally separated from natural plants.
However, there are some limitations towards its wide clinical application. Hence, efforts to obtain
smarter targeting paclitaxel have never stopped. In the early stage of paclitaxel’s development
strategies, studies mainly focused on the problem of low water solubility. As more and more research
groups contributed to paclitaxel’s preparation, diverse prodrug techniques were used to obtain more
efficient paclitaxel. With modern preparation methods, the anti-tumor activity of paclitaxel can be
enhanced a great deal. However, for improved formulation or drug combination, there still remains
a lot of work to be carried out by scientists in the future. Furthermore, recently many groups have
published their works on self-assembly nano particles which can be prepared easily. This may be
the trend to replace traditional complicated preparation manners and formulation. Besides drug
formulation, enhancing the targeting ability of paclitaxel with fewer side effects is also a challenge.
In the traditional way, paclitaxel prodrugs can achieve targeting ability by employing targeting moieties
including tumor cell over-expressed proteins recognizing peptide or small molecules, and employing
linkers which are sensitive to the tumor environment. Whether there is a better way for paclitaxel to
obtain targeting activity is still under development.
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