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Abstract: Due to the polyanionic nature of RNA, the principles of charge neutralization and
electrostatic condensation require that cations help to overcome the repulsive forces in order for
RNA to adopt a three-dimensional structure. A precise structural knowledge of RNA-metal ion
interactions is crucial to understand the mechanism of metal ions in the catalytic or regulatory
activity of RNA. We solved the crystal structure of an octameric RNA duplex in the presence of
the di- and trivalent metal ions Ca2+, Mn2+, Co2+, Cu2+, Sr2+, and Tb3+. The detailed investigation
reveals a unique innersphere interaction to uracil and extends the knowledge of the influence of
metal ions for conformational changes in RNA structure. Furthermore, we could demonstrate that
an accurate localization of the metal ions in the X-ray structures require the consideration of several
crystallographic and geometrical parameters as well as the anomalous difference map.
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1. Introduction

Metal ions play a crucial role in the folding of RNA and its catalytic mechanism, which are
central in RNA biology. Folded RNA is involved in almost every aspect of cellular metabolism,
including protein synthesis, RNA splicing, catalysis, and gene regulation [1–4], which is possible
due to the multifunctional nature of RNA [3]. Cations influence the folding pathway by bringing
together unfolded molecules, promoting the formation of secondary structures, stabilizing intermediate
structures, and by maintaining the final native structure [3,5,6].

Nucleic acids, with their negative charge, are excellent targets for metal ions and metal-containing
compounds. Most of the metal ions interact non-covalently with RNA, for example by electrostatic
attraction, outersphere binding via hydrogen bonds, π–π interactions between a ligand of the metal
complex and the nucleobases, or shape selective binding to the grooves [7,8]. A second type of binding,
called innersphere binding, occurs directly between a metal ion and atoms of the RNA [9]. The MINAS
(Metal Ions in Nucleic AcidS) database [10] allows searching for any specific metal binding sites found
in nucleic acids and it distinguishes between outer- and innersphere coordination.

There is no ideal spectroscopic or biochemical method that provides in a single experiment
details of metal ion occupation sites, specific ligands environment, and structural response of nucleic
acids to cations. Biochemical and chemical methods predict metal ion binding sites and their
involvement in catalytic activities of RNA, but this requires either RNA modification or cleavage,
or the exchange of the natural cofactor by another metal ion [11–13]. Nuclear Magnetic Resonance
(NMR) indicates metal position by monitoring changes in chemical shifts of different nuclei upon the
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addition of metal ions and provides information on dynamic ion-RNA interactions in solution [14–16].
Another biophysical approach is Electron Paramagnetic Resonance Spectroscopy (EPR); it is often
used to obtain information about coordination environments, but limited to spectroscopic active
species [17–20]. Raman spectroscopy has been used to investigate metal ion binding to the nucleic
acid backbone [21]. Selective metal ion excitation by different incident synchrotron radiation in X-ray
absorption spectroscopy (XAS) helps to identify metal ion occupancies and gives structural information,
but it requires that the metal ion is tightly bound [22].

X-ray crystallography is an excellent method to locate metal ions precisely. Nevertheless, small
molecules and metal ions are often misinterpreted in macromolecular structures if only parameters
as distances, coordination numbers, B-factors, and valence are verified. A recent study reported that
around 10% of the metal ion binding sites in macromolecular structures are problematic and over
30% cannot be identified with sufficient evidence. The CheckMyMetal web server [23] uses eight
parameters to evaluate the consistency, the valence, and coordination sphere of each metal ion binding
sites. However, there are some limitations in using this webserver for π-backbonding, sites with an
asymmetrical ligand arrangement, and for metal ions with more than one oxidation state.

In a previous study 13 different metal ions were localized in two 23-nucleotide long subtypes
of the RNA dimerization initiation site (DIS) in the human immunodeficiency virus (HIV)-1 RNA
genome. Despite similar sequences the two structures showed different metal preferences and binding
sites [24]. We extend the knowledge of this study by describing for the first time a Cu2+ binding site
and an uncommon interaction of most tested metal ions to O4 of uracil in an octameric RNA duplex.
From the crystal structure in the presence of Ca2+ we could collect a high quality and redundant
data set to get sufficient anomalous signal to solve the crystal with native-SAD (single-wavelength
anomalous diffraction). Furthermore, five octameric RNA crystal structures were solved with metal
ions appearing less relevant in the context of nucleic acid binding, although they are often applied as
chemical probes in nucleic acid biochemistry, as crystallization agents, or as Mg2+-mimicking atoms.
Therefore, it was important to determine the sites of metal ion binding with confidence, which was
achieved by collecting sufficient anomalous signals of four metal ions at different wavelengths together
with careful inspection of the B-factor, valence bond parameter [25], and metal ligand distance.

2. Results

2.1. Overall Structure

In order to investigate the influence of metal ions on RNA structure, six octameric RNA duplex
structures were solved in the presence of different metal ions. The RNA forms a continuous helix
throughout the lattice by end-to-end stacking of the asymmetric unit (Figure 1), as it is often seen
in crystal structures of nucleic acids to maximize the energy of the base-stacking [26]. Despite
crystallized structures from solutions containing different metal ions, no particular structural changes
were observed of the octameric RNA duplex (Figure 1). The isomorphous structures showed the
characteristics of the A-form helix. However, comparison with a calculated “ideal” A-RNA duplex
in solution reveals that the RNA duplex in the presence of the metal ions is more compressed and
twisted (Figure 1). Quantitative data from the analysis of the three-dimensional structure by using
the program 3DNA [27] confirmed these observations. In the presence of metal ions the values for
the helical rise and the major groove width of the RNA are smaller, whereas the helical twist is bigger
(Table 1). The compaction is particularly visible at the first nucleobases of the strand, which are more
out-of-plane twisted to each other than in the “ideal” octameric RNA, and additionally hydrogen
bond formation from U1O51 to OP2 of C2 of the other strand is observed (Figure 1b). In addition, the
quantitative analysis reveals that the structures in the presence of Mn2+, Sr2+, and Tb3+ have a slightly
bigger major groove width (Table 1). This could be either due to the bigger ionic radius or that they
are less effective in compensating the electrostatic repulsion.
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Figure 1. Effects of the nature of the metal ion on RNA structure. (a) Overlay of all octameric RNA 
crystal structures in the presence of Ca2+ (green), Mn2+ (purple), Sr2+ (grey), Tb3+ (yellow), Cu2+ 
(brown), and Co2+ (pink); (b) Calculated, energy-minimized octameric A-RNA duplex (grey) in 
solution compared to the X-ray structure solved in the presence of Ca2+ (red). The energy-minimized 
octameric A-RNA duplex was calculated with the program RNAComposer [28]; (c) end-on-end 
stacking of individual octamers (shown in three different colors) in the crystal structure. 

Table 1. Selected helical parameters calculated with the program X3DNA [27]. The average values of 
all local base-pair values are provided together with the standard deviation as defined by the program 
X3DNA (in parentheses). 
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8mer Duplex Ca2+ Mn2+ Co2+ Cu2+ Sr2+ Tb3+ 
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2.2. Careful Examination of the Tested Metal Ions 

The first crystal structure solved by native-SAD [29,30] was co-crystallized with Ca2+. Three of 
the other RNA crystals were grown in the presence of calcium(II) and afterwards soaked in solutions 
containing either Mn2+, Cu2+, or Tb3+. We measured all solved crystal structures at the corresponding 
X-ray absorption edge to get a strong anomalous signal. We could thereby unambiguously localize 
the ions by calculating anomalous difference maps in various resolution ranges. Further we verified 
that the B-factor of the metal and the environment are in the same range and we considered the 
distance and coordination to surrounding waters (Table 2). 

Figure 1. Effects of the nature of the metal ion on RNA structure. (a) Overlay of all octameric RNA
crystal structures in the presence of Ca2+ (green), Mn2+ (purple), Sr2+ (grey), Tb3+ (yellow), Cu2+

(brown), and Co2+ (pink); (b) Calculated, energy-minimized octameric A-RNA duplex (grey) in
solution compared to the X-ray structure solved in the presence of Ca2+ (red). The energy-minimized
octameric A-RNA duplex was calculated with the program RNAComposer [28]; (c) end-on-end stacking
of individual octamers (shown in three different colors) in the crystal structure.

Table 1. Selected helical parameters calculated with the program X3DNA [27]. The average values of
all local base-pair values are provided together with the standard deviation as defined by the program
X3DNA (in parentheses).

Calculated
8mer Duplex Ca2+ Mn2+ Co2+ Cu2+ Sr2+ Tb3+

Helical rise (Å) 2.80 (0.03) 2.4
(0.57)

2.59
(0.47)

2.41
(0.55)

2.43
(0.54)

2.58
(0.36)

2.56
(0.42)

Helical twist (˝) 16.0 (0.9) 36.0
(2.7)

35.0
(2.4)

35.6
(2.9)

35.8
(3.1)

35.3
(1.8)

35.7
(1.7)

Major groove width (Å) 12.7 5.4 7.9 5.5 5.6 7.7 6.3

2.2. Careful Examination of the Tested Metal Ions

The first crystal structure solved by native-SAD [29,30] was co-crystallized with Ca2+. Three of
the other RNA crystals were grown in the presence of calcium(II) and afterwards soaked in solutions
containing either Mn2+, Cu2+, or Tb3+. We measured all solved crystal structures at the corresponding
X-ray absorption edge to get a strong anomalous signal. We could thereby unambiguously localize the
ions by calculating anomalous difference maps in various resolution ranges. Further we verified that
the B-factor of the metal and the environment are in the same range and we considered the distance
and coordination to surrounding waters (Table 2).
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Table 2. Coordination of metal ions in the octameric RNA and comparison of observed RNA metal ion interactions to frequency reported in the MINAS database
(Metal Ions in Nucleic AcidS) [10].

Metal ID Cation Inner Sphere Ligand a Distance (Å) Occupancy B-Factor Outer Sphere Ligand b Valence c % in MINAS

1Ca/C1 Ca2+ 1.0 19.4 2.2

O4 4U/A 2.39 1.0 18.1 0.7
O 2HOH/D 2.43 1.0 21.7 N7 3G/A 3.9
O 3HOH/D 2.45 1.0 21.5

O 14HOH/D 2.39 1.0 21.5 O6 3G/A 2.9
O 15HOH/D 2.36 1.0 23.6
O 16HOH/D 2.35 1.0 18.4 O6 3G/B 2.9
O 17HOH/D 2.4 1.0 18.1

1Ca/E1 Ca2+ 0.4 21.7

O21/5 A/B 2.86 1.0 22.6 2.1
O21/5 A/B d 2.86 1.0 22.6 2.1
O21/5 A/B d 2.86 1.0 22.6 2.1

1Ca/F1 Ca2+ 1.0 18.3 1.8

OP1 7G/A 2.34 1.0 21.0 18.7
OP1 7G/A d 2.34 1.0 21.0 18.7
OP1 7G/A d 2.34 1.0 21.0 18.7
O 4HOH/D 2.52 1.0 26.1

O 4HOH/D d 2.52 1.0 26.1
O 4HOH/D d 2.52 1.0 26.1

1Cu/C1 Cu2+ 0.4
0.46 e 19.1

O4 4U/A 2.40 1.0 18.1 0.0 (Cu2+)
0.7 (Ca2+)

O 18HOH/D 2.32 1.0 19.1 O6 3G/A 10.3 (Cu2+)
2.9 (Ca2+)

O 22HOH/D 2.30 1.0 18.3 O6 3G/A 10.3 (Cu2+)
2.9 (Ca2+)

O 7HOH/D 2.38 1.0 22.9

O 5HOH/D 2.38 1.0 20.9 N7 3G/A 4.8 (Cu2+)
3.9 (Ca2+)

O 2HOH/D 2.31 1.0 21.0 N4 2C/B 9.6 (Cu2+)
0.5 (Ca2+)

O 4HOH/D 2.44 1.0 19.5

1Ca/F1 Ca2+ 0.2 19.1
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Table 2. Cont.

Metal ID Cation Inner Sphere Ligand a Distance (Å) Occupancy B-Factor Outer Sphere Ligand b Valence c % in MINAS

1Ca/G1 Ca2+ 0.6 13.1 2.0

OP1 7G/A 2.35 1.0 15.4 18.7
OP1 7G/A d 2.35 1.0 15.4 18.7
OP1 7G/A d 2.35 1.0 15.4 18.7
O 41HOH/D 2.39 1.0 19.1
41HOH/D d 2.39 1.0 19.1
41HOH/D d 2.39 1.0 19.1

1Cu/C4 Cu2+ 0.2 25.1 -

O 49HOH/D 2.19 1.0 30.6 N7 8A/B 1.4
O 47HOH/D 2.22 1.0 34.2 N6 8A/B 1.2
O 85HOH/D 2.16 0.5 33.1
O 86HOH/D 2.15 0.4 32.1
O 1HOH/E 2.21 1.0 36.1

O 70HOH/D d 2.11 1.00 36.6

1Co/E1 Co2+ 0.5 8.5 2.1

O4 4U/A 2.42 1.0 14.4 3.9
O 1HOH/C 2.13 1.0 12.8 O6 3G/B 11.1

O 13HOH/C 2.11 1.0 15.9 O6 3G/A 11.1
O 4HOH/C 2.10 1.0 15.5
O 6HOH/C 2.11 1.0 20.6 N7 3G/A 10.2
O 5HOH/C 2.13 1.0 17.5
O 3HOH/C 2.10 1.0 20.4

1Co/D2 Co2+ 0.6 12.0 1.8

O 1HOH/C 2.11 1.0 18.9
O 1HOH/C d 2.11 1.0 18.9
O 1HOH/C d 2.11 1.0 18.9

OP1 7G/A 2.15 1.0 15.3 2.6
OP1 7G/A d 2.15 1.0 15.3 2.6
OP1 7G/A d 2.15 1.0 15.3 2.6

1Co/E2 Co2+ 0.3 12.5

O 81HOH/C 2.10 1.0 23.7 N7 7G/A 10.2
O 37HOH/C 2.07 1.0 25.3
O 17HOH/C 2.12 1.0 20.3 OP2 6C/A 5.1
O 61HOH/C 2.11 1.0 26.0
O 63HOH/C 2.10 1.0 27.6
O 62HOH/C 2.09 1.0 32.4
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Table 2. Cont.

Metal ID Cation Inner Sphere Ligand a Distance (Å) Occupancy B-Factor Outer Sphere Ligand b Valence c % in MINAS

1Mn/C1 Mn2+ 0.7 14.7 2.1

O 1HOH/F 2.14 1.0 20.4
O 2HOH/F 2.18 1.0 19.5 O4 4U/A 3.3
O 3HOH/F 2.08 1.0 16.5 O6 3G/B 9.3

O 15HOH/F 2.19 1.0 21.4 N7 3G/B 8.0
O 16HOH/F 2.31 1.0 18.4
O 17HOH/F 2.21 1.0 22.9

1Mn/D1 Mn2+ 0.6 14.0 2.5

O 7HOH/F 2.17 1.0 18.9 O6 7G/A 9.3
O 8HOH/F 2.21 1.0 23.2
O 9HOH/F 2.00 1.0 22.2

O 10HOH/F 2.08 1.0 25.5
O 11HOH/F 2.05 1.0 23.4
O 12HOH/F 2.18 1.0 18.9 N7 7G/A 8.0

1Mn/E1 Mn2+ 0.4 15.3

O 13HOH/F 2.10 1.0 25.9
O 14HOH/F 2.07 1.0 23.1 O6 7G/B 9.3
O 44HOH/F 2.13 1.0 26.2 N7 7G/B 8.0
O 45HOH/F 2.06 1.0 30.6

O 37HOH/F d 2.32 1.0 26.5
O 43HOH/F d 2.23 1.0 26.2

1Mn/G1 Mn2+ 0.7 22.2

OP1 7G/A 2.59 1.0 28.4 4.6
OP1 7G/A d 2.99 1.0 28.4 4.6
OP1 7G/A d 2.27 1.0 28.4 4.6

1Sr/C2 Sr2+ 0.6 28.5 1.4

O 1HOH/N 2.52 1.0 33.6 O4 4U/A 5.4
O 2HOH/Q 2.61 1.0 42.5
O 3HOH/D 2.49 1.0 36.3 O6 3G/B 5.2
O 4HOH/D 2.53 1.0 30.3 O6 3G/A 5.2
O 6HOH/D 2.61 1.0 35.92
O 7HOH/D 2.62 1.0 38.4

1Sr/F1 Sr2+ 0.5 35.3

OP1 7G/A 3.20 1.0 33.9
OP1 7G/A d 3.20 1.0 33.9
OP1 7G/A d 3.20 1.0 33.9
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Table 2. Cont.

Metal ID Cation Inner Sphere Ligand a Distance (Å) Occupancy B-Factor Outer Sphere Ligand b Valence c % in MINAS

1Tb/1 Tb3+ 0.4 39.4

OP2 2C/A 2.53 1.0 40.9 -
OP2 2C/B 2.50 1.0 41.6 -
O 1HOH/ 2.34 1.0 45.0

O 14HOH/D 2.30 1.0 45.1
O 19HOH/D 2.55 1.0 46.6 O51/1 U/A 7.1

1Tb/E2 Tb3+ 0.2 44.4

OP1 7G/A 1.0 41.8 -
OP1 7G/A d 1.0 41.8
OP1 7G/A d 1.0 41.8

a The cutoff values for innersphere binding were set to 2.5 Å, as defined in the MINAS database. For Sr2+ the cutoff value was set to 2.62 Å according the theoretically expected value;
b after the definition of the MINAS database a maximum distance of 3.2 Å from H2O to RNA was set; c for atoms with low occupancy the valence bond parameter was not calculated;
d symmetry-related atoms; e occupancy calculated from the anomalous signal.
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In every solved octameric structure one cation is located in the center of the major groove (Figure 2).
The other metal ion is bound in an innersphere arrangement to the phosphate oxygen of guanine and
further linked to neighboring asymmetric units in the crystal (Figure 3). We assume that the metal ion
in the central part of the major groove of the duplex and the one sitting at the phosphate backbone
have an effect on the compaction of the octameric RNA by compensating for the negative charge,
which is generated through the approach of the two phosphate backbones in the center. In the RNA
structure that was soaked in copper(II), the Ca2+ at the phosphate backbone is not replaced by Cu2+,
which demonstrates the strong preference of Ca2+ for the phosphate oxygens.
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Figure 2. Positions of the metal ions found in different crystal structures of the octameric RNA duplex.
The atoms of all RNA strand structures are superimposed, although the RNA duplex shown is the one
solved in the presence of Ca2+, whereas the other structures are hidden.

Figure 2 shows that Tb3+ and Mn2+ occupy slightly different sites in the center of the RNA. Tb3+ is
located towards the phosphate backbone and Mn2+ is closer to guanine, a preference which is observed
in other macromolecules too [10,31]. There are additional ion binding sites in the presence of Mn2+,
Co2+, and Cu2+.
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grey, light blue, and pink) by phosphate coordination. Coordinated water molecules are shown in red.

2.3. Comparison of Observed Metal Ion RNA Interaction to Other Macromolecules as Suggested by the
MINAS Database

In addition to the innersphere binding to the phosphate oxygen of guanine, there is an uncommon
innersphere binding to O4 of uracil by Ca2+, Co2+, and Cu2+ (Figure 4 and Table 2). While inner-sphere
binding (e.g., to O6 of guanine [32]) is known, to the best of our knowledge innersphere binding to
uracil O4 is here observed for the first time with Cu2+, compared to other macromolecules deposited
in the protein databank (PDB) [33]. Outersphere binding to O6 of guanine is observed for all tested
cations, except for Tb3+. In other macromolecules this interaction is frequently found for Mn2+ and
Co2+, as suggested by the MINAS database [10]. Our study also confirms the preference of Tb3+,
Ca2+, and Sr2+ to phosphate oxygens, as well as Co2+ and Cu2+ coordination to N7 of guanine [10,31],
although in an outer-sphere manner in this octameric RNA duplex (Table 2).
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2.4. Is There Cu2+ or Ca2+ in the Copper(II) Soaked Structure?

Although we observe a strong anomalous signal in the central part of the major groove at the
absorption edge of Cu2+, the unusual elongated bond lengths to the coordinating waters [34,35] and the
valence bond parameter [25] do not suggest that only Cu2+ is located at this position (Table 2). Therefore
we try to quantitatively demonstrate the position of Cu2+ by integrating the area of the anomalous
difference map. The occupancy of the strong anomalous scatterer Cu2+ relative to phosphorus, for
which we assume 100% occupancy, was then calculated. The occupancy value for the anomalous
difference map in Table 2 corresponds to the observed value from the electron density map and
therefore confirms the position of Cu2+ at this site. The results indicate that the site is not fully
occupied by Cu2+ and that in some structures Ca2+, instead of Cu2+, must be present (Figure 5).Int. J. Mol. Sci. 2016, 17, 988 8 of 14 
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3. Discussion

3.1. Structural Changes Are Independent of the Nature of the Cations

The more compact form of the solved RNA structures (Figure 1b and Table 2) clearly demonstrates
the effects of di- and trivalent cations on RNA conformational changes, necessary for the catalytic
activity in ribozymes or regulatory functions in riboswitches [36,37]. As we could not observe any
conformational difference of the octameric RNA structures in the presence of different metal ions
(Figure 1a), we assume that the specific position and orientation of the metal ions tend to be the
determining factor for a fully active RNA rather than the nature of the metal ions. Hence, in RNA
folding the choice of metal depends not only on physiochemical properties, but also on its abundance
and availability. As in vitro evolution studies with the Tetrahymena group I and allosteric ribozymes
in different metal ion environments demonstrate [38,39], RNA is even able to selectively adopt a
metal ion.
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3.2. Predominant Localization of All Tested Metal Ions in the Phosphate Backbone and in the Central
Major Groove

The results propose that at least two metal ions are needed for structural changes and
compensation of negative charges. The two negatively charged phosphate backbones approach
each other at the major groove edge of the RNA duplex. This explains the localization of the metal ion
at this specific position. Another preferred position is at the phosphate backbone, a position which is
frequently reported in nucleic acids [10,40]. Different metal ions that occupy the same site in different
crystal structures were already observed in previous studies [41–44]. Hence, crystallization buffers can
also influence the metal ion binding sites and the occupancy, which should be considered when the
position of the metal is related to functional activity of RNA.

Additional cations in the octameric RNA that are located at specific sites are Mn2+, Cu2+, and
Co2+. They have smaller ionic radii compared to the other tested metal ions and are probably less
sterically hindered to be in a closer position to the RNA duplex. Further, an additional Ca2+ is found
at the phosphate backbone, reflecting the preference of the bigger-sized Ca2+ for this position [10].

Even if it is difficult to comment on the stabilities, as the resolution and the occupancy of the
metal ion varies, we might observe a trend of “good” and “bad” binders, which corresponds to the
Irving–Williams series [45,46]. Cu2+, Co2+, and Mn2+ seem to favor binding to the nucleobases, in
contrast to Sr2+ or Ca2+ (Table 1). The dominant localization of Ca2+ at phosphate groups corresponds
to reported increased stability constants for Ca2+ binding to the phosphodiester bridge [31].

Tb3+ and Mn2+ do not occupy the same central position observed for the other cations. As
expected from other studies, Tb3+ is coordinated to phosphate oxygen atoms. Tb3+ competes with
Mg2+ binding sites [47,48], hence the position of terbium(III) could suggest a possible Mg2+ binding
site. Mg2+ is the most abundant metal ion in macromolecular structures [3,10]. However, we assume
that Mg2+ is not required for the compact form of the octameric RNA structure. Mg2+ ions should be
present in the case of the structure in the presence of Sr2+ and Co2+, but no specific structural change is
seen compared to the other solved structures.

3.3. Particular Innersphere Binding of Co2+, Cu2+, and Ca2+ to O4 of Uracil

Innersphere binding to O4 of uracil is infrequent in other macromolecular structures, which is not
surprising as uracil has basically no M2+ affinity, except if N3H is deprotonated [31,49]. There has been
one case found for Co2+ in the crystal structure of the hammerhead ribozymes close to the cleavage
site [50]. It was reported that Co2+ leads to higher in vitro cleavage rates than Mg2+ [51], however,
there is no evidence that the localization of the Co2+ to this uracil O4 is the decisive factor.

Unexpectedly the coordination number of the central metal ion that undergoes this innersphere
binding is seven, instead of six. However, transition metal ions are often flexible in both coordination
number and geometry [52]. We assume that the compact conformation of the RNA squeezes the
ligands and the surrounding water to close space in such a way that the correct geometry cannot be
maintained. The compact conformation is either induced by the cations themselves, which counteract
the negative charge, or it could be that the crystal packaging effects lead to structural changes in
the RNA.

3.4. Mixed State Explains the Elongated Bond Length for the Copper(II) Soaked Crystal Structure

We found in the octameric RNA duplex a unique innersphere interaction of Cu2+ to O4 of
uracil. Although copper is the third most abundant transition metal in the body and in the brain [9],
interactions of copper(II) with nucleic acids are unusual [10], and to the best of our knowledge no
RNA structure associated with copper has been deposited in the PDB [33].

The anomalous difference map clearly indicates the presence of copper(II) at this position. This
was quantitatively demonstrated by integrating the anomalous difference map and by determining
the occupancy of Cu2+ relative to the phosphates. However, the quantification of the anomalous signal
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also indicates that the position is not completely occupied by Cu2+. Hence, we propose a mixed state
of Ca2+ with Cu2+ which was used for soaking (Figure 5).

4. Methods

4.1. RNA Synthesis and Purification

Chemically synthesized and desalted RNA oligonucleotides with the sequence 51-UCGUACGA
were purchased from Microsynth, Switzerland in a quantity of 2 µmol and purified by denaturing 20%
polyacrylamide gel electrophoresis (PAGE) following standard procedures [53]. The excised gel slices
were crushed and soaked twice in 10 mM Tris-HCl (pH 7.5) and 200 mM NaCl, 1 mM EDTA (pH 8.5).
The supernatant was collected and precipitated by the addition of 100% EtOH and 50 mM NaCl. The
RNA was desalted and concentrated to 1.2 mM.

4.2. RNA Crystallization and Soaking

RNA (0.6 mM) was annealed for 1 min at 50 ˝C in water and cooled to room temperature. Crystals
were grown by the hanging drop vapor diffusion method in a 1:1 mixture of RNA and reservoir
solution. The colorless needle-shaped crystals in the presence of Ca2+ grew after two days in a solution
consisting of 200 mM CaCl2, 28% PEG 400, 2 mM spermine, and 50 mM hepes sodium buffer (pH 7.5).
Soaking was done in reservoir solutions with 100 mM MnCl2, 2 mM TbCl3, or 20 mM CuCl2, instead of
CaCl2, for 24 h. The conditions for the two co-crystallized RNA were 2 mM CoCl2, 20 mM MgSO4, 25%
MPD, 0.5 mM spermine, and 50 mM potassium cacodylate (pH 6.0) (for the Co2+ crystals) and 200 mM
SrCl2, 200 mM ammonium acetate, 10 mM magnesium acetate, 28% polyethylene glycol (PEG) 8000,
and 50 mM sodium cacodylate pH 6.5 (for the Sr2+ crystals). Crystals were looped in cryosolution
containing reservoir solution with 25% glycerol and flash-frozen in liquid nitrogen.

4.3. Data Collection and Structure Determination

Single crystal datasets were collected by beamline X06DA Swiss Light Source (Paul Scherrer
Institute, Villigen, Switzerland) at 100 K with a PILATUS 2M-F detector (Dectris Ltd., Baden-Daettwil,
Switzerland). Data were processed with XDS [54] and scaled with AIMLESS [55,56]. Highly redundant
fine-φ sliced data [57] were collected at a single-wavelength with a multi-axis goniometer PRIGo
(Table 3). The crystal in the presence of Ca2+ was solved with native-SAD at a wavelength of 1.61 Å
(List 1). The long needle-shaped crystals were well-suited for measuring at different positions to
prevent radiation damage and to get highly redundant data of high quality. All the other crystal
structures were solved by molecular replacement using MOLREP [55]. Refinement cycles were
performed in PHENIX [58] and molecular graphics and analyses were performed with the UCSF
Chimera package [59]. Further details concerning data collection, phasing, and refinement are reported
in Table 3 and List 1.

The ideal A-RNA duplex was predicted with the web-accessible tool RNAComposer [28].
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Table 3. Statistics of data collection and refinement of the octamer in the presence of the indicated
divalent metal ions.

Ca2+ Mn2+ Co2+ Cu2+ Sr2+ Tb3+

PDB Code 4U3L 4U3O 4U3R 4U78 4U3P 4U47

Data collection

λ (Å) 1.60810 1.60000 1.60000 1.37478 1.60000 1.60000
Exposure period (s) 0.1 0.1 0.1 0.1 0.1 0.1
Oscillation range (˝) 0.25 0.1 0.1 0.1 0.1 0.1

Space group H3 H3 H3 H3 H3 H3

Unit cell parameters

a (Å) 46.88 46.33 46.97 46.81 45.48 46.51
b (Å) 46.88 46.33 46.97 46.81 45.48 46.51
c (Å) 53.15 58.08 53.39 53.38 57.98 56.63

Resolution range (Å) 32.00–1.68 23.16–1.8 32.34–1.72 32.28–1.50 32.58–1.87 32.82–1.95

Number of reflections

Total 69,346 78,548 35,809 112,323 35,169 31,751
Unique 4726 4140 4265 6864 3728 3225

Completeness (%) a 95.2 (77.60) 95.74 (79.91) 96.75 (84.68) 98.39 (90.32) 99.79 (97.96) 96.82 (89.57)
(I)/(σ(I)) a 58.00 (16.2) 43.26 (12.06) 14.60 (12.22) 48.32 (4.56) 34.84 (4.06) 33.19 (5.35)

Average multiplicity 14.7(4.9) 19.0(11.4) 8.4 (2.0) 16.4 (5.0) 9.4 (7.0) 9.8 (9.0)
Rmeas

a 0.036 (0.076) 0.059 (0.23) 0.042 (0.044) 0.041 (0.042) 0.037 (0.48) 0.052 (0.44)
CC1/2 100 (97.7) 100 (99.2) 99.8 (82.4) 99.9 (98.2) 99.9 (98.2) 99.8 (98.6)

Refinement

Rwork 0.187 0.165 0.165 0.177 0.180 0.172
Rfree 0.212 0.175 0.198 0.206 0.229 0.207

Root mean square deviations (r.m.s.d.) from target values

Bond lengths (Å) 0.005 0.005 0.002 0.002 0.004 0.004
Bond angle (Å) 0.890 0.910 0.400 0.400 0.740 0.780

Average B-factors (Å2)

Ligands 24.5 16.6 10.9 20.3 32.4 41.8
RNA 22.9 21.4 15.1 18.1 28.7 39.0

Solvent 27.1 26.1 25.9 28.5 34.2 43.9
Number of RNA atoms b 334 334 334 334 334 334

Number of solvent molecules 29 65 87 78 64 37
a Statistics for the highest-resolution shell are shown in parentheses; b per asymmetric unit.

List 1. Statistics of sub-structure determination and phasing (Ca2+ data).

SHELXD CCweak (%)/CCall (%) (for the top solution) 48.8/29.3
SHELXD CFOM (for the top solution) 78.1
SHELXD PATFOM (for the top solution) 18.6
Number of correct sites (for the top solution) 14
SHELXE CC (%) 69.20
SHELXE FOM 0.656
PHASER EP FOM 0.697
Map CC (%) (DM map against the map calculated from the refined model) 82.4

4.4. Localization of Metal Ions

The identity of metal ions with sufficient anomalous scattering was confirmed by calculating an
anomalous difference map in various resolution ranges with PHENIX [58]. The M–O distances to
water were compared to data reported by Shannon [34,35]. The cutoff values for innersphere binding
were set to 2.5 Å after the definition of the MINAS database [10], except for Sr2+, as the proposed M-O
distance was 2.62 Å due to the longer ionic radii. For outersphere binding a maximum distance of 3.2 Å
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from water to RNA was set. The bond valence parameter as described in [25] is calculated for each
observed metal-ligand distance Ri by vi =

ř

exp((R0 ´ Ri)/b), where R0 is a constant describing ideal
distance, if the bond valence is 1, and b is an empirical constant. Both values are reported in [60]. The
bond valence model was only employed for metal ion positions with an occupancy higher than 0.5.

For quantification of the anomalous signal of Cu2+ the anomalous difference map was integrated
with Mapman [61] to add up the density inside a sphere of 2 Å around each atom. The f11 value of
Cu2+ and P were used to determine the ratio of their anomalous signals at the measured wavelength
of 1.37 Å. The integrated value for phosphorus was then multiplied by this factor. For phosphorus, a
100% occupancy was assumed to calculate the relative occupancy for Cu2+.

5. Conclusions

Here we describe a detailed study of six different metal ions coordinating to a short RNA duplex.
The cations have a rather strong influence on RNA structure, although none of the metal ions employed
shows a specific individual structural influence. Different parameters were considered to carefully
assign the positions of the individual metal ions, yielding two prevalent positions in the octameric
RNA duplex. The first is coordinated to the phosphate backbone, the second cation binds in the major
groove of the RNA, interacting by a particular innersphere coordination to O4 of uracil in the presence
of Ca2+, Co2+, and Cu2+.

Finally, this study demonstrates the importance of considering several parameters when assigning
metal ion positions in X-ray structures. Even when there is a strong anomalous signal present, we have
to inspect other geometrical and crystallographic parameters for an accurate localization. On the other
hand, geometrical consideration without examining the anomalous signal or other crystallographic
parameters may lead to wrong interpretations as the geometry could be distorted by structural
constraints of the RNA due to the metal ions or crystal packaging effects.
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